Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.398
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773462

RESUMEN

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Asunto(s)
Puente Cardiopulmonar , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt , Piroptosis , Ratas Sprague-Dawley , Transducción de Señal , Animales , Puente Cardiopulmonar/efectos adversos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piroptosis/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Neuronas/enzimología , Fármacos Neuroprotectores/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Edema Encefálico/prevención & control , Edema Encefálico/metabolismo , Edema Encefálico/enzimología , Edema Encefálico/patología , Antiinflamatorios/farmacología , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Mediadores de Inflamación/metabolismo
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719751

RESUMEN

Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3ß was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3ß and that GSK3ß inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3ß axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3ß inhibitors is a potential therapeutic strategy for leukoencephalopathy.


Asunto(s)
Colesterol , Quinasa 2 de Adhesión Focal , Glucógeno Sintasa Quinasa 3 beta , Ratones Noqueados , Mitocondrias , Biosíntesis de Proteínas , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Humanos , Ratones , Colesterol/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/genética , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Mitocondrias/metabolismo , Fosforilación , Transducción de Señal/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
3.
Cell Mol Biol Lett ; 29(1): 63, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698330

RESUMEN

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS: Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS: Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3ß-mediated ß-catenin ubiquitination and degradation, thus facilitating the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/ß-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS: Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/ß-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.


Asunto(s)
Neoplasias Endometriales , Glucógeno Sintasa Quinasa 3 beta , Cadenas Pesadas de Miosina , beta Catenina , Humanos , Femenino , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Línea Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Pronóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Persona de Mediana Edad , Naftoquinonas/farmacología
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723872

RESUMEN

BACKGROUND: Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS: ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS: PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPß/PTEN/AKT/GSK-3ß axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3ß axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPß at Lys253 with hydrogen bond to regulate C/EBPß nuclear translocation and PTEN/AKT/GSK-3ß axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS: Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPß at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Apoptosis , Músculo Liso Vascular , Quercetina , Animales , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Angiotensina II/farmacología , Ratones , Quercetina/análogos & derivados , Quercetina/farmacología , Apoptosis/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Modelos Animales de Enfermedad , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/efectos de los fármacos , Células Cultivadas , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos
5.
Sci Rep ; 14(1): 11372, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762650

RESUMEN

The aim of this study was to identify angiogenic microRNAs (miRNAs) that could be used in the treatment of hindlimb ischemic tissues. miRNAs contained in extracellular vesicles (EVs) deriving from the plasma were analyzed in C57BL/6 mice, which have ischemia tolerance, and in BALB/c mice without ischemia tolerance as part of a hindlimb ischemia model; as a result 43 angiogenic miRNA candidates were identified. An aortic ring assay was employed by using femoral arteries isolated from BALC/c mice and EVs containing miRNA; as a result, the angiogenic miRNA candidates were limited to 14. The blood flow recovery was assessed after injecting EVs containing miRNA into BALB/c mice with hindlimb ischemia, and miR-709 was identified as a promising angiogenic miRNA. miR-709-encapsulating EVs were found to increase the expression levels of the fibroblast growth factor 2 (FGF2) mRNA in the thigh tissues of hindlimb ischemia model BALB/c mice. miR-709 was also found to bind to the 3'UTR of glycogen synthase kinase 3 beta (GSK3B) in three places. GSK3B-knockdown human artery-derived endothelial cells were found to express high levels of FGF2, and were characterized by increased cell proliferation. These findings indicate that miR-709 induces an upregulation of FGF2 through the downregulation of GSK3B.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Glucógeno Sintasa Quinasa 3 beta , Miembro Posterior , Isquemia , Ratones Endogámicos BALB C , MicroARNs , Neovascularización Fisiológica , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Isquemia/genética , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones , Neovascularización Fisiológica/genética , Regulación hacia Abajo , Ratones Endogámicos C57BL , Regulación hacia Arriba , Masculino , Vesículas Extracelulares/metabolismo , Regiones no Traducidas 3' , Células Endoteliales/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad
6.
Exp Dermatol ; 33(5): e15101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770555

RESUMEN

Skin hyperpigmentation is mainly caused by excessive synthesis of melanin; however, there is still no safe and effective therapy for its removal. Here, we found that the dermal freezer was able to improve UVB-induced hyperpigmentation of guinea pigs without causing obvious epidermal damage. We also mimic freezing stimulation at the cellular level by rapid freezing and observed that freezing treatments <2.5 min could not decrease cell viability or induce cell apoptosis in B16F10 and Melan-A cells. Critically, melanin content and tyrosinase activity in two cells were greatly reduced after freezing treatments. The dramatic decrease in tyrosinase activity was associated with the downregulation of MITF, TYR, TRP-1 and TRP-2 protein expression in response to freezing treatments for two cells. Furthermore, our results first demonstrated that freezing treatments significantly reduced the levels of p-GSK3ß and ß-catenin and the nuclear accumulation of ß-catenin in B16F10 and Melan-A cells. Together, these data suggest that fast freezing treatments can inhibit melanogenesis-related gene expression in melanocytes by regulating the Wnt/ß-catenin signalling pathway. The inhibition of melanin production eventually contributed to the improvement in skin hyperpigmentation induced by UVB. Therefore, fast freezing treatments may be a new alternative of skin whitening in the clinic in the future.


Asunto(s)
Congelación , Hiperpigmentación , Melaninas , Melanocitos , Monofenol Monooxigenasa , Rayos Ultravioleta , Vía de Señalización Wnt , beta Catenina , Animales , Melaninas/biosíntesis , Melaninas/metabolismo , Melanocitos/metabolismo , Ratones , Hiperpigmentación/metabolismo , beta Catenina/metabolismo , Monofenol Monooxigenasa/metabolismo , Cobayas , Factor de Transcripción Asociado a Microftalmía/metabolismo , Supervivencia Celular , Oxidorreductasas Intramoleculares/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Apoptosis , Oxidorreductasas/metabolismo , Interferón Tipo I , Proteínas Gestacionales
7.
Cancer Med ; 13(10): e7083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752436

RESUMEN

BACKGROUND: Preclinical and clinical evidence indicates that proton pump inhibitors (PPIs) may indirectly diminish the microbiome diversity, thereby reducing the effectiveness of immune checkpoint inhibitors (ICIs). Conversely, recent publications have shown that PPIs could potentially enhance the response to ICIs. The precise mechanism through which PPIs modulate the ICIs remains unclear. In this study, we discovered a novel molecular function of PPIs in regulating immune invasion, specifically through inducing PD-L1 translocation in various tumor cells. METHODS: C57BL/6 mice subcutaneous transplantation model is used to verify the potential efficacy of PPIs and PD-L1 antibody. Western blotting analysis and phosphorylated chip are used to verify the alteration of PD-L1-related pathways after being treated with PPIs. The related gene expression is performed by qRT-PCR and luciferase reporter analysis. We also collected 60 clinical patients diagnosed with esophageal cancer or reflux esophagitis and then detected the expression of PD-L1 in the tissue samples by immunohistochemistry. RESULTS: We observed that the IC50 of tumor cells in response to PPIs was significantly higher than that of normal epithelial cells. PPIs significantly increased the expression of PD-L1 on cell membrane at clinically relevant concentrations. Furthermore, pre-treatment with PPIs appeared to synergize the efficiency of anti-PD-L1 antibodies in mouse models. However, PPI administration did not alter the transcription or total protein level of PD-L1 in multiple tumor cells. Using a phosphorylated protein chip, we identified that PPIs enhanced the phosphorylation of GSK3ß, then leading to PD-L1 protein translocation to the cell membranes. The capacity of PPIs to upregulate PD-L1 was negated following GSK3ß knockout. Furthermore, our clinical data showed that the PPIs use resulted in increased PD-L1 expression in esophageal cancer patients. CONCLUSION: We mainly address a significant and novel mechanism that the usage of PPIs could directly induce the expression of PD-L1 by inducing GSK3ß phosphorylation and facilitate primary tumor progression and metastasis.


Asunto(s)
Antígeno B7-H1 , Membrana Celular , Glucógeno Sintasa Quinasa 3 beta , Inhibidores de la Bomba de Protones , Inhibidores de la Bomba de Protones/farmacología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosforilación , Humanos , Ratones , Membrana Celular/metabolismo , Ratones Endogámicos C57BL , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
8.
Int J Oral Sci ; 16(1): 40, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740746

RESUMEN

Oxidative stress is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease (AD), particularly in the early stages of the disease. The multiplicity advantages of stem cell transplantation make it fascinating therapeutic strategy for many neurodegenerative diseases. We herein demonstrated that human dental pulp stem cells (hDPSCs) mediated oxidative stress improvement and neuroreparative effects in in vitro AD models, playing critical roles in regulating the polarization of hyperreactive microglia cells and the recovery of damaged neurons. Importantly, these therapeutic effects were reflected in 10-month-old 3xTg-AD mice after a single transplantation of hDPSCs, with the treated mice showing significant improvement in cognitive function and neuropathological features. Mechanistically, antioxidant and neuroprotective effects, as well as cognitive enhancements elicited by hDPSCs, were at least partially mediated by Nrf2 nuclear accumulation and downstream antioxidant enzymes expression through the activation of the AKT-GSK3ß-Nrf2 signaling pathway. In conclusion, our findings corroborated the neuroprotective capacity of hDPSCs to reshape the neuropathological microenvironment in both in vitro and in vivo AD models, which may be a tremendous potential therapeutic candidate for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Pulpa Dental , Glucógeno Sintasa Quinasa 3 beta , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Pulpa Dental/citología , Enfermedad de Alzheimer/terapia , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Modelos Animales de Enfermedad , Trasplante de Células Madre , Células Madre , Ratones Transgénicos
9.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710691

RESUMEN

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Subunidad alfa del Factor 1 Inducible por Hipoxia , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratas , Proteínas S100/metabolismo , Proteínas S100/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Transducción de Señal , Masculino , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Ratones Endogámicos C57BL , Riñón/metabolismo , Riñón/patología , Apoptosis , Línea Celular , Hipoxia de la Célula , Ratones Noqueados
10.
Neurotox Res ; 42(2): 23, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578482

RESUMEN

Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3ß-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3ß. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Flavanonas , Fármacos Neuroprotectores , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Fosforilación , Péptidos beta-Amiloides/metabolismo
11.
PLoS One ; 19(4): e0299534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574297

RESUMEN

Alzheimer's disease (AD) is the most common neuronal disorder that leads to the development of dementia. Until nowadays, some therapies may alleviate the symptoms, but there is no pharmacological treatment. Microdosing lithium has been used to modify the pathological characteristics of the disease, with effects in both experimental and clinical conditions. The present work aimed to analyze the effects of this treatment on spatial memory, anxiety, and molecular mechanisms related to long-term memory formation during the aging process of a mouse model of accelerated aging (SAMP-8). Female SAMP-8 showed learning and memory impairments together with disruption of memory mechanisms, neuronal loss, and increased density of senile plaques compared to their natural control strain, the senescence-accelerated mouse resistant (SAMR-1). Chronic treatment with lithium promoted memory maintenance, reduction in anxiety, and maintenance of proteins related to memory formation and neuronal density. The density of senile plaques was also reduced. An increase in the density of gamma-aminobutyric acid A (GABAA) and α7 nicotinic cholinergic receptors was also observed and related to neuroprotection and anxiety reduction. In addition, this microdose of lithium inhibited the activation of glycogen synthase kinase-3beta (GSK-3ß), the classical mechanism of lithium cell effects, which could contribute to the preservation of the memory mechanism and reduction in senile plaque formation. This work shows that lithium effects in neuroprotection along the aging process are not related to a unique cellular mechanism but produce multiple effects that slowly protect the brain along the aging process.


Asunto(s)
Enfermedad de Alzheimer , Litio , Compuestos de Fenilmercurio , Ratones , Femenino , Animales , Litio/farmacología , Litio/uso terapéutico , Placa Amiloide/patología , Glucógeno Sintasa Quinasa 3 beta , Enfermedad de Alzheimer/patología , Envejecimiento/metabolismo , Modelos Animales de Enfermedad
12.
Bioorg Chem ; 146: 107324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569322

RESUMEN

Recently, glycogen synthase kinase-3ß (GSK-3ß) has been considered as a critical factor implicated in Alzheimer's disease (AD). In a previous work, a 3D pharmacophore model for GSK-3ß inhibitors was created and the results suggested that derivative ZINC67773573, VIII, may provide a promising lead for developing novel GSK-3ß inhibitors for the AD's treatment. Consequently, in this work, novel series of quinolin-2-one derivatives were synthesized and assessed for their GSK-3ß inhibitory properties. In vitro screening identified three compounds: 7c, 7e and 7f as promising GSK-3ß inhibitors. Compounds 7c, 7e and 7f were found to exhibit superior inhibitory effect on GSK-3ß with IC50 value ranges between 4.68 ± 0.59 to 8.27 ± 0.60 nM compared to that of staurosporine (IC50 = 6.12 ± 0.74 nM). Considerably, compounds 7c, 7e and 7f effectively lowered tau hyperphosphorylated aggregates and proving their safety towards the SH-SY5Y and THLE2 normal cell lines. The most promising compound 7c alleviated cognitive impairments in the scopolamine-induced model in mice. Compound 7c's activity profile, while not highly selective, may provide a starting point and valuable insights into the design of multi-target inhibitors. According to the ADME prediction results, compounds 7c, 7e and 7f followed Lipinski's rule of five and could almost permeate through the BBB. Molecular docking simulations showed that these compounds are well accommodated in the ATP binding site interacting by its quinoline-2-one ring through hydrogen bonding with the key amino acids Asp133 and Val135 at the hinge region. The findings of this study suggested that these new compounds may have potential as anti-AD drugs targeting GSK-3ß.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Simulación del Acoplamiento Molecular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Farmacóforo , Fosforilación , Proteínas tau/metabolismo
13.
Transl Psychiatry ; 14(1): 174, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570518

RESUMEN

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we performed an exploratory study of the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. Overall, we observed relatively weak associations (p < 1 × 10-4) with BP phenotypes within immune-related genes. Network and functional enrichment analyses of the top findings from the association analyses of Li response variables showed an overrepresentation of pathways participating in cell adhesion and intercellular communication. These appeared to converge on the well-known Li-induced inhibition of GSK-3ß. Association analyses of age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation suggested modest contributions of genes such as RTN4, XKR4, NRXN1, NRG1/3 and GRK5 to disease characteristics. PGS analyses returned weak associations (p < 0.05) between inflammation markers and the studied BP phenotypes. Our results suggest a modest relationship between immunity and clinical features in BP. More research is needed to assess the potential therapeutic relevance.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/psicología , Litio/uso terapéutico , Estudios Retrospectivos , Inmunogenética , Glucógeno Sintasa Quinasa 3 beta , Fenotipo
14.
Cancer Med ; 13(7): e7092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581123

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS: Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3ß (GSK-3ß), p-Akt, p-GSK-3ß, ß-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS: H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/ß-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of ß-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3ß, and the expression of ß-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION: RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/ß-catenin signaling pathway.


Asunto(s)
Helicobacter pylori , Neoplasias Gástricas , Animales , Ratones , Helicobacter pylori/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ratones Desnudos , Cromatografía Liquida , Línea Celular Tumoral , Espectrometría de Masas en Tándem , Vía de Señalización Wnt , Neoplasias Gástricas/patología , Células Madre Neoplásicas/metabolismo , Proliferación Celular
15.
Pestic Biochem Physiol ; 200: 105817, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582587

RESUMEN

Thiram is a kind of organic compound, which is commonly used for sterilization, insecticidal and deodorization in daily life. Its toxicology has been broadly studied. Recently, more and more microRNAs have been shown to participate in the regulation of cartilage development. However, the potential mechanism by which microRNA regulates chondrocyte growth is still unclear. Our experiments have demonstrated that thiram can hamper chondrocytes development and cause a significant increase in miR-203a content in vitro and in vivo trials. miR-203a mimic significantly decrease in mRNA and protein expression of Wnt4, Runx2, COL2A1, ß-catenin and ALP, and significantly enhance the mRNA and protein levels of GSK-3ß. It has been observed that overexpression of miR-203a hindered chondrocytes development. In addition, Runx2 was confirmed to be a direct target of miR-203a by dual luciferase report gene assay. Transfection of si-Runx2 into chondrocytes reveals that significant downregulation of genes is associated with cartilage development. Overall, these results suggest that overexpression of miR-203a inhibits the expression of Runx2. These findings are conducive to elucidate the mechanism of chondrocytes dysplasia induced by thiram and provide new research ideas for the toxicology of thiram.


Asunto(s)
Condrocitos , MicroARNs , Condrocitos/metabolismo , Tiram , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/genética , ARN Mensajero/genética
16.
J Diabetes ; 16(4): e13540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38599845

RESUMEN

OBJECTIVE: Mitochondria-associated membranes (MAMs) serve pivotal functions in hepatic insulin resistance (IR). Our aim was to explore the potential role of MAMs in mitigating hepatic IR through exercise and to compare the effects of different intensities of exercise on hepatic MAMs formation in high-fat diet (HFD) mice. METHODS: Male C57BL/6J mice were fed an HFD and randomly assigned to undergo supervised high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). IR was evaluated using the serum triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-C), glucose tolerance test (GTT), and insulin tolerance test (ITT). Hepatic steatosis was observed using hematoxylin-eosin (H&E) and oil red O staining. The phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase 3 beta (PI3K-AKT-GSK3ß) signaling pathway was assessed to determine hepatic IR. MAMs were evaluated through immunofluorescence (colocalization of voltage-dependent anion-selective channel 1 [VDAC1] and inositol 1,4,5-triphosphate receptor [IP3R]). RESULTS: After 8 weeks on an HFD, there was notable inhibition of the hepatic PI3K/Akt/GSK3ß signaling pathway, accompanied by a marked reduction in hepatic IP3R-VDAC1 colocalization levels. Both 8-week HIIT and MICT significantly enhanced the hepatic PI3K/Akt/GSK3ß signaling and colocalization levels of IP3R-VDAC1 in HFD mice, with MICT exhibiting a stronger effect on hepatic MAMs formation. Furthermore, the colocalization of hepatic IP3R-VDAC1 positively correlated with the expression levels of phosphorylation of protein kinase B (p-AKT) and phosphorylation of glycogen synthase kinase 3 beta (p-GSK3ß), while displaying a negative correlation with serum triglyceride/high-density lipoprotein cholesterol levels. CONCLUSION: The reduction in hepatic MAMs formation induced by HFD correlates with the development of hepatic IR. Both HIIT and MICT effectively bolster hepatic MAMs formation in HFD mice, with MICT demonstrating superior efficacy. Thus, MAMs might wield a pivotal role in exercise-induced alleviation of hepatic IR.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina , Masculino , Ratones , Animales , Resistencia a la Insulina/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas , Dieta Alta en Grasa/efectos adversos , Membranas Asociadas a Mitocondrias , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Triglicéridos , Lipoproteínas HDL , Colesterol
17.
Neuropharmacology ; 251: 109931, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38570067

RESUMEN

The prospective involvement of the Wnt/ß-catenin signaling pathway in epilepsy, with the proposed therapeutic uses of its modulators, has been suggested; however, comprehensive knowledge in this regard is currently limited. Despite postulations about the pathway's significance and treatment potential, a systematic investigation is required to better understand its implications in chronic epilepsy. We investigated the role of key proteins like ß-catenin, GSK-3ß, and their modulators sulindac and 6-BIO, in Wnt/ß-catenin pathway during chronic phase of temporal lobe epilepsy. We also evaluated the role of modulators in seizure score, seizure frequency and neurobehavioral parameters in temporal lobe epilepsy. We developed status epilepticus model using lithium-pilocarpine. The assessment of neurobehavioral parameters was done followed by histopathological examination and immunohistochemistry staining of hippocampus as well as RT-qPCR and western blotting to analyse gene and protein expression. In SE rats, seizure score and frequency were significantly high compared to control rats, with notable changes in neurobehavioral parameters and neuronal damage observed in hippocampus. Our study also revealed a substantial upregulation of the Wnt/ß-catenin pathway in chronic epilepsy, as evidenced by gene and protein expression studies. Sulindac emerged as a potent modulator, reducing seizure score, frequency, neuronal damage, apoptosis, and downregulating the Wnt/ß-catenin pathway when compared to 6-BIO. Our findings emphasize the potential of GSK-3ß and ß-catenin as promising drug targets for chronic temporal lobe epilepsy, offering valuable treatment options for chronic epilepsy. The promising outcomes with sulindac encourages further exploration in clinical trials to assess its therapeutic potential.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratas , Animales , Vía de Señalización Wnt , Sulindac/farmacología , Sulindac/uso terapéutico , beta Catenina/metabolismo , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Estudios Prospectivos
18.
J Alzheimers Dis ; 98(4): 1169-1179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607755

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of neurofibrillary tangles and amyloid-ß plaques. Recent research has unveiled the pivotal role of insulin signaling dysfunction in the pathogenesis of AD. Insulin, once thought to be unrelated to brain function, has emerged as a crucial factor in neuronal survival, synaptic plasticity, and cognitive processes. Insulin and the downstream insulin signaling molecules are found mainly in the hippocampus and cortex. Some molecules responsible for dysfunction in insulin signaling are GSK-3ß, Akt, PI3K, and IRS. Irregularities in insulin signaling or insulin resistance may arise from changes in the phosphorylation levels of key molecules, which can be influenced by both stimulation and inactivity. This, in turn, is believed to be a crucial factor contributing to the development of AD, which is characterized by oxidative stress, neuroinflammation, and other pathological hallmarks. Furthermore, this route is known to be indirectly influenced by Nrf2, NF-κB, and the caspases. This mini-review delves into the intricate relationship between insulin signaling and AD, exploring how disruptions in this pathway contribute to disease progression. Moreover, we examine recent advances in drug delivery systems designed to target insulin signaling for AD treatment. From oral insulin delivery to innovative nanoparticle approaches and intranasal administration, these strategies hold promise in mitigating the impact of insulin resistance on AD. This review consolidates current knowledge to shed light on the potential of these interventions as targeted therapeutic options for AD.


Asunto(s)
Enfermedad de Alzheimer , Resistencia a la Insulina , Humanos , Enfermedad de Alzheimer/patología , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Glucógeno Sintasa Quinasa 3 beta , Péptidos beta-Amiloides/metabolismo , Sistemas de Liberación de Medicamentos
19.
Sci Rep ; 14(1): 9018, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641685

RESUMEN

Cyperus rotundus rhizomes have been used in longevity remedies in Thailand for nourishing good health, which led us to investigate the effect on energy homeostasis, especially glucose utilization in myotubes and adipocytes, and on inhibition of lipogenesis in adipocytes. The results showed that an ethyl acetate extract of C. rotundus rhizomes (ECR) containing 1.61%w/w piceatannol, with a half-maximal concentration of 17.76 ± 0.03 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, caused upregulation and cell-membrane translocation of glucose transporters GLUT4 and 1 in L6 myotubes but downregulation and cytoplasmic localization of GLUT4 expression in 3T3-L1 adipocytes and was related to the p-Akt/Akt ratio in both cells, especially at 100 µg/mL. Moreover, ECR (25-100 µg/mL) significantly inhibited lipid accumulation via Adenosine Monophosphate-Activated Protein Kinase (AMPK), Acetyl CoA Carboxylase (ACC), and Glycogen Synthase Kinase (GSK) pathways. Its immunoblot showed increased expression of p-AMPKα/AMPKα and p-ACC/ACC but decreased expression of p-Akt/Akt and p-GSK3ß/GSK3ß in 3T3-L1 adipocytes. Moreover, the decreased expression of the adipogenic effectors, perilipin1 and lipoprotein lipase, in ECR-incubated adipocytes (50 and 100 µg/mL) indicated reduced de novo lipogenesis. Our study elucidated mechanisms of C. rotundus that help attenuate glucose tolerance in skeletal muscle and inhibit lipid droplet accumulation in adipose tissue.


Asunto(s)
Cyperus , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Adipogénesis , Glucosa/metabolismo , Adipocitos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células 3T3-L1
20.
Biomolecules ; 14(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38672518

RESUMEN

Glycogen synthase kinase 3-beta (GSK3ß) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3ß in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3ß enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3ß is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (ß)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3ß has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3ß may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3ß inhibitors as bone-protecting agents. Some studies demonstrated that GSK3ß inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3ß silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3ß on osteoclastogenesis and bone resorption.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Osteoclastos , Osteogénesis , Humanos , Animales , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/citología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Osteogénesis/efectos de los fármacos , Resorción Ósea/metabolismo , Resorción Ósea/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ligando RANK/metabolismo , Ligando RANK/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...