Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.366
Filtrar
1.
BMC Plant Biol ; 24(1): 400, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745278

RESUMEN

XTH genes are key genes that regulate the hydrolysis and recombination of XG components and plays role in the structure and composition of plant cell walls. Therefore, clarifying the changes that occur in XTHs during plant defense against abiotic stresses is informative for the study of the plant stress regulatory mechanism mediated by plant cell wall signals. XTH proteins in Arabidopsis thaliana was selected as the seed sequences in combination with its protein structural domains, 80 members of the BnXTH gene family were jointly identified from the whole genome of the Brassica napus ZS11, and analyzed for their encoded protein physicochemical properties, phylogenetic relationships, covariance relationships, and interoperating miRNAs. Based on the transcriptome data, the expression patterns of BnXTHs were analyzed in response to different abiotic stress treatments. The relative expression levels of some BnXTH genes under Al, alkali, salt, and drought treatments after 0, 6, 12 and 24 h were analyzed by using qRT-PCR to explore their roles in abiotic stress tolerance in B. napus. BnXTHs showed different expression patterns in response to different abiotic stress signals, indicating that the response mechanisms of oilseed rape against different abiotic stresses are also different. This paper provides a theoretical basis for clarifying the function and molecular genetic mechanism of the BnXTH gene family in abiotic stress tolerance in rapeseed.


Asunto(s)
Brassica napus , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas , Familia de Multigenes , Filogenia , Estrés Fisiológico , Brassica napus/genética , Brassica napus/enzimología , Estrés Fisiológico/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Arabidopsis/genética , Arabidopsis/enzimología
2.
Nat Commun ; 15(1): 3792, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710711

RESUMEN

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Asunto(s)
Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/genética , Glicosilación , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Humanos , Cristalografía por Rayos X , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Pared Celular/metabolismo , Animales
3.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748580

RESUMEN

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Asunto(s)
Glicosiltransferasas , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosilación , Citrobacter/metabolismo , Citrobacter/genética , Antígenos O/metabolismo , Antígenos O/química , Polisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Polisacáridos Bacterianos/metabolismo
4.
J Agric Food Chem ; 72(14): 8269-8283, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557049

RESUMEN

Many species of the Urticaceae family are important cultivated fiber plants that are known for their economic and industrial values. However, their secondary metabolite profiles and associated biosynthetic mechanisms have not been well-studied. Using Laportea bulbifera as a model, we conducted widely targeted metabolomics, which revealed 523 secondary metabolites, including a unique accumulation of flavonol glycosides in bulblet. Through full-length transcriptomic and RNA-seq analyses, the related genes in the flavonoid biosynthesis pathway were identified. Finally, weighted gene correlation network analysis and functional characterization revealed four LbUGTs, including LbUGT78AE1, LbUGT72CT1, LbUGT71BX1, and LbUGT71BX2, can catalyze the glycosylation of flavonol aglycones (kaempferol, myricetin, gossypetin, and quercetagetin) using UDP-Gal and UDP-Glu as the sugar donors. LbUGT78AE1 and LbUGT72CT1 showed substrate promiscuity, whereas LbUGT71BX1 and LbUGT71BX2 exhibited different substrate and sugar donor selectivity. These results provide a genetic resource for studying Laportea in the Urticaceae family, as well as key enzymes responsible for the metabolism of valuable flavonoid glycosides.


Asunto(s)
Glicósidos , Urticaceae , Glicósidos/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Flavonoides , Flavonoles , Plantas/metabolismo , Uridina Difosfato , Perfilación de la Expresión Génica , Urticaceae/metabolismo , Azúcares
5.
J Agric Food Chem ; 72(14): 8140-8148, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563232

RESUMEN

Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.


Asunto(s)
Diterpenos de Tipo Kaurano , Stevia , Trisacáridos , Saccharomyces cerevisiae/genética , Uridina Difosfato , Hidrolasas , Glucósidos , Glicosiltransferasas/genética , Glicósidos , Hojas de la Planta
6.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612877

RESUMEN

Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.


Asunto(s)
Hedera , Ácido Oleanólico/análogos & derivados , Saponinas , Glicosiltransferasas/genética
7.
BMC Plant Biol ; 24(1): 249, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580941

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS: We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS: Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.


Asunto(s)
Fagopyrum , Humanos , Filogenia , Fagopyrum/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 411-416, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565505

RESUMEN

OBJECTIVE: To explore the molecular basis for an individual with Bel subtype of the ABO blood type due to a novel c.620T>C variant gene, and assess its impact on the structure of GTB transferase. METHODS: An individual who had visited the First Affiliated Hospital of Zhengzhou University on February 11, 2023 was selected as the study subject. ABO phenotyping was initially conducted with serological methods, which was followed by direct sequencing of 7 exons of the ABO gene. Subsequently, single-strand sequencing was carried out by using allele-specific primers, and the variant in the B transferase was homology-modeled using the Modeller software. The impact of the variant on the transferase's spatial structure was analyzed with the PyMOL software. RESULTS: The serological phenotype of the patient was identified as the Bel subtype. Direct sequencing revealed that she has harbored a novel c.620T>C variant, resulting in a p.Leu207Pro substitution in the polypeptide chain. Combined with single-strand sequencing, her genotype was ultimately determined as ABO*BELnew/ABO*O.01.02. Three-dimensional protein structure modeling showed that, compared with the wild type, the distance of one hydrogen bond between Proline and Glycine at position 272 has increased, along with disappearance of another hydrogen bond. CONCLUSION: The novel c.620T>C (p.Leu207Pro) variant of B allele may affect the structural stability of the glycosyltransferase. The weakened enzyme activity in turn may lead to reduced B antigen expression, manifesting as the Bel subtype by serological analysis.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Glicosiltransferasas , Humanos , Femenino , Sistema del Grupo Sanguíneo ABO/genética , Genotipo , Fenotipo , Exones , Alelos , Glicosiltransferasas/genética
9.
J Hazard Mater ; 470: 134172, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569340

RESUMEN

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Asunto(s)
Boehmeria , Cadmio , Pared Celular , Vacuolas , Cadmio/toxicidad , Cadmio/metabolismo , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Boehmeria/metabolismo , Boehmeria/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/efectos de los fármacos , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucanos/metabolismo , Xilanos/metabolismo , Estrés Fisiológico/efectos de los fármacos
10.
Biomolecules ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672513

RESUMEN

Glycosylation, a crucial and the most common post-translational modification, coordinates a multitude of biological functions through the attachment of glycans to proteins and lipids. This process, predominantly governed by glycosyltransferases (GTs) and glycoside hydrolases (GHs), decides not only biomolecular functionality but also protein stability and solubility. Mutations in these enzymes have been implicated in a spectrum of diseases, prompting critical research into the structural and functional consequences of such genetic variations. This study compiles an extensive dataset from ClinVar and UniProt, providing a nuanced analysis of 2603 variants within 343 GT and GH genes. We conduct thorough MTR score analyses for the proteins with the most documented variants using MTR3D-AF2 via AlphaFold2 (AlphaFold v2.2.4) predicted protein structure, with the analyses indicating that pathogenic mutations frequently correlate with Beta Bridge secondary structures. Further, the calculation of the solvent accessibility score and variant visualisation show that pathogenic mutations exhibit reduced solvent accessibility, suggesting the mutated residues are likely buried and their localisation is within protein cores. We also find that pathogenic variants are often found proximal to active and binding sites, which may interfere with substrate interactions. We also incorporate computational predictions to assess the impact of these mutations on protein function, utilising tools such as mCSM to predict the destabilisation effect of variants. By identifying these critical regions that are prone to disease-associated mutations, our study opens avenues for designing small molecules or biologics that can modulate enzyme function or compensate for the loss of stability due to these mutations.


Asunto(s)
Glicósido Hidrolasas , Glicosiltransferasas , Mutación , Humanos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Glicosilación
11.
Phys Chem Chem Phys ; 26(17): 13441-13451, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647259

RESUMEN

Soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) catalyzes the glycosylation of asparagine residues, and represents one of the most encouraging biocatalysts for N-glycoprotein production. Since the sugar tolerance of ApNGT is restricted to limited monosaccharides (e.g., Glc, GlcN, Gal, Xyl, and Man), tremendous efforts are devoted to expanding the substrate scope of ApNGT via enzyme engineering. However, rational design of novel NGT variants suffers from an elusive understanding of the substrate-binding process from a dynamic point of view. Here, by employing extensive all-atom molecular dynamics (MD) simulations integrated with a kinetic model, we reveal, at the atomic level, the complete donor-substrate binding process from the bulk solvent to the ApNGT active-site, and the key intermediate states of UDP-Glc during its loading dynamics. We are able to determine the critical transition event that limits the overall binding rate, which guides us to pinpoint the key ApNGT residues dictating the donor-substrate entry. The functional roles of several identified gating residues were evaluated through site-directed mutagenesis and enzymatic assays. Two single-point mutations, N471A and S496A, could profoundly enhance the catalytic activity of ApNGT. Our work provides deep mechanistic insights into the structural dynamics of the donor-substrate loading process for ApNGT, which sets a rational basis for design of novel NGT variants with desired substrate specificity.


Asunto(s)
Actinobacillus pleuropneumoniae , Glicosiltransferasas , Simulación de Dinámica Molecular , Actinobacillus pleuropneumoniae/enzimología , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/genética , Cinética , Especificidad por Sustrato , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Mutagénesis Sitio-Dirigida , Dominio Catalítico
12.
Viruses ; 16(4)2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675832

RESUMEN

Glycosylation, a dynamic modification prevalent in viruses and higher eukaryotes, is principally regulated by uridine diphosphate (UDP)-glycosyltransferases (UGTs) in plants. Although UGTs are involved in plant defense responses, their responses to most pathogens, especially plant viruses, remain unclear. Here, we aimed to identify UGTs in the whole genome of Nicotiana benthamiana (N. benthamiana) and to analyze their function in Chinese wheat mosaic virus (CWMV) infection. A total of 147 NbUGTs were identified in N. benthamiana. To conduct a phylogenetic analysis, the UGT protein sequences of N. benthamiana and Arabidopsis thaliana were aligned. The gene structure and conserved motifs of the UGTs were also analyzed. Additionally, the physicochemical properties and predictable subcellular localization were examined in detail. Analysis of cis-acting elements in the putative promoter revealed that NbUGTs were involved in temperature, defense, and hormone responses. The expression levels of 20 NbUGTs containing defense-related cis-acting elements were assessed in CWMV-infected N. benthamiana, revealing a significant upregulation of 8 NbUGTs. Subcellular localization analysis of three NbUGTs (NbUGT12, NbUGT16 and NbUGT17) revealed their predominant localization in the cytoplasm of N. benthamiana leaves, and NbUGT12 was also distributed in the chloroplasts. CWMV infection did not alter the subcellular localization of NbUGT12, NbUGT16, and NbUGT17. Transient overexpression of NbUGT12, NbUGT16, and NbUGT17 enhanced CWMV infection, whereas the knockdown of NbUGT12, NbUGT16 and NbUGT17 inhibited CWMV infection in N. benthamiana. These NbUGTs could serve as potential susceptibility genes to facilitate CWMV infection. Overall, the findings throw light on the evolution and function of NbUGTs.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas , Nicotiana , Filogenia , Enfermedades de las Plantas , Proteínas de Plantas , Nicotiana/virología , Nicotiana/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Uridina Difosfato/metabolismo , Potyvirus/genética , Potyvirus/fisiología , Estudio de Asociación del Genoma Completo
13.
Zhongguo Zhong Yao Za Zhi ; 49(3): 702-716, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621874

RESUMEN

Uridine diphosphate glycosyltransferase(UGT) is involved in the glycosylation of a variety of secondary metabolites in plants and plays an important role in plant growth and development and regulation of secondary metabolism. Based on the genome of a diploid Chrysanthemum indicum, the UGT gene family from Ch. indicum was identified by bioinformatics methods, and the physical and chemical properties, subcellular localization prediction, conserved motif, phylogeny, chromosome location, gene structure, and gene replication events of UGT protein were analyzed. Transcriptome and real-time fluorescence quantitative polymerase chain reaction(PCR) were used to analyze the expression pattern of the UGT gene in flowers and leaves of Ch. indicum. Quasi-targeted metabolomics was used to analyze the differential metabolites in flowers and leaves. The results showed that a total of 279 UGT genes were identified in the Ch. indicum genome. Phylogenetic analysis showed that these UGT genes were divided into 8 subfamilies. Members of the same subfamily were distributed in clusters on the chromosomes. Tandem duplications were the main driver of the expansion of the UGT gene family from Ch. indicum. Structural domain analysis showed that 262 UGT genes had complete plant secondary metabolism signal sequences(PSPG box). The analysis of cis-acting elements indicated that light-responsive elements were the most ubiquitous elements in the promoter regions of UGT gene family members. Quasi-targeted metabolome analysis of floral and leaf tissue revealed that most of the flavonoid metabolites, including luteolin-7-O-glucoside and kaempferol-7-O-glucoside, had higher accumulation in flowers. Comparative transcriptome analysis of flower and leaf tissue showed that there were 72 differentially expressed UGT genes, of which 29 genes were up-regulated in flowers, and 43 genes were up-regulated in leaves. Correlation network and phylogenetic analysis showed that CindChr9G00614970.1, CindChr2G00092510.1, and CindChr2G00092490.1 may be involved in the synthesis of 7-O-flavonoid glycosides in Ch. indicum, and real-time fluorescence quantitative PCR analysis further confirmed the reliability of transcriptome data. The results of this study are helpful to understand the function of the UGT gene family from Ch. indicum and provide data reference and theoretical basis for further study on the molecular regulation mechanism of flavonoid glycosides synthesis in Ch. indicum.


Asunto(s)
Chrysanthemum , Glicosiltransferasas , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Chrysanthemum/genética , Uridina Difosfato , Filogenia , Reproducibilidad de los Resultados , Plantas/metabolismo , Flavonoides , Glicósidos , Regulación de la Expresión Génica de las Plantas
14.
Proc Natl Acad Sci U S A ; 121(19): e2402045121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683998

RESUMEN

Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the Spodoptera genus. Comparative genomic analyses of Spodoptera species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist Spodoptera picta. CRISPR-Cas9 knockouts of the three main UGT gene clusters of Spodoptera frugiperda revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist S. frugiperda to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist Spodoptera species, Spodoptera picta, which specializes on Crinum plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in SpUGT33F34. Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.


Asunto(s)
Spodoptera , Animales , Spodoptera/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Especificidad del Huésped/genética , Uridina Difosfato/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Filogenia
15.
Commun Biol ; 7(1): 285, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454040

RESUMEN

Peptidoglycan polymerases, enterobacterial common antigen polymerases, O-antigen ligases, and other bacterial polysaccharide polymerases (BP-Pols) are glycosyltransferases (GTs) that build bacterial surface polysaccharides. These integral membrane enzymes share the particularity of using diphospholipid-activated sugars and were previously missing in the carbohydrate-active enzymes database (CAZy; www.cazy.org ). While the first three classes formed well-defined families of similar proteins, the sequences of BP-Pols were so diverse that a single family could not be built. To address this, we developed a new clustering method using a combination of a sequence similarity network and hidden Markov model comparisons. Overall, we have defined 17 new GT families including 14 of BP-Pols. We find that the reaction stereochemistry appears to be conserved in each of the defined BP-Pol families, and that the BP-Pols within the families transfer similar sugars even across Gram-negative and Gram-positive bacteria. Comparison of the new GT families reveals three clans of distantly related families, which also conserve the reaction stereochemistry.


Asunto(s)
Glicosiltransferasas , Azúcares , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Análisis por Conglomerados , Peptidoglicano
16.
Physiol Plant ; 176(2): e14260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511471

RESUMEN

Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.


Asunto(s)
Acetatos , Bacopa , Ciclopentanos , Oxilipinas , Saponinas , Triterpenos , Bacopa/genética , Bacopa/química , Glicosiltransferasas/genética , Vías Biosintéticas , Triterpenos/química , Triterpenos/farmacología , Triterpenos/uso terapéutico , Damaranos , Uridina Difosfato , Extractos Vegetales/química
17.
Chem Res Toxicol ; 37(4): 590-599, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488606

RESUMEN

Caenorhabditis elegans is a useful model organism to study the xenobiotic detoxification pathways of various natural and synthetic toxins, but the mechanisms of phase II detoxification are understudied. 1-Hydroxyphenazine (1-HP), a toxin produced by the bacterium Pseudomonas aeruginosa, kills C. elegans. We previously showed that C. elegans detoxifies 1-HP by adding one, two, or three glucose molecules in N2 worms. Our current study evaluates the roles that some UDP-glycosyltransferase (ugt) genes play in 1-HP detoxification. We show that ugt-23 and ugt-49 knockout mutants are more sensitive to 1-HP than reference strains N2 or PD1074. Our data also show that ugt-23 knockout mutants produce reduced amounts of the trisaccharide sugars, while the ugt-49 knockout mutants produce reduced amounts of all 1-HP derivatives except for the glucopyranosyl product compared to the reference strains. We characterized the structure of the trisaccharide sugar phenazines made by C. elegans and showed that one of the sugar modifications contains an N-acetylglucosamine (GlcNAc) in place of glucose. This implies broad specificity regarding UGT function and the role of genes other than ogt-1 in adding GlcNAc, at least in small-molecule detoxification.


Asunto(s)
Caenorhabditis elegans , Glicosiltransferasas , Animales , Glicosilación , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Fenazinas/metabolismo , Uridina Difosfato/metabolismo , Glucosa/metabolismo , Azúcares/metabolismo , Trisacáridos/metabolismo
18.
Biol Chem ; 405(5): 325-340, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38487862

RESUMEN

The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the "canonical" glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.


Asunto(s)
Glicosiltransferasas , Rhodococcus , Rhodococcus/enzimología , Rhodococcus/metabolismo , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Polisacáridos/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/química , Cinética
19.
Biotechnol J ; 19(2): e2300628, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403450

RESUMEN

Bioconversion of Rebaudioside D faces high-cost obstacles. Herein, a novel glycosyltransferase StUGT converting Rebaudioside A to Rebaudioside D was screened and characterized, which exhibits stronger affinity and substrate specificity for Rebaudioside A than previously reported enzymes. A whole-cell catalytic system was thus developed using the StUGT strain. The production of Rebaudioside D was enhanced significantly by enhancing cell permeability, and the maximum production of 6.12 g/L and the highest yield of 98.08% by cell catalyst was obtained by statistical-based optimization. A new cascade process utilizing this recombinant strain and E. coli expressing sucrose synthase was further established to reduce cost through replacing expensive UDPG with sucrose. A StUGT-GsSUS1 system exhibited high catalytic capability, and 5.27 g L-1 Rebaudioside D was achieved finally without UDPG addition by systematic optimization. This is the best performance reported in cell-cascaded biosynthesis, which paves a new cost-effective strategy for sustainable synthesis of scarce premium sweeteners from biomass.


Asunto(s)
Diterpenos de Tipo Kaurano , Glicósidos , Solanum tuberosum , Stevia , Solanum tuberosum/genética , Stevia/química , Uridina Difosfato Glucosa , Glicosiltransferasas/genética , Escherichia coli/genética
20.
PLoS One ; 19(2): e0299755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38416725

RESUMEN

Glycosyltransferases (GTs), crucial enzymes in plants, alter natural substances through glycosylation, a process with extensive applications in pharmaceuticals, food, and cosmetics. This study narrows its focus to GT family 1, specifically UDP-glycosyltransferases (UGTs), which are known for glycosylating small phenolic compounds, especially hydroxybenzoates. We delve into the workings of Raphanus sativus glucosyltransferase (Rs89B1), a homolog of Arabidopsis thaliana UGT89B1, and its mutant to explore their glycosyltransferase activities toward hydroxybenzoates. Our findings reveal that Rs89B1 glycosylates primarily the para-position of mono-, di-, trihydroxy benzoic acids, and its substrate affinity is swayed by the presence and position of the hydroxyl group on the benzene ring of hydroxybenzoate. Moreover, mutations in the loop region of Rs89B1 impact both substrate affinity and catalytic activity. The study demonstrates that insertional/deletional mutations in non-conserved regions, which are distant from the UGT's recognition site, can have an effect on the UGT's substrate recognition site, which in turn affects acceptor substrate selectivity and glycosyltransferase activity. This research uncovers new insights suggesting that mutations in the loop region could potentially fine-tune enzyme properties and enhance its catalytic activity. These findings not only have significant implications for enzyme engineering in biotechnological applications but also contribute to a more profound understanding of this field.


Asunto(s)
Arabidopsis , Raphanus , Glicosiltransferasas/genética , Raphanus/genética , Arabidopsis/genética , Uridina Difosfato , Hidroxibenzoatos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...