Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.962
Filtrar
1.
Sci Rep ; 14(1): 9966, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693200

RESUMEN

Hemoglobin (Hb) Lepore is a rare deletional δß-thalassemia caused by the fusion between delta-beta genes, and cannot be identified by traditional thaltassemia gene testing technology. The aim of this study was to conduct molecular diagnosis and clinical analysis of Hb Lepore in four unrelated Chinese families using third generation sequencing. Decreased levels of mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and an abnormal Hb band were observed in the probands of the four families. However, no common α and ß-thalassemia variants were detected in the enrolled families using polymerase chain reaction-reverse dot blot hybridization based traditional thalassemia gene testing. Further third-generation sequencing revealed similar Hb Lepore-Boston-Washington variants in all the patients, which were resulted from partial coverage of the HBB and HBD globin genes, leading to the formation of a delta-beta fusion gene. Specific gap-PCR and Sanger sequencing confirmed that all the patients carried a similar Hb Lepore-Boston-Washington heterozygote. In addition, decreased levels of MCH and Hb A2 were observed in the proband's wife of family 2, an extremely rare variant of Hb Nanchang (GGT > AGT) (HBA2:c.46G > A) was identified by third-generation sequencing and further confirmed by Sanger sequencing. This present study was the first to report the similar Hb Lepore-Boston-Washington in Chinese population. By combining the utilization of Hb capillary electrophoresis and third-generation sequencing, the screening and diagnosis of Hb Lepore can be effectively enhanced.


Asunto(s)
Pueblo Asiatico , Hemoglobinas Anormales , Humanos , Hemoglobinas Anormales/genética , Femenino , Masculino , Pueblo Asiatico/genética , Adulto , Linaje , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , China , Globinas beta/genética , Talasemia beta/genética , Talasemia beta/diagnóstico , Talasemia beta/sangre , Pueblos del Este de Asia
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 417-425, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565506

RESUMEN

ß-Thalassemia is a single-gene disease caused by mutations in ß-globin and has a distinct geographical characteristics. Current treatment for patients with moderate to severe thalassemia has mainly relied on long-term blood transfusion and/or hematopoietic stem cell transplantation. B cell lymphoma/leukemia 11A (BCL11A) as a transcriptional repressor plays a vital role in monitoring γ/ß hemoglobin switching, maintaining the normal function of hematopoietic stem cells, and regulating erythrocyte differentiation and lymphocyte development. With the rapid progress in gene editing technology, the BCL11A as a therapeutic target for ß-thalassemia has shown promising results. This article has systematically summarized the regulatory mechanism and therapeutic potential of the BCL11A, with an aim to provide new ideas for the treatment of ß-thalassemia.


Asunto(s)
Proteínas Represoras , Talasemia beta , Humanos , Proteínas Represoras/genética , Talasemia beta/genética , Talasemia beta/terapia , Hemoglobina Fetal/genética , Factores de Transcripción , Globinas beta/genética
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 385-392, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38565501

RESUMEN

OBJECTIVE: To analyze the mutations of globin genes among patients suspected for thalassemia from the Shanghai area. METHODS: A total of 4 644 patients diagnosed at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine between June 2016 and December 2019 were selected as the study subjects. The patients were tested for common mutations associated with thalassemia gene by Gap-PCR and reverse dot blotting (RDB). Patients were suspected to harbor rare mutations based on the inconsistency between hematological phenotypes and results of common mutation detection, and were further analyzed by Gap-PCR and Sanger sequencing. RESULTS: Among the 4 644 patients, 2 194 (47.24%) were found to carry common thalassemia mutations, among which 701 (15.09%) were α-thalassemia, 1 448 (31.18%) were ß-thalassemia, and 45 (0.97%) were both α- and ß-thalassemia. Forty six samples were found to harbor rare mutations, which included 17 α-globin gene and 29 ß-globin gene mutations. CD77(CCC>ACC) (HBA2: c.232C>A) of the α-globin gene, NG_000007.3: g.70567_71015del449, codon 102(-A) (HBB: c.308_308delA) and IVS-Ⅱ-636 (A>G) (HBB: c.316-215A>G) of the ß-globin gene were previously unreported new types of globin gene mutations. CONCLUSION: Among the 4 644 patients, the detection rate for common thalassemia mutations was 47.24%, whilst 46 samples were detected with rare gene mutations. The type of gene mutation types were diverse in the Shanghai area. The study has provided more accurate results for genetic diagnosis and counseling.


Asunto(s)
Talasemia alfa , Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/diagnóstico , Genotipo , Globinas beta/genética , China , Mutación , Talasemia alfa/genética , Globinas alfa/genética
4.
Hemoglobin ; 48(2): 113-115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38565194

RESUMEN

Newborn screening identified a Chinese-Canadian infant who was positive for possible ß-thalassemia (ß-thal). Detailed family studies demonstrated that the proband was a compound heterozygote for the Chinese Gγ(Aγδß)0-thal deletion and a novel frameshift mutation within exon 3 (HBB:c.336dup), and heterozygous for the Southeast Asian α-thal deletion (--SEA/αα). This case illustrates the importance of follow-up molecular testing of positive newborn screening results to confirm the diagnosis and define risks for future pregnancies.


Asunto(s)
Genotipo , Tamizaje Neonatal , Globinas beta , Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/diagnóstico , Globinas beta/genética , Recién Nacido , Femenino , Mutación , Mutación del Sistema de Lectura , Masculino , Heterocigoto , Linaje
5.
Vet Parasitol ; 328: 110163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513446

RESUMEN

Gastrointestinal nematodes (GIN), especially Haemonchus contortus, represent a significant challenge for sheep production. Given the global concern about GIN anthelmintic resistance, alternative control methods able to reduce the dependence on these drugs are highly advisable. Since previous studies have shown that sheep carrying the Hb-A allele of ß-globin are more resistant to H. contortus, this study aimed to investigate the relationship between the different haplotypes (Hb-AA, Hb-AB and Hb-BB) and phenotypes in Santa Inês (SI), Texel (TX) and White Dorper (DO) breeds infected with H. contortus. Blood samples were collected from 180 ewes and 123 lambs of the three breeds for DNA extraction followed by qPCR using a hydrolysis probe to identify the ß-globin haplotypes. Phenotypic data, including fecal egg count (FEC), packed cell volume (PCV), FAMACHA score and body condition score for ewes and lambs, as well as weight gain for lambs, were collected. The genotypic frequencies of ß-globin for ewes and lambs were, respectively: 21.7% and 21.4% Hb-AA, 50% and 50% Hb-AB and 28.3% and 28.6% Hb-BB in SI; 0% and 0% Hb-AA, 18.6% and 9.4% Hb-AB and 81.4% and 90.6% Hb-BB in TX; and 0% and 0% Hb-AA, 13.1% and 0% Hb-AB and 86.9% and 100% Hb-BB in DO. In ewes, mean PCV differed (p<0.05) between the three haplotypes, with higher PCV in Hb-AA animals, followed by Hb-AB and Hb-BB. When considering each breed separately, SI Hb-AA ewes presented higher PCV (p<0.05), highlighting that even in a breed already considered resistant, animals with Hb-AA haplotype showed superior performance. Lambs with the Hb-AA haplotype exhibited a higher (p<0.05) mean PCV compared to those with Hb-AB and Hb-BB. The same pattern was found in SI when analyzing each breed separately. No significant association was found between ß-globin haplotypes and FEC, FAMACHA score, body condition score, or weight gain. Nevertheless, given that anemia is the major clinical sign of haemonchosis, our findings on PCV reinforce that sheep carrying the Hb-A allele of ß-globin are more tolerant to haemonchosis. This study may support the development of a valuable tool, targeting genetic selection for GIN control, reducing the dependence on anthelmintics and boosting sheep production worldwide.


Asunto(s)
Hemoncosis , Enfermedades de las Ovejas , Globinas beta , Animales , Ovinos , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/genética , Globinas beta/genética , Hemoncosis/veterinaria , Hemoncosis/parasitología , Femenino , Haplotipos , Polimorfismo Genético , Haemonchus/genética , Recuento de Huevos de Parásitos/veterinaria , Heces/parasitología
6.
Hemoglobin ; 48(2): 125-128, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38500334

RESUMEN

In this report, we describe a 6-year-old girl with a medical history of pallor, mild icterus, anemia, blood transfusion and abnormal hemoglobin variant analysis on capillary electrophoresis. She was referred for further analysis. DNA sequencing of the proband revealed a de novo mutation in Codon 88 (CTG > CCG) of the ß-globin gene (HBB: c.266T > C) in a heterozygous state compatible with hemoglobin Santa Ana, an unstable hemoglobin. This is the first case of Hb Santa Ana from Iran associated with moderate to severe anemia who underwent splenectomy with clinical improvement.


Asunto(s)
Hemoglobinas Anormales , Globinas beta , Humanos , Femenino , Hemoglobinas Anormales/genética , Niño , Irán , Globinas beta/genética , Mutación , Esplenectomía , Hemoglobinopatías/diagnóstico , Hemoglobinopatías/genética , Hemoglobinopatías/sangre
7.
Hemoglobin ; 48(1): 69-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38425097

RESUMEN

We report two hemoglobinopathy cases involving a novel ß-thalassemia (ß-thal) nonsense mutation, HBB:c.199A > T. One patient had Hb S/ß-thal, and a second unrelated patient had Hb D-Punjab/ß-thal. The HBB:c.199A > T mutation introduces a premature termination codon at amino acid codon 66 (AAA→TAA) in exon 2, resulting in typical high Hb A2 ß0-thal.


Asunto(s)
Hemoglobinopatías , Talasemia beta , Humanos , Globinas beta/genética , Talasemia beta/diagnóstico , Talasemia beta/genética , Codón sin Sentido , Hemoglobinopatías/genética , Mutación
8.
Sci Rep ; 14(1): 6682, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509195

RESUMEN

Abnormal hemoglobin anti-Lepore Hong Kong is a rare ßδ fusion variants resulting from non-homologous crossover during meiosis. Anti-Lepore Hong Kong is known to consistently exhibit significantly increased level of HbA2. In this study, we used multiplex ligation-dependent probe amplification (MLPA) and single molecular real-time (SMRT) sequencing, as well as Sanger sequencing, to identify variants in five unrelated families with abnormal elevated HbA2 level. All probands in these five families were found to be heterozygous for anti-Lepore Hong Kong. Among them, two families showed co-occurrence of ß0-thalassemia and α-thalassemia (-SEA/ or αCSα/). Heterozygotes for anti-Lepore Hong Kong displayed an average HbA2 level of 17.7% and behaved normal. However, when combined with ß0-thalassemia and α-thalassemia, the probands exhibited higher HbA2 level (30.2-40.8%) and behaved with ß-thalassemia trait. Furthermore, determination of the α/ß-mRNA ratio revealed a slight downregulation of ß-globin, similar to that of ß-thalassemia minor. Our study is the first to identify compound heterozygotes for anti-Lepore Hong Kong, ß0-thalassemia and α-thalassemia, provide valuable information for prenatal counseling.


Asunto(s)
Hemoglobinas Anormales , Talasemia alfa , Talasemia beta , Humanos , Embarazo , Femenino , Talasemia alfa/genética , Hemoglobinas Anormales/genética , Talasemia beta/genética , Globinas beta/genética
9.
Prog Mol Biol Transl Sci ; 204: 97-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38458745

RESUMEN

ß-thalassemia is an autosomal recessive disease, caused by one or more mutations in the ß-globin gene that reduces or abolishes ß-globin chain synthesis causing an imbalance in the ratio of α- and ß-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of ß-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as ß-thalassemia; Especially, ASO therapeutics can completely treat ß-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of ß-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of ß-globin which increases the amount of mature hemoglobin of red blood cells of ß-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for ß-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of ß-thalassemia patients.


Asunto(s)
Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/terapia , ARN/metabolismo , ARN Mensajero/genética , Empalme del ARN/genética , Globinas beta/genética , Globinas beta/metabolismo
10.
Blood ; 143(19): 1980-1991, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38364109

RESUMEN

ABSTRACT: The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (ß-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⊣ HIC2 ⊣ BCL11A ⊣ HBG).


Asunto(s)
Proteínas Portadoras , MicroARNs , Proteínas Nucleares , Proteínas Represoras , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transcripción Genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , Regulación de la Expresión Génica , Eritroblastos/metabolismo , Eritroblastos/citología , gamma-Globinas/genética , gamma-Globinas/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
11.
Hemoglobin ; 48(2): 116-117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360540

RESUMEN

We report a case of Hb S/ß0-thalassemia (Hb S/ß0-thal) in a patient who is a compound heterozygote for the Hb Sickle mutation (HBB:c.20A > T) and a mutation of the canonical splice acceptor sequence of IVS1 (AG > TG, HBB:c.93-2A > T). This is the fifth mutation involving the AG splice acceptor site of IVS1, all of which prevent normal splicing and cause ß0-thal.


Asunto(s)
Hemoglobina Falciforme , Mutación , Sitios de Empalme de ARN , Talasemia beta , Humanos , Talasemia beta/genética , Talasemia beta/diagnóstico , Talasemia beta/sangre , Hemoglobina Falciforme/genética , Globinas beta/genética , Masculino , Heterocigoto , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/diagnóstico , Femenino
12.
Eur J Haematol ; 112(6): 848-859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38342626

RESUMEN

Hematopoietic stem cell (HSC) gene therapy has shown potential as a therapeutic approach for thalassemia in recent years. However, a comparison of the varying gene therapy methods of HSC gene therapy in thalassemia has never been reviewed. This study aims to evaluate the utilization of HSC gene therapy approaches in animal models of thalassemia. A systematic review was conducted in five databases: PubMed, EBSCOHost, Science Direct, SCOPUS, and Proquest using a combination of the terms hematopoietic stem cell or hematopoietic stem cell or HSC, thalassemia, genetic therapy or gene therapy and animal model. Only journals published in English between 2008 and 2023 were included. This literature included six studies analyzing the use of HSC gene therapy in thalassemic mice models. The three outcomes being assessed in this review were globin levels, hematological parameters, and red blood cell (RBC) phenotypes. Gene therapy approaches for thalassemia using HSC showed significant improvement in ß-globin levels and RBC phenotypes. Phenotypic improvements were also observed. These outcomes indicate good efficacy in gene therapy for thalassemia in mice models. Furthermore, more studies assessing the efficacy of HSC gene therapy in the human model should be done in future studies.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Talasemia , Animales , Humanos , Ratones , Globinas beta/genética , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Talasemia/terapia , Talasemia/genética , Resultado del Tratamiento
13.
Ann Hum Biol ; 51(1): 2308714, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38378484

RESUMEN

BACKGROUND: Colombia has a mestizo population and the prevalence of haemoglobin variants varies according to each region, but heterozygous carriers can be found in all of them. AIM: To characterise sickle cell disease (SCD) haematologically, biochemically, and molecularly, and detect classic haplotypes by DNA sequencing in a group of samples from Bolívar, Colombia. SUBJECTS AND METHODS: Blood samples were collected after informed consent from volunteers from eight communities in the Bolívar department, plus samples from the Pacific region, Providencia Island, and Bogotá were included. Data were obtained from: (1) haematological analyses; (2) biochemical tests: dHPLC was used to determine haemoglobin (Hb); and (3) DNA sequencing data through five SNPs. RESULTS: 101 samples were identified by rs334 through Sanger's Sequencing, structural haemoglobinopathies HbAS (34.65%), HbSS (2.97%) and HbAC (1.98%) were found. When contrasting the Hb identification results between SNP rs334 Vs. dHPLC/Isoelectric Focusing (IEF), a coincidence was found in 39/43 samples analysed, therefore, when comparing these techniques, a significant correlation was found (Pearson's correlation coefficient r = 0.998). 26 samples previously analysed by rs334 were classified into classical haplotypes CAR (50.0%), BEN (30.76%), CAM (7.69%), SEN (3.84%), and ATP-I (7.69%). CONCLUSIONS: SCD characterisation and SNPs-based classification through Sanger's DNA sequencing have not been performed before in Colombia. The results of this work will make it possible to expand the data or records of carriers and those affected, which will benefit patients and their families.


Asunto(s)
Anemia de Células Falciformes , Polimorfismo de Nucleótido Simple , Humanos , Haplotipos , Colombia , Globinas beta/genética , Anemia de Células Falciformes/epidemiología , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/diagnóstico
14.
Hemoglobin ; 48(1): 60-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38314576

RESUMEN

Patients with the genotype of ß0/ß0 for ß-thalassemia (ß-thal) usually behave as ß-thal major (ß-TM) phenotype which is transfusion-dependent. The pathophysiology of ß-thal is the imbalance between α/ß-globin chains. The degree of α/ß-globin imbalance can be reduced by the more effective synthesis of γ-globin chains, and increased Hb F levels, modifying clinical severity of ß-TM. We report a Chinese child who had homozygous ß0-thal and a heterozygous KLF1 mutation. The patient had a moderate anemia since 6 months old, keeping a baseline Hb value of 8.0-9.0 g/dL. She had normal development except for a short stature (3rd percentile) until 6 years old, when splenomegaly and facial bone deformities occurred. Although genetic alteration of KLF1 expression in ß0/ß0 patients can result in some degree of disease alleviation, our case shows that it is insufficient to ameliorate satisfactorily the presentation. This point should be borne in mind for physicians who provide the genetic counseling and prenatal diagnosis to at-risk families.


Asunto(s)
Globinas beta , Talasemia beta , Niño , Femenino , Humanos , Lactante , Globinas alfa/genética , Globinas beta/genética , Talasemia beta/genética , China , Estudios de Seguimiento , Genotipo , Mutación
15.
Mol Biol Rep ; 51(1): 138, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236368

RESUMEN

BACKGROUND: Shenzhen is one of the most populated metropolises in southern China where thalassemia is highly prevalent. The prevention of thalassemia inheritance is an ambition of child-bearing couples. METHODS AND RESULTS: A total of 22,098 peripheral blood samples were collected from 11,049 potentially at-risk couples of childbearing age from Shenzhen. Thalassemia mutations were determined by PCR-based flow-through hybridization. The results identified 45.02% of the participants (9948 out of 22,098) as harboring globin gene mutations, distributed into 18 α-thalassemia alleles detected in 71.48% (7111 out of 9948) and 15 ß-thalassemia alleles detected in 32.68% (3252 out of 9948) of all mutant individuals, among which 415 individuals carried both α- and ß-thalassemia alleles. The most frequent phenotypes for α-globin variations were --SEA/αα (63.37%), -α3.7/αα (18.66%), and -α4.2/αα (7.31%), and those for ß-globin variations were ß41-42/ßN (34.96%), ß654/ßN (28.11%), and ß17/ßN (13.84%). A total of 970 high-risk couples who could possibly give birth to offspring with thalassemia intermedia or major were identified. In addition, the hematological indices were compared among thalassemia genotypes. Significant differences in MCH, MCV, Hb A, and Hb A2 levels among α-thalassemia minor (α+), trait (α0), and intermediate phenotypes (P < 0.05) and between ßE/ßN and the other ß-thalassemia phenotypes (P < 0.05) were found. Moreover, GAP-PCR and next-generation sequencing further identified 42 rare mutations, 13 of which were first reported in the Chinese population. A novel mutation in the ß-globin gene (HBB: c.246 C > A (rs145669504)) was also discovered. CONCLUSIONS: This study presented a comprehensive analysis of thalassemia variations in a population from Shenzhen and may offer valuable insights for thalassemia control and intervention strategies in this area.


Asunto(s)
Talasemia alfa , Talasemia beta , Humanos , Niño , Talasemia alfa/epidemiología , Talasemia alfa/genética , Epidemiología Molecular , Alelos , Globinas beta/genética
16.
Sci Rep ; 14(1): 276, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168584

RESUMEN

Sickle cell disease (SCD) affects millions worldwide, yet there are few therapeutic options. To develop effective treatments, preclinical models that recapitulate human physiology and SCD pathophysiology are needed. SCD arises from a single Glu-to-Val substitution at position 6 in the ß subunit of hemoglobin (Hb), promoting Hb polymerization and subsequent disease. Sheep share important physiological and developmental characteristics with humans, including the same developmental pattern of fetal to adult Hb switching. Herein, we investigated whether introducing the SCD mutation into the sheep ß-globin locus would recapitulate SCD's complex pathophysiology by generating high quality SWISS-MODEL sheep Hb structures and performing MD simulations of normal/sickle human (huHbA/huHbS) and sheep (shHbB/shHbS) Hb, establishing how accurately shHbS mimics huHbS behavior. shHbS, like huHbS, remained stable with low RMSD, while huHbA and shHbB had higher and fluctuating RMSD. shHbB and shHbS also behaved identically to huHbA and huHbS with respect to ß2-Glu6 and ß1-Asp73 (ß1-Asn72 in sheep) solvent interactions. These data demonstrate that introducing the single SCD-causing Glu-to-Val substitution into sheep ß-globin causes alterations consistent with the Hb polymerization that drives RBC sickling, supporting the development of a SCD sheep model to pave the way for alternative cures for this debilitating, globally impactful disease.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinas , Adulto , Humanos , Animales , Ovinos , Hemoglobinas/genética , Anemia de Células Falciformes/terapia , Hemoglobina A , Globinas beta/genética , Modelos Animales , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/química
17.
Mol Immunol ; 166: 16-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181455

RESUMEN

Over 500 million people worldwide are affected by diabetes mellitus, a chronic disease that leads to high blood glucose levels and causes severe side effects. The predominant biological marker for diagnosis of diabetes is glycated haemoglobin (GHb). In human blood the predominant reducing sugar, glucose, irreversibly conjugates onto accessible amine groups within Hb. Most methods for diagnosis and monitoring of diabetes selectively detect N-terminal glycation at Val-1 on the ß-globin chain, but not glycation at other sites. Detection of other glycated epitopes of GHb has the potential to provide new information on the extent, duration and timing of elevated glucose, facilitating personalised diagnosis and intelligent diabetic control. In this work, a new anti-GHb Fab antibody (Fab-1) specific for haemoglobin A1c (HbA1c) with nanomolar affinity was discovered via epitope-directed immunisation and phage display. A single chain variable fragment (scFv) antibody derived from Fab-1 retained affinity and specificity for HbA1c, and affinity was enhanced tenfold upon addition of an enhanced green fluorescent protein tag. Both the scFv and Fab-1 recognised an epitope within HbA1c that was distinct from ß-Val-1, and our data suggest that this epitope may include glycation at Lys-66 in the ß-globin chain. To our knowledge, this is the first report of an scFv/Fab anti-glycated epitope antibody that recognises a non-A1c epitope in GHb, and confirms that fructosamine attached to different, discrete glycation sites within the same protein can be resolved from one another by immunoassay.


Asunto(s)
Diabetes Mellitus , Anticuerpos de Cadena Única , Oxibato de Sodio , Humanos , Hemoglobina Glucada , Epítopos , Glucosa , Globinas beta
18.
Hemoglobin ; 48(1): 1-3, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38258429

RESUMEN

A 21-year-old patient presented with a previous medical history of pallor, mild icterus, increased fatigue, low hemoglobin, and abnormal hemoglobin variant analysis with more than 70 transfusions. He was referred for genetic analysis to identify the pathogenic variations in the ß-globin gene. Sanger's sequencing of the proband and his family revealed the presence of a novel frame shift variant HBB:c.163delG in a compound heterozygous state with hemoglobin E (HbE) (HBB:c.79G > A) variant. The father and the sibling of the patient were found to be normal for the HBB gene. Mother was found to be heterozygous for HbE (HBB:c.79G > A) variant. In silico analysis by Mutalyzer predicted that c.163delG variant generated a premature stop codon after seven codons, leading to a truncated protein. FoldX protein stability analysis showed a positive ΔΔG value of 45.27 kcal/mol suggesting a decrease in protein stability. HBB:c.79G > A is a known variant coding for HbE variant, which results in the reduced synthesis of ß-globin chain and shows mild thalassemia. Combined effect of HBB:c.163delG and HBB:c.79G > A variants in the proband might have led to the reduced synthesis of ß-globin chains resulting in a thalassemia intermedia type of clinical manifestation.


Asunto(s)
Hemoglobina E , Hemoglobinas Anormales , Talasemia beta , Humanos , Masculino , Adulto Joven , Globinas beta/genética , Globinas beta/metabolismo , Talasemia beta/diagnóstico , Talasemia beta/genética , Hemoglobina E/genética , Hemoglobinas Anormales/genética , Heterocigoto , Mutación , Fenotipo
19.
J Gene Med ; 26(1): e3567, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37455676

RESUMEN

Sickle cell disease (SCD) results from a sequence defect in the ß-globin chain of adult hemoglobin (HbA) leading to expression of sickle hemoglobin (HbS). It is traditionally diagnosed by cellulose-acetate hemoglobin electrophoresis or high-performance liquid chromatography. While clinically useful, these methods have both sensitivity and specificity limitations. We developed a novel mass spectrometry (MS) method for the rapid, sensitive and highly quantitative detection of endogenous human ß-globin and sickle hß-globin, as well as lentiviral-encoded therapeutic hßAS3-globin in cultured cells and small quantities of mouse peripheral blood. The MS methods were used to phenotype homozygous HbA (AA), heterozygous HbA-HbS (AS) and homozygous HbS (SS) Townes SCD mice and detect lentiviral vector-encoded hßAS3-globin in transduced mouse erythroid cell cultures and transduced human CD34+ cells after erythroid differentiation. hßAS3-globin was also detected in peripheral blood 6 weeks post-transplant of transduced Townes SS bone marrow cells into syngeneic Townes SS mice and persisted for over 20 weeks post-transplant. As several genome-editing and gene therapy approaches for severe hemoglobin disorders are currently in clinical trials, this MS method will be useful for patient assessment before treatment and during follow-up.


Asunto(s)
Anemia de Células Falciformes , Lentivirus , Adulto , Ratones , Animales , Humanos , Lentivirus/genética , Vectores Genéticos/genética , Hemoglobinas/genética , Hemoglobinas/metabolismo , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Globinas beta/genética , Células Cultivadas , Espectrometría de Masas
20.
Gene ; 896: 148022, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007159

RESUMEN

One excellent illustration of how a single gene abnormality may result in a spectrum of disease incidence is the incredible phenotypic variety of ß-thalassemia, which spans from severe anemia and transfusion needs to an utterly asymptomatic sickness. However, genetic causes of ß-thalassemia and how the anemia's severity might be altered at various stages in its pathophysiology have been well investigated. There are currently known to be more than 350 mutations that cause genetic disease. However only 20 ß thalassemia mutations account for more than 80% of the ß thalassemia mutation across the globe due to phenomenon of geographical clustering where each population has a few common mutations together with a varying number of rare ones. Due to migration of the population, the spectrum of thalassemia mutation in changing from time to time. In this review, efforts are made to collate ß globin gene mutations in different countries and populations.


Asunto(s)
Talasemia , Talasemia beta , Humanos , Talasemia beta/epidemiología , Talasemia beta/genética , Mutación , Talasemia/genética , Globinas beta/genética , Geografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...