Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.456
Filtrar
1.
Life Sci ; 348: 122689, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710281

RESUMEN

Glycans and their glycoconjugates are complex biomolecules that are crucial for various biological processes. Glycoconjugates are found in all domains of life. They are covalently linked to key biomolecules such as proteins and lipids to play a pivotal role in cell signaling, adhesion, and recognition. The diversity of glycan structures and the associated complexity of glycoconjugates is the reason for their role in intricate biosynthetic pathways. Glycoconjugates play an important role in various diseases where they are actively involved in the immune response as well as in the pathogenicity of infectious diseases. In addition, various autoimmune diseases have been linked to glycosylation defects of different biomolecules, making them an important molecule in the field of medicine. The glycoconjugates have been explored for the development of therapeutics and vaccines, representing a breakthrough in medical science. They also hold significance in research studies to understand the mechanisms behind various biological processes. Finally, glycoconjugates have found an emerging role in various industrial and environmental applications which have been discussed here.


Asunto(s)
Glicoconjugados , Glicoconjugados/metabolismo , Glicoconjugados/química , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , Glicosilación , Animales , Vacunas
2.
Carbohydr Res ; 538: 109101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574410

RESUMEN

To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.


Asunto(s)
Química Clic , Sacarina , Química Clic/métodos , Glicoconjugados/química , Triazoles/química , Simulación del Acoplamiento Molecular
3.
J Org Chem ; 89(9): 6364-6370, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38650458

RESUMEN

Introducing glycans represents an efficient chemical approach to improve the pharmacological properties of therapeutic biomolecules. Herein, we report an efficient synthesis of glycoconjugates through chlorooxime-thiol conjugation. The reactive glycosyl chlorooximes, derived from pyranoses or furanoses, readily couple to a wide range of thiol-containing substrates, including peptides, sugars, and thiophenols. This method features mild reaction conditions and fast kinetics. Capability for aqueous media and gram-scale synthesis demonstrates the potential of this method in the bioconjugation of saccharides with biologically active molecules.


Asunto(s)
Glicoconjugados , Oximas , Compuestos de Sulfhidrilo , Oximas/química , Glicoconjugados/química , Glicoconjugados/síntesis química , Compuestos de Sulfhidrilo/química , Estructura Molecular
4.
Int J Biol Macromol ; 268(Pt 1): 131511, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615867

RESUMEN

This comprehensive review delves into the intricate landscape of glycans and glycoconjugates, unraveling their multifaceted roles across diverse biological dimensions. From influencing fundamental cellular processes such as signaling, recognition, and adhesion to exerting profound effects at the molecular and genetic levels, these complex carbohydrate structures emerge as linchpins in cellular functions and interactions. The structural diversity of glycoconjugates, which can be specifically classified into glycoproteins, glycolipids, and proteoglycans, underscores their importance in shaping the architecture of cells. Beyond their structural roles, these molecules also play key functions in facilitating cellular communication and modulating recognition mechanisms. Further, glycans and glycoconjugates prove invaluable as biomarkers in disease diagnostics, particularly in cancer, where aberrant glycosylation patterns offer critical diagnostic cues. Furthermore, the review explores their promising therapeutic applications, ranging from the development of glycan-based nanomaterials for precise drug delivery to innovative interventions in cancer treatment. This review endeavors to comprehensively explore the intricate functions of glycans and glycoconjugates, with the primary goal of offering valuable insights into their extensive implications in both health and disease. Encompassing a broad spectrum of biological processes, the focus of the review aims to provide a comprehensive understanding of the significant roles played by glycans and glycoconjugates.


Asunto(s)
Glicoconjugados , Polisacáridos , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Animales , Neoplasias/metabolismo , Glicosilación , Glicoproteínas/química , Glicoproteínas/metabolismo
5.
J Am Chem Soc ; 146(5): 3220-3229, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38271668

RESUMEN

Complex bacterial glycoconjugates drive interactions between pathogens, symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphosphosugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). The two distinct superfamilies of PGT enzymes (polytopic and monotopic) show striking differences in their structure and mechanism. We designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate of the UDP and UDP-sugar is replaced by a substituted methylene bisphosphonate (CXY-BPs; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). UBPs and UBPs incorporating an N-acetylglucosamine (GlcNAc) substituent at the ß-phosphonate were evaluated as inhibitors of a polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics diphosphate with respect to its acid/base properties, the less basic CF2-BP conjugate more strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies, implicating a modified P-O- interaction with the structural Mg2+. For the monoPGT enzyme, the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pß carbon, also exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are thus revealed as informative new mechanistic probes of PGTs that may aid development of novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.


Asunto(s)
Difosfatos , Transferasas , Humanos , Transferasas/química , Uridina , Glicoconjugados/química , Difosfonatos , Azúcares , Uridina Difosfato
7.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944617

RESUMEN

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Azúcares , Humanos , Hidrolasas Diéster Fosfóricas/genética , Carbohidratos , Glicoconjugados/química , Polisacáridos/metabolismo , Acetilglucosamina/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-37979977

RESUMEN

Lectins are predominantly oligomeric proteins with several binding sites per molecule. Glycoconjugates are their natural ligands, which often possess multiple binding epitopes. Thus, lectin-glycoconjugate interactions are mostly multivalent in nature. The mechanism of multivalent binding is fundamentally different from those described for monovalent interactions in textbooks and research papers. Over the years, binding studies that make use of different lectins and a variety of multivalent glycoconjugate ligands were conducted in order to understand the underlying principles of multivalency. Starting with seemingly simple synthetic multivalent analogs, systematic studies were carried out using natural glycoconjugate ligands with increasing valency and complexity. Those ligands included multivalent glycoproteins, polyvalent polysaccharides, including glycosaminoglycans, as well as supra-valent mucins and proteoglycans. Models and mechanisms of multivalent binding derived from quantitative data are summarized in the present updated review.


Asunto(s)
Glicoconjugados , Lectinas , Lectinas/química , Lectinas/metabolismo , Glicoconjugados/química , Glicoproteínas/química , Polisacáridos , Mucinas
9.
Science ; 382(6667): 219-223, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824645

RESUMEN

Proteins and lipids decorated with glycans are found throughout biological entities, playing roles in biological functions and dysfunctions. Current analytical strategies for these glycan-decorated biomolecules, termed glycoconjugates, rely on ensemble-averaged methods that do not provide a full view of positions and structures of glycans attached at individual sites in a given molecule, especially for glycoproteins. We show single-molecule analysis of glycoconjugates by direct imaging of individual glycoconjugate molecules using low-temperature scanning tunneling microscopy. Intact glycoconjugate ions from electrospray are soft-landed on a surface for their direct single-molecule imaging. The submolecular imaging resolution corroborated by quantum mechanical modeling unveils whole structures and attachment sites of glycans in glycopeptides, glycolipids, N-glycoproteins, and O-glycoproteins densely decorated with glycans.


Asunto(s)
Glicoproteínas , Polisacáridos , Imagen Individual de Molécula , Glicoconjugados/química , Glucolípidos/química , Glicoproteínas/química , Polisacáridos/química , Mucina-1/química
10.
Chem Soc Rev ; 52(22): 7773-7801, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37830906

RESUMEN

The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.


Asunto(s)
Glicósidos , Polisacáridos , Glicósidos/química , Polisacáridos/química , Oligosacáridos/química , Glicoconjugados/química , Glicosilación , Glicósido Hidrolasas/química
11.
Curr Opin Struct Biol ; 82: 102670, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542906

RESUMEN

Glycoconjugates are the dominant components of the Mycobacterium tuberculosis cell wall. These glycoconjugates are essential for the viability of Mtb and attribute to drug resistance and virulence during infection. The assembly and maturation of the cell wall largely relies on the Mtb plasma membrane. A significant number of membrane-bound glycosyltransferases (GTs) and transporters play pivotal roles in forming the complex glycoconjugates and are targeted by the first-line anti-TB drug and potent drug candidates. Here we summarize the latest structural biology of mycobacterial GTs and transporters, and describe the modes of action of drug and drug candidates that are of substantial clinical value in anti-TB chemotherapeutics.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Glicoconjugados/química , Pared Celular/metabolismo , Membrana Celular , Biología
12.
Mol Biochem Parasitol ; 256: 111591, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37652240

RESUMEN

Trypanosoma theileri maintains a long-term extracellular infection with a low parasitaemia in bovids. The surface of this parasite is predicted to be decorated with several surface molecules including membrane surface proteases (MSPs), trans-sialidases and T. theileri putative surface proteins (TTPSPs). However, there are no experimental data to verify this hypothesis. Here, we have purified and partially characterized the surface glycoconjugates of T. theileri using biochemical and mass spectrometry-based approaches. The glycoconjugates fall into two classes: glycoproteins and glycolipids. Proteomic analysis of the glycoprotein fraction demonstrated the presence of MSPs and abundant mucin-like TTPSPs, with most predicted to be GPI-anchored. Mass spectrometric characterization of the glycolipid fraction showed that these are mannose- and galactose-containing glycoinositolphospholipids (GIPLs) that are larger and more diverse than those of its phylogenetic relative T. cruzi, containing up to 10 hexose residues and carrying either alkylacyl-phosphatidylinositol or inositol-phospho-ceramide (IPC) lipid components.


Asunto(s)
Proteómica , Trypanosoma cruzi , Secuencia de Carbohidratos , Filogenia , Trypanosoma cruzi/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Glucolípidos
13.
Glycoconj J ; 40(4): 401-412, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392327

RESUMEN

Glycoconjugate vaccines are important additions to the existing means for prevention of diseases caused by bacterial and viral pathogens. Conjugating carbohydrates to proteins is a crucial step in the development of these vaccines. Traditional mass spectrometry techniques, such as MALDI-TOF and SELDI-TOF, have difficulties in detecting glycoconjugates with high molecular masses. Mass photometry (MP) is a single-molecule technique that has been recently developed, which allows mass measurements of individual molecules and generates mass distributions based on hundreds to thousands of these measurements. In this study, we evaluated the performance of MP in monitoring carbohydrate-protein conjugation reactions and characterization of conjugates. Three different glycoconjugates were prepared from carrier protein BSA, and one from a large protein complex, a virus capsid with 3.74 MDa molecular mass. The masses measured by MP were consistent with those obtained by SELDI-TOF-MS and SEC-MALS. The conjugation of BSA dimer to carbohydrate antigen was also successfully characterized. This study shows that the MP technique is a promising alternative to methods developed earlier for monitoring glycoconjugation reactions and characterization of glycoconjugates. It measures intact molecules in solution and it is highly accurate over a wide mass range. MP requires only a very small amount of sample and has no specific buffer constraints. Other MP advantages include minimal cost of consumables and rapid data collection and analysis. Its advantages over other methods make it a valuable tool for researchers in the glycoconjugation field.


Asunto(s)
Glicoconjugados , Vacunas , Glicoconjugados/química , Carbohidratos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
14.
Biotechnol Adv ; 68: 108209, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37467868

RESUMEN

Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.


Asunto(s)
Glicoconjugados , Glicoproteínas , Animales , Biomasa , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Carbohidratos/química , Mamíferos
15.
Carbohydr Res ; 530: 108854, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37329646

RESUMEN

Amphiphilic glycoconjugates offer an important prospect for development as chemical biology tools and biosurfactants. The chemical synthesis of such materials is required to expedite such prospect, compounded by the example of oleyl glycosides. Herein, we report a mild and reliable glycosylation method to access oleyl glucosides, glycosidating oleyl alcohol with α-trichloroacetimidate donors. We demonstrate capability for this methodology, extending it to synthesise the first examples of pyranose-component fluorination and sulfhydryl modifications within glucosides and glucosamines of oleyl alcohol. These compounds provide an exciting series of tools to explore processes and materials that utilise oleyl glycosides, including as probes for glycosphingolipid metabolism.


Asunto(s)
Glucósidos , Glicósidos , Glicósidos/química , Alcoholes Grasos , Glicoconjugados/química , Compuestos de Sulfhidrilo
16.
Chem Commun (Camb) ; 59(54): 8384-8387, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37318770

RESUMEN

Interactions of lectins with glycoconjugate-terbium(III) self-assembly complexes lead to sensing through enhanced lanthanide luminescence. This glycan-directed sensing paradigm detects an unlabelled lectin (LecA) associated with pathogen P. aeruginosa in solution, without any bactericidal activity. Further development of these probes could have potential as a diagnostic tool.


Asunto(s)
Bacterias , Lectinas/química , Luminiscencia , Glicoconjugados/química , Glicósidos/química , Ligandos , Bacterias/química , Proteínas Bacterianas/química , Terbio/química
17.
Glycobiology ; 33(6): 454-463, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37129482

RESUMEN

The GlyCosmos Glycoscience Portal (https://glycosmos.org) and PubChem (https://pubchem.ncbi.nlm.nih.gov/) are major portals for glycoscience and chemistry, respectively. GlyCosmos is a portal for glycan-related repositories, including GlyTouCan, GlycoPOST, and UniCarb-DR, as well as for glycan-related data resources that have been integrated from a variety of 'omics databases. Glycogenes, glycoproteins, lectins, pathways, and disease information related to glycans are accessible from GlyCosmos. PubChem, on the other hand, is a chemistry-based portal at the National Center for Biotechnology Information. PubChem provides information not only on chemicals, but also genes, proteins, pathways, as well as patents, bioassays, and more, from hundreds of data resources from around the world. In this work, these 2 portals have made substantial efforts to integrate their complementary data to allow users to cross between these 2 domains. In addition to glycan structures, key information, such as glycan-related genes, relevant diseases, glycoproteins, and pathways, was integrated and cross-linked with one another. The interfaces were designed to enable users to easily find, access, download, and reuse data of interest across these resources. Use cases are described illustrating and highlighting the type of content that can be investigated. In total, these integrations provide life science researchers improved awareness and enhanced access to glycan-related information.


Asunto(s)
Bases de Datos de Compuestos Químicos , Polisacáridos , Glicosilación , Flujo de Trabajo , Informática , Polisacáridos/química , Glicoconjugados/química
18.
Chem Soc Rev ; 52(10): 3353-3396, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070256

RESUMEN

This review highlights the recent development in the use of carriers of increasing simplicities and versatile chemical ligation processes leading to synthetic vaccine candidates against tumor-associated carbohydrate antigens (TACAs). After briefly covering their structures, functions, occurrence, and biosynthesis, an overview of common conjugation chemistry is described with an emphasis on the versatile alkenyl glycosides as starting materials toward glycoconjugate syntheses. This is followed by a successive description of the numerous scaffolds and carriers used to progressively improve and simplify glycovaccine formulations. Throughout a systematic investigation of the various architectures involved, a critical description of the basic principles discovered en route to effective immune responses is disclosed wherein it is found that size, shape, densities, and carriers are all key factors involved towards successful vaccines.


Asunto(s)
Vacunas contra el Cáncer , Vacunas contra el Cáncer/química , Antígenos de Carbohidratos Asociados a Tumores/química , Vacunas Sintéticas/química , Glicoconjugados/química , Glicósidos
19.
Eur J Med Chem ; 249: 115164, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36758451

RESUMEN

Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.


Asunto(s)
Oligosacáridos , Polisacáridos , Humanos , Glicosilación , Oligosacáridos/química , Glicoconjugados/química , Química Farmacéutica
20.
Biomacromolecules ; 24(2): 1003-1013, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36651863

RESUMEN

Polymer-based nanomaterials have exhibited promising alternative avenues to combat the globe challenge of multidrug-resistant bacterial infection. However, most of the reported polymeric nanomaterials have facially linear amphiphilic structures with positive net charges, which may lead to nonspecific binding, high hemolysis, and uncontrollable self-organization, limiting their practical applications. In this contribution, we report a one-dimensional glyconanorod (GNR) through self-assembly of well-defined ß-cyclodextrin-based glycoconjugates (RMan) featuring hydrophobic carbon-based chains and amide rhodamines with an adenosine triphosphate (ATP)-recognition site and targeted and hydrophilic mannoses and positively net-charged ethylene amine groups. The GNRs show superior targeting sensing and killing for Gram-negative Escherichia coli (E. coli) dominantly through the multivalent recognition between mannoses on the nanorod and the lectin on the surface of E. coli. Moreover, red fluorescence was light on due to the hydrogen bonding between amide rhodamine and ATP. Benefiting from the designs, the GNRs are capable of possessing a higher therapeutic index and of encapsulating other antibiotics. They exhibit an enhanced effect against E. coli strains. Intriguingly, the GNRs displayed a more reduced hemolysis effect and lower cytotoxicity compared to that of ethylene glyco-modified nanorods. These results reveal that the glyconanomaterials not only feature superior and targeted bacterial sensing and antibacterial activity, but also better biocompatibility compared with the widely used PEG-covered nanomaterials. Furthermore, the in vivo studies demonstrate that the targeted and ATP-responsive GNRs complexed with antibiotics showed better treatment using a mouse model of abdominal sepsis following intraperitoneal E. coli infection. The present work describes a targeted and effective sensing and antibacterial platform based on glycoconjugates that have potential applications for the treatment of infections caused by pathogenic microorganisms.


Asunto(s)
Escherichia coli , beta-Ciclodextrinas , Humanos , Hemólisis , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Glicoconjugados/farmacología , Glicoconjugados/química , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...