Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Med Chem ; 22(29): 2396-2409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330617

RESUMEN

The COVID-19 outbreak and the pandemic situation have hastened the research community to design a novel drug and vaccine against its causative organism, the SARS-CoV-2. The spike glycoprotein present on the surface of this pathogenic organism plays an immense role in viral entry and antigenicity. Hence, it is considered an important drug target in COVID-19 drug design. Several three-dimensional crystal structures of this SARS-CoV-2 spike protein have been identified and deposited in the Protein DataBank during the pandemic period. This accelerated the research in computer- aided drug designing, especially in the field of structure-based drug designing. This review summarizes various structure-based drug design approaches applied to this SARS-CoV-2 spike protein and its findings. Specifically, it is focused on different structure-based approaches such as molecular docking, high-throughput virtual screening, molecular dynamics simulation, drug repurposing, and target-based pharmacophore modelling and screening. These structural approaches have been applied to different ligands and datasets such as FDA-approved drugs, small molecular chemical compounds, chemical libraries, chemical databases, structural analogs, and natural compounds, which resulted in the prediction of spike inhibitors, spike-ACE-2 interface inhibitors, and allosteric inhibitors.


Asunto(s)
Diseño de Fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Antivirales/farmacología , Antivirales/química , COVID-19 , Diseño de Fármacos/métodos , Reposicionamiento de Medicamentos/métodos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos
2.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35162961

RESUMEN

Spike protein of SARS-CoV-2 contains a single-span transmembrane (TM) domain and plays roles in receptor binding, viral attachment and viral entry to the host cells. The TM domain of spike protein is critical for viral infectivity. Herein, the TM domain of spike protein of SARS-CoV-2 was reconstituted in detergent micelles and subjected to structural analysis using solution NMR spectroscopy. The results demonstrate that the TM domain of the protein forms a helical structure in detergent micelles. An unstructured linker is identified between the TM helix and heptapeptide repeat 2 region. The linker is due to the proline residue at position 1213. Side chains of the three tryptophan residues preceding to and within the TM helix important for the function of S-protein might adopt multiple conformations which may be critical for their function. The side chain of W1212 was shown to be exposed to solvent and the side chains of residues W1214 and W1217 are buried in micelles. Relaxation study shows that the TM helix is rigid in solution while several residues have exchanges. The secondary structure and dynamics of the TM domain in this study provide insights into the function of the TM domain of spike protein.


Asunto(s)
Detergentes/farmacología , Glicoproteína de la Espiga del Coronavirus/química , Secuencia de Aminoácidos , COVID-19/virología , Membrana Celular/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Detergentes/química , Humanos , Espectroscopía de Resonancia Magnética , Micelas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Viruses ; 14(1)2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-35062314

RESUMEN

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Inactivación de Virus/efectos de los fármacos , Animales , Antivirales/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cricetinae , Emodina/farmacología , Emodina/efectos de la radiación , Humanos , Luz , Fármacos Fotosensibilizantes/efectos de la radiación , Extractos Vegetales/farmacología , Extractos Vegetales/efectos de la radiación , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Virión/efectos de los fármacos
4.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34988845

RESUMEN

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Fitoterapia , Preparaciones de Plantas/uso terapéutico , SARS-CoV-2 , Antioxidantes/aislamiento & purificación , Antioxidantes/uso terapéutico , COVID-19/virología , Simulación por Computador , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/efectos de los fármacos , Suplementos Dietéticos , Zingiber officinale/química , Humanos , Sistema Inmunológico/efectos de los fármacos , India , Ligandos , Medicina Tradicional , Simulación del Acoplamiento Molecular , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Piper/química , Piper nigrum/química , Preparaciones de Plantas/aislamiento & purificación , Plantas Medicinales/química , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos
5.
Mar Drugs ; 19(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940684

RESUMEN

The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Desoxiazúcares/farmacología , Mananos/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Algas Marinas , Antivirales/uso terapéutico , Organismos Acuáticos , Desoxiazúcares/uso terapéutico , Humanos , Mananos/uso terapéutico , Extractos Vegetales/uso terapéutico , Unión Proteica/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Relación Estructura-Actividad
6.
Nat Commun ; 12(1): 6791, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815389

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is a carboxypeptidase that degrades angiotensin II, thereby improving the pathologies of cardiovascular disease or acute lung injury. Here we show that B38-CAP, an ACE2-like enzyme, is protective against SARS-CoV-2-induced lung injury. Endogenous ACE2 expression is downregulated in the lungs of SARS-CoV-2-infected hamsters, leading to elevation of angiotensin II levels. Recombinant Spike also downregulates ACE2 expression and worsens the symptoms of acid-induced lung injury. B38-CAP does not neutralize cell entry of SARS-CoV-2. However, B38-CAP treatment improves the pathologies of Spike-augmented acid-induced lung injury. In SARS-CoV-2-infected hamsters or human ACE2 transgenic mice, B38-CAP significantly improves lung edema and pathologies of lung injury. These results provide the first in vivo evidence that increasing ACE2-like enzymatic activity is a potential therapeutic strategy to alleviate lung pathologies in COVID-19 patients.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Tratamiento Farmacológico de COVID-19 , COVID-19/prevención & control , Lesión Pulmonar/prevención & control , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Lesión Pulmonar Aguda , Angiotensina II , Animales , COVID-19/patología , Carboxipeptidasas , Chlorocebus aethiops , Cricetinae , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Edema Pulmonar/patología , Edema Pulmonar/prevención & control , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Células Vero
7.
Drugs R D ; 21(3): 273-283, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34324175

RESUMEN

BACKGROUND AND OBJECTIVE: Coronavirus disease 2019 is a novel disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 virus. It was first detected in December 2019 and has since been declared a pandemic causing millions of deaths worldwide. Therefore, there is an urgent need to develop effective therapeutics against coronavirus disease 2019. A critical step in the crosstalk between the virus and the host cell is the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the peptidase domain of the angiotensin-converting enzyme 2 (ACE2) receptor present on the surface of host cells. METHODS: An in silico approach was employed to design a 13-amino acid peptide inhibitor (13AApi) against the RBD of the SARS-CoV-2 spike protein. Its binding specificity for RBD was confirmed by molecular docking using pyDockWEB, ClusPro 2.0, and HDOCK web servers. The stability of 13AApi and the SARS-CoV-2 spike protein complex was determined by molecular dynamics simulation using the GROMACS program while the physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of 13AApi were determined using the ExPASy tool and pkCSM server. Finally, in vitro validation of the inhibitory activity of 13AApi against the spike protein was performed by an enzyme-linked immunosorbent assay. RESULTS: In silico analyses indicated that the 13AApi could bind to the RBD of the SARS-CoV-2 spike protein at the ACE2 binding site with high affinity. In vitro experiments validated the in silico findings, showing that 13AApi could significantly block the RBD of the SARS-CoV-2 spike protein. CONCLUSIONS: Blockage of binding of the SARS-CoV-2 spike protein with ACE2 in the presence of the 13AApi may prevent virus entry into host cells. Therefore, the 13AApi can be utilized as a promising therapeutic agent to combat coronavirus disease 2019.


Asunto(s)
Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Antivirales/farmacología , Péptidos/farmacología , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacocinética , Antivirales/toxicidad , Sitios de Unión , Simulación por Computador , Diseño de Fármacos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Péptidos/farmacocinética , Péptidos/toxicidad , Unión Proteica/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Especificidad por Sustrato
8.
Lancet ; 398(10295): 121-130, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181880

RESUMEN

BACKGROUND: To date, no immunological data on COVID-19 heterologous vaccination schedules in humans have been reported. We assessed the immunogenicity and reactogenicity of BNT162b2 (Comirnaty, BioNTech, Mainz, Germany) administered as second dose in participants primed with ChAdOx1-S (Vaxzevria, AstraZeneca, Oxford, UK). METHODS: We did a phase 2, open-label, randomised, controlled trial on adults aged 18-60 years, vaccinated with a single dose of ChAdOx1-S 8-12 weeks before screening, and no history of SARS-CoV-2 infection. Participants were randomly assigned (2:1) to receive either BNT162b2 (0·3 mL) via a single intramuscular injection (intervention group) or continue observation (control group). The primary outcome was 14-day immunogenicity, measured by immunoassays for SARS-CoV-2 trimeric spike protein and receptor binding domain (RBD). Antibody functionality was assessed using a pseudovirus neutralisation assay, and cellular immune response using an interferon-γ immunoassay. The safety outcome was 7-day reactogenicity, measured as solicited local and systemic adverse events. The primary analysis included all participants who received at least one dose of BNT162b2 and who had at least one efficacy evaluation after baseline. The safety analysis included all participants who received BNT162b2. This study is registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739), and is ongoing. FINDINGS: Between April 24 and 30, 2021, 676 individuals were enrolled and randomly assigned to either the intervention group (n=450) or control group (n=226) at five university hospitals in Spain (mean age 44 years [SD 9]; 382 [57%] women and 294 [43%] men). 663 (98%) participants (n=441 intervention, n=222 control) completed the study up to day 14. In the intervention group, geometric mean titres of RBD antibodies increased from 71·46 BAU/mL (95% CI 59·84-85·33) at baseline to 7756·68 BAU/mL (7371·53-8161·96) at day 14 (p<0·0001). IgG against trimeric spike protein increased from 98·40 BAU/mL (95% CI 85·69-112·99) to 3684·87 BAU/mL (3429·87-3958·83). The interventional:control ratio was 77·69 (95% CI 59·57-101·32) for RBD protein and 36·41 (29·31-45·23) for trimeric spike protein IgG. Reactions were mild (n=1210 [68%]) or moderate (n=530 [30%]), with injection site pain (n=395 [88%]), induration (n=159 [35%]), headache (n=199 [44%]), and myalgia (n=194 [43%]) the most commonly reported adverse events. No serious adverse events were reported. INTERPRETATION: BNT162b2 given as a second dose in individuals prime vaccinated with ChAdOx1-S induced a robust immune response, with an acceptable and manageable reactogenicity profile. FUNDING: Instituto de Salud Carlos III. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Inmunización Secundaria , Inmunogenicidad Vacunal/inmunología , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Adolescente , Adulto , Vacuna BNT162 , COVID-19/epidemiología , ChAdOx1 nCoV-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , España/epidemiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
9.
AAPS PharmSciTech ; 22(5): 172, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34100150

RESUMEN

Vaccination development and production was an essential question for the prevention and global control of COVID-19. The strong support from governing authorities such as Operation Warp Speed and robust funding has led to the development and authorization of the tozinameran (BNT162b2) vaccine. The BNT162b2 vaccine is a lipid nanoparticle-encapsulated mRNA that encodes for SARS-CoV-2 spike protein, the main site for neutralizing antibodies. Once it binds with the host cells, the lipid nanoparticles enable the transfer of the RNA, causing S antigens' expression of the SARS-CoV-2, conferring immunity. The vaccine is administered as a 2-dose regime 21 days apart for individuals 16 years and older. Pfizer-BioNTech's BNT162b2 vaccine was the first candidate to receive FDA-Emergency Use Authorization (EUA) on December 11, 2020. During phase 2/3 clinical trials, 95% efficacy was reported among 37,706 participants over the age of 16 who received the BNT162b2 vaccination; additionally, 52% efficacy was noted 12 days following the administration of the first dose of BNT162b2, reflecting early protection of COVID-19. The BNT162b2 vaccine has exhibited 100% efficacy in clinical trials of adolescents between the ages of 12 and 15. Clinical trials in pregnant women and children under the age of 12 are expected to also exhibit promising results. This review article encompasses tozinameran (BNT162b2) vaccine journey, summarizing the BNT162b1 and BNT162b2 vaccines from preclinical studies, clinical trial phases, dosages, immune response, adverse effects, and FDA-EUA.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Ensayos Clínicos como Asunto/métodos , Aprobación de Drogas/métodos , SARS-CoV-2/efectos de los fármacos , Animales , Anticuerpos Neutralizantes/efectos de los fármacos , Anticuerpos Neutralizantes/metabolismo , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/metabolismo , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/metabolismo , Ensayos Clínicos como Asunto/legislación & jurisprudencia , Aprobación de Drogas/legislación & jurisprudencia , Evaluación Preclínica de Medicamentos/métodos , Exantema/inducido químicamente , Femenino , Humanos , Masculino , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunación/legislación & jurisprudencia , Vacunación/métodos
10.
Int J Med Mushrooms ; 23(3): 1-14, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822495

RESUMEN

The most challenging threat facing the global community today is the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite global efforts to develop suitable treatments, very few specific antiviral agents have been suggested and the virus remains a serious global health risk. In vivo animal experiments have demonstrated that bioactive mycochemical constituents of Inonotus obliquus have immunomodulatory, antimicrobial, and antiviral properties. The present study investigates the antiviral potential of I. obliquus terpenoids against COVID-19 using a molecular docking study. The in silico study elucidates the ability of most of the terpenoid components to interact with the receptor-binding domain of SARS-CoV-2 spike glycoprotein with excellent affinity. Additionally, we found that both betulinic acid and inonotusane C could bind and stably interact with the spike protein near the host cell recognition site of angiotensin-converting enzyme 2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inonotus/química , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Terpenos/farmacología , Concentración 50 Inhibidora , Estructura Molecular , Glicoproteína de la Espiga del Coronavirus/metabolismo , Terpenos/química , Terpenos/metabolismo
11.
Exp Cell Res ; 403(1): 112594, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33823179

RESUMEN

COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 125 million confirmed COVID-19 cases that have caused over 2.7 million deaths worldwide as of March 2021. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. In addition, we report that MASL also inhibits SARS-CoV-2 infection of kidney epithelial cells in culture. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Lectinas/farmacología , Boca/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Progresión de la Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Maackia/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo
13.
Sci Rep ; 11(1): 4257, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608565

RESUMEN

The worldwide CoVid-19 pandemic has led to an unprecedented push across the whole of the scientific community to develop a potent antiviral drug and vaccine as soon as possible. Existing academic, governmental and industrial institutions and companies have engaged in large-scale screening of existing drugs, in vitro, in vivo and in silico. Here, we are using in silico modelling of possible SARS-CoV-2 drug targets, as deposited on the Protein Databank (PDB), and ascertain their dynamics, flexibility and rigidity. For example, for the SARS-CoV-2 spike protein-using its complete homo-trimer configuration with 2905 residues-our method identifies a large-scale opening and closing of the S1 subunit through movement of the S[Formula: see text] domain. We compute the full structural information of this process, allowing for docking studies with possible drug structures. In a dedicated database, we present similarly detailed results for the further, nearly 300, thus far resolved SARS-CoV-2-related protein structures in the PDB.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Desarrollo de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Antivirales/uso terapéutico , Sitios de Unión , COVID-19/epidemiología , COVID-19/virología , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Pandemias/prevención & control , Unión Proteica , Dominios Proteicos/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/ultraestructura
14.
Nat Commun ; 12(1): 288, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436577

RESUMEN

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Unión Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Leucocitos Mononucleares , Macaca mulatta , Masculino , Mesocricetus , Modelos Moleculares , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
15.
J Cell Sci ; 134(4)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468620

RESUMEN

In order to produce proteins essential for their propagation, many pathogenic human viruses, including SARS-CoV-2, the causative agent of COVID-19 respiratory disease, commandeer host biosynthetic machineries and mechanisms. Three major structural proteins, the spike, envelope and membrane proteins, are amongst several SARS-CoV-2 components synthesised at the endoplasmic reticulum (ER) of infected human cells prior to the assembly of new viral particles. Hence, the inhibition of membrane protein synthesis at the ER is an attractive strategy for reducing the pathogenicity of SARS-CoV-2 and other obligate viral pathogens. Using an in vitro system, we demonstrate that the small molecule inhibitor ipomoeassin F (Ipom-F) potently blocks the Sec61-mediated ER membrane translocation and/or insertion of three therapeutic protein targets for SARS-CoV-2 infection; the viral spike and ORF8 proteins together with angiotensin-converting enzyme 2, the host cell plasma membrane receptor. Our findings highlight the potential for using ER protein translocation inhibitors such as Ipom-F as host-targeting, broad-spectrum antiviral agents.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoconjugados/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Antivirales/farmacología , COVID-19/virología , Humanos , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
16.
PLoS Pathog ; 17(1): e1009212, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465165

RESUMEN

Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.


Asunto(s)
COVID-19/prevención & control , Hidroxicloroquina/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Chlorocebus aethiops/virología , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero/virología , Tratamiento Farmacológico de COVID-19
18.
Acta Pharmacol Sin ; 42(8): 1347-1353, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33116249

RESUMEN

To discover effective drugs for COVID-19 treatment amongst already clinically approved drugs, we developed a high throughput screening assay for SARS-CoV-2 virus entry inhibitors using SARS2-S pseudotyped virus. An approved drug library of 1800 small molecular drugs was screened for SARS2 entry inhibitors and 15 active drugs were identified as specific SARS2-S pseudovirus entry inhibitors. Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that 7 of these drugs (clemastine, amiodarone, trimeprazine, bosutinib, toremifene, flupenthixol, and azelastine) significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity. Three of the drugs were classified as histamine receptor antagonists with clemastine showing the strongest anti-SARS2 activity (EC50 = 0.95 ± 0.83 µM). Our work suggests that these 7 drugs could enter into further in vivo studies and clinical investigations for COVID-19 treatment.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Línea Celular , Aprobación de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos
19.
Biomed Pharmacother ; 133: 111037, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33249281

RESUMEN

COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.


Asunto(s)
Antivirales/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Proteasas 3C de Coronavirus/efectos de los fármacos , Composición de Medicamentos , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Femenino , Humanos , Interleucina-6/antagonistas & inhibidores , Masculino , Medicina Tradicional China , Persona de Mediana Edad , Resultados Negativos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Ensayo de Placa Viral , Adulto Joven
20.
J Mol Graph Model ; 102: 107769, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152616

RESUMEN

Coronavirus outbreak in December 2019 (COVID-19) is an emerging viral disease that poses major menace to Humans and it's a crucial need to find the possible treatment strategies. Spike protein (S2), a envelop glycoprotein aids viral entry into the host cells that corresponds to immunogenic ACE2 receptor binding and represents a potential antiviral drug target. Several drugs such as antimalarial, antibiotic, anti-inflammatory and HIV-protease inhibitors are currently undergoing treatment as clinical studies to test the efficacy and safety of COVID-19. Some promising results have been observed with the patients and also with high mortality rate. Hence, there is a need to screen the best CoV inhibitors using insilico analysis. The Molecular methodologies applied in the present study are, Molecular docking, virtual screening, drug-like and ADMET prediction helps to target CoV inhibitors. The results were screened based on docking score, H-bonds, and amino acid interactions. The results shows HIV-protease inhibitors such as cobicistat (-8.3kcal/mol), Darunavir (-7.4kcal/mol), Lopinavir (-9.1kcal/mol) and Ritonavir (-8.0 kcal/mol), anti-inflammatory drugs such as Baricitinib (-5.8kcal/mol), Ruxolitinib (-6.5kcal/mol), Thalidomide (-6.5kcal/mol), antibiotic drugs such as Erythromycin(-9.0kcal/mol) and Spiramycin (-8.5kcal/mol) molecules have good affinity towards spike protein compared to antimalarial drugs Chloroquine (-6.2kcal/mol), Hydroxychloroquine (-5.2kcal/mol) and Artemisinin (-6.8kcal/mol) have poor affinity to spike protein. The insilico pharmacological evaluation shows that these molecules exhibit good affinity of drug-like and ADMET properties. Hence, we propose that HIVprotease, anti-inflammatory and antibiotic inhibitors are the potential lead drug molecules for spike protein and preclinical studies needed to confirm the promising therapeutic ability against COVID-19.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Simulación por Computador , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...