Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.326
Filtrar
1.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739436

RESUMEN

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Asunto(s)
Antibacterianos , Endopeptidasas , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidasas/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Polimixina B/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/virología , Ratones , Salmonella typhimurium/virología , Salmonella typhimurium/efectos de los fármacos , Bacteriófagos/fisiología , Bacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Virales/química
2.
J Agric Food Chem ; 72(19): 11041-11050, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700846

RESUMEN

The function of polysaccharides is intimately associated with their size, which is largely determined by the processivity of transferases responsible for their synthesis. A tunnel active center architecture has been recognized as a key factor that governs processivity of several glycoside hydrolases (GHs), e.g., cellulases and chitinases. Similar tunnel architecture is also observed in the Limosilactobacillus reuteri 121 GtfB (Lr121 GtfB) α-glucanotransferase from the GH70 family. The molecular element underpinning processivity of these transglucosylases remains underexplored. Here, we report the synthesis of the smallest (α1 → 4)-α-glucan interspersed with linear and branched (α1 → 6) linkages by a novel 4,6-α-glucanotransferase from L. reuteri N1 (LrN1 GtfB) with an open-clefted active center instead of the tunnel structure. Notably, the loop swapping engineering of LrN1 GtfB and Lr121 GtfB based on their crystal structures clarified the impact of the loop-mediated tunnel/cleft structure at the donor subsites -2 to -3 on processivity of these α-glucanotransferases, enabling the tailoring of both product sizes and substrate preferences. This study provides unprecedented insights into the processivity determinants and evolutionary diversification of GH70 α-glucanotransferases and offers a simple route for engineering starch-converting α-glucanotransferases to generate diverse α-glucans for different biotechnological applications.


Asunto(s)
Proteínas Bacterianas , Glucanos , Limosilactobacillus reuteri , Glucanos/química , Glucanos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/química , Dominio Catalítico , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ingeniería de Proteínas , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/química
3.
Carbohydr Polym ; 337: 122164, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710558

RESUMEN

Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.


Asunto(s)
Glucanos , Glicosiltransferasas , Agua , Glucanos/química , Agua/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Streptococcus/enzimología , Solubilidad , Streptococcus mutans/enzimología
4.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710561

RESUMEN

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Asunto(s)
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacología , Glucanos/aislamiento & purificación , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Agaricales/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Peso Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Basidiomycota/química , Supervivencia Celular/efectos de los fármacos
5.
Carbohydr Polym ; 337: 122149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710571

RESUMEN

Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was ß-1,3-linked Glcp, both the α and ß-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.


Asunto(s)
Pared Celular , Quitina , Quitosano , Glucanos , Oryza , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/efectos de los fármacos , Oryza/microbiología , Oryza/química , Pared Celular/química , Quitosano/química , Quitosano/farmacología , Quitina/química , Quitina/farmacología , Glucanos/química , Glucanos/farmacología , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad , Especies Reactivas de Oxígeno/metabolismo
6.
Carbohydr Res ; 538: 109099, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574411

RESUMEN

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Asunto(s)
Ascomicetos , Reishi , beta-Glucanos , Glucanos/química , Reishi/química , Polisacáridos/química , beta-Glucanos/química , Cuerpos Fructíferos de los Hongos/química , Agua/análisis
7.
Int J Biol Macromol ; 268(Pt 1): 131556, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631579

RESUMEN

This work clarified the positive effects of pullulan on dough structure and application properties varied with its molecular weight. Pullulan with different molecular weights were introduced into dough system to explore their intervention effects on structural and technological properties of dough as well as physical and digestion properties of biscuits. Results showed that HPL (pullulan with molecule weight of 100- 300 kDa) could increase the intermolecular collisions, prompt the protein aggregation and limit the water migration in dough system, resulting in an integrate, continuous and dense network structure of the gel with strengthened elasticity and weakened extensibility, which caused an increase in biscuit thickness, hardness and crispness. On the contrary, LPL (pullulan with molecule weight of 3- 100 kDa) could go against the formation of stable and elastic dough through breaking down cross-linkage between protein and starch so as to provide biscuits with decreased hardness and crispness during baking. Both HPL and LPL delayed starch pasting and retrogradation process while HPL had the stronger retarding effect on starch digestibility of biscuits than LPL. These findings dedicated to a better understanding of pullulan function in dough system and provide suggestions for fractionation applications of pullulan in food field.


Asunto(s)
Harina , Glucanos , Peso Molecular , Almidón , Glucanos/química , Almidón/química , Pan , Proteínas/química
8.
Int J Biol Macromol ; 268(Pt 1): 131775, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657922

RESUMEN

Active packaging is a novel technology that utilizes active materials to interact with products and the environment, improving food shelf life. The purpose of this work was to fabricate a multifunctional film using Litsea cubeba essential oil (LC-EO) (1 %, 3 %, 5 %, and 7 %) as the active ingredient and pullulan(P)/tapioca starch (TS) as the carrier material. Adding essential oil improves the films properties, such as barrier ability, anti-oxidant, and antibacterial activity. However, tensile strength (TS) and elongation at break (EAB) were slightly reduced from 28.94 MPa to 11.29 MPa and 15.36 % to 12.19 %. The developed PTS3% films showed the best performance in mechanical properties, especially EAB (14.26 %), WVP (3.26 %) and OP (3.13 %), respectively. The inhibitory zone diameters in the agar-well diffusion test were 18.59 mm for Staphylococcus aureus and 17.32 mm for Escherichia coli. Further study was conducted to compare the preservation effects of film with low-density polyethylene bag (LDPE) on chilled beef. Remarkably, PTS3% film decreased the bacterial population in beef meat while maintaining the pH, color, texture, and TBARS levels within an acceptable range for ten days of storage at 4 °C rather than in a low-density polyethylene bag. The outcomes indicated the potential of PTS3% films in food packaging applications.


Asunto(s)
Antibacterianos , Embalaje de Alimentos , Conservación de Alimentos , Glucanos , Litsea , Manihot , Aceites Volátiles , Almidón , Almidón/química , Glucanos/química , Glucanos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Conservación de Alimentos/métodos , Manihot/química , Embalaje de Alimentos/métodos , Litsea/química , Staphylococcus aureus/efectos de los fármacos , Animales , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antioxidantes/química , Antioxidantes/farmacología , Resistencia a la Tracción , Carne/microbiología
9.
Int J Biol Macromol ; 267(Pt 2): 131606, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631566

RESUMEN

This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.


Asunto(s)
Cinnamomum zeylanicum , Embalaje de Alimentos , Gelatina , Glucanos , Estructuras Metalorgánicas , Aceites Volátiles , Gelatina/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Cinnamomum zeylanicum/química , Embalaje de Alimentos/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Glucanos/química , Glucanos/farmacología , Conservación de Alimentos/métodos , Antibacterianos/farmacología , Antibacterianos/química , Carne/microbiología , Animales , Pruebas de Sensibilidad Microbiana
10.
Int J Biol Macromol ; 267(Pt 1): 131306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574904

RESUMEN

This study investigated the effect of in situ produced water-soluble α-glucan (LcWSG) and water-insoluble α-glucan (LcWIG) from Leuconostoc citreum SH12 on the physicochemical properties of fermented soymilk. α-Glucans produced by Leuc. citreum SH12 improved water-holding capacity, viscosity, viscoelasticity and texture of fermented soymilk. Gtf1365 and Gtf836 of the five putative glucansucrases were responsible for synthesizing LcWSG and LcWIG during soymilk fermentation, respectively. Co-fermentation of soymilk with Gtf1365 and Gtf836 and non-exopolysaccharide-producing Lactiplantibacillus plantarum D1031 indicated that LcWSG effectively hindered the whey separation of fermented soymilk by increasing viscosity, while LcWIG improved hardness, springiness and accelerated protein coagulation. Fermented soymilk gel formation was mainly based on hydrogen bonding and hydrophobic interactions, which were promoted by both LcWSG and LcWIG. LcWIG has a greater effect on α-helix to ß-sheet translation in fermented soymilk, causing more rapid protein aggregation and thicker cross-linked gel network. Structure-based exploration of LcWSG and LcWIG from Leuc. citreum SH12 revealed their distinct roles in the physicochemical properties of fermented soymilk due to their different ratio of α-1,6 and α-1,3 glucosidic linkages and various side chain length. This study may guide the application of the water-soluble and water-insoluble α-glucans in fermented plant protein foods for their quality improvement.


Asunto(s)
Fermentación , Glucanos , Leuconostoc , Solubilidad , Leche de Soja , Agua , Leuconostoc/metabolismo , Leche de Soja/química , Agua/química , Viscosidad , Glucanos/química , Fenómenos Químicos
11.
Chem Rev ; 124(8): 4863-4934, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38606812

RESUMEN

Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.


Asunto(s)
Bacterias , Glucanos , Glucanos/metabolismo , Glucanos/química , Bacterias/enzimología , Bacterias/metabolismo , Evolución Molecular
12.
Carbohydr Polym ; 336: 122102, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670773

RESUMEN

Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.


Asunto(s)
Antibacterianos , Escherichia coli , Glucanos , Hidrogeles , Nanopartículas , Polilisina , Staphylococcus aureus , Cicatrización de Heridas , Xilanos , Glucanos/química , Glucanos/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Xilanos/química , Xilanos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Polilisina/química , Polilisina/farmacología , Ratones , Nanopartículas/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Infecciones Estafilocócicas/tratamiento farmacológico , Reactivos de Enlaces Cruzados/química , Infección de Heridas/tratamiento farmacológico , Masculino
13.
Food Chem ; 448: 139156, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555688

RESUMEN

Molecular structure of linear α-glucans (LAGs) and crystallization temperature have great effects on the thermostability and digestibility of recrystallized LAGs, but the recrystallization behaviors of LAGs in response to temperature remain unclear. Here LAGs with different lengths were prepared from amylopectin via chain elongation and debranching. Recrystallization of LAGs at 4 °C yielded B-type crystalline structure with relative crystallinity ranged from 23.7% to 46.1%. With a chain length of 40.2, an A-type allomorph was observed for a slow recrystallization at 50 °C. Differential scanning calorimetry suggested that A-type crystal had a higher thermostability than the B-type crystal, and increasing LAGs' chain length improved the dimension of double helices, whose assembly produced starch crystallites that enhanced the thermostability and decreased the in vitro digestibility of recrystallized LAGs. An improved thermostability of recrystallized LAGs preserved their ordered structures and kept the resistance to digestive enzymes, with a RS content up to 75.4%.


Asunto(s)
Cristalización , Digestión , Glucanos , Glucanos/química , Calor , Temperatura , Rastreo Diferencial de Calorimetría
14.
Carbohydr Polym ; 332: 121921, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431398

RESUMEN

Curdlan is a unique (1,3)-ß-D-glucan with bioactivity and exceptional gelling properties. By chemical functionalization such as carboxymethylation, the physicochemical properties of curdlan can be significantly tailored. However, how the carboxymethylation extent of curdlan affects its rheology and gelation characteristics has yet to be fully understood. Herein, we investigated the impact of the degree of substitution (DS, ranging from 0.04 to 0.97) on the rheological and gelation behavior of carboxymethylated curdlan (CMCD). It was found that CMCD with DS below 0.20, resembling native curdlan, still retained its gelling capability. As the DS increased beyond 0.36, there was a significant increase in its water solubility instead of gelation, resulting in transparent solutions with steady/complex viscosities adhering to the Cox-Merz rule. Moreover, CMCD with high DS demonstrated the ability to undergo in-situ gelation in the presence of metal ions, attributed to the nonspecific electrostatic binding. Additionally, in vitro cytocompatibility testing showed positive compatibility across varying DS in CMCD. This research offers a holistic understanding of the viscosifying and gelling behaviors of CMCD with varying DS, thereby fostering their practical application as thickeners and gelling agents in fields ranging from food and biomedicine to cosmetics and beyond.


Asunto(s)
beta-Glucanos , beta-Glucanos/química , Glucanos/química , Geles/química , Agua , Reología
15.
Int J Biol Macromol ; 266(Pt 2): 131000, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521333

RESUMEN

In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.


Asunto(s)
Antibacterianos , Glucanos , Goma Arábiga , Nanofibras , Nanofibras/química , Glucanos/química , Glucanos/farmacología , Goma Arábiga/química , Antibacterianos/farmacología , Antibacterianos/química , Salvia/química , Lactobacillus delbrueckii , Probióticos/química , Animales , Conservación de Alimentos/métodos , Carne Roja/microbiología , Staphylococcus aureus/efectos de los fármacos , Mucílago de Planta/química , Escherichia coli/efectos de los fármacos , Bovinos , Embalaje de Alimentos/métodos
16.
Int J Biol Macromol ; 266(Pt 1): 131170, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554906

RESUMEN

Skin wound healing is a complex and dynamic process involving hemostasis, inflammatory response, cell proliferation and migration, and angiogenesis. Currently used wound dressings remain unsatisfactory in the clinic due to the lack of adjustable mechanical property for injection operation and bioactivity for accelerating wound healing. In this work, an "all-sugar" hydrogel dressing is developed based on dynamic borate bonding network between the hydroxyl groups of okra polysaccharide (OP) and xyloglucan (XG). Benefiting from the reversible crosslinking network, the resulting composite XG/OP hydrogels exhibited good shear-thinning and fast self-healing properties, which is suitable to be injected at wound beds and filled into irregular injured site. Besides, the proposed XG/OP hydrogels showed efficient antioxidant capacity by scavenging DPPH activity of 73.9 %. In vivo experiments demonstrated that XG/OP hydrogels performed hemostasis and accelerated wound healing with reduced inflammation, enhanced collagen deposition and angiogenesis. This plant-derived dynamic hydrogel offers a facile and effective approach for wound management and has great potential for clinical translation in feature.


Asunto(s)
Antioxidantes , Hidrogeles , Neovascularización Fisiológica , Polisacáridos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Animales , Polisacáridos/química , Polisacáridos/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Abelmoschus/química , Glucanos/química , Glucanos/farmacología , Xilanos/química , Xilanos/farmacología , Ratones , Ratas , Masculino , Humanos , Angiogénesis
17.
J Agric Food Chem ; 72(10): 5391-5402, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427803

RESUMEN

α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno , Limosilactobacillus reuteri , Simulación de Dinámica Molecular , Glucanos/química , Almidón/metabolismo , Relación Estructura-Actividad
18.
Int J Biol Macromol ; 264(Pt 1): 130546, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442833

RESUMEN

ß-1,3-Glucans possess therapeutic potential owing to their ability to exhibit immunostimulating activity. ß-1,3-Glucans, isolated from various organisms, differ in their chemical structures, molecular weight, and branching degree, potentially forming particulate, helix, or random coil conformations in water. Therefore, this study used synthesized ß-1,3-glucan mimic polymers to investigate the difference in binding affinity for dectin-1 and induced cytokine productions based on polymer structures. The ß-1,3-glucan mimic polymers were synthesized using ß-1,3-glucan tetrasaccharyl monomer, with subsequent modifications to the polymer backbones through the introduction of hydrogen or a hydroxy group. Polymers with different structures in both ligands and polymer backbones were utilized to comprehensively investigate their binding affinity to dectin-1 and cytokine-inducing in macrophages. Hydroxylated polymers exhibited a high binding affinity for dectin-1, similar to that of schizophyllan, whereas the polymer composed of only saccharyl monomers did not bind to dectin-1. Further, when administered to macrophage RAW264 cells, polymers with branched and hydrophobic polymer backbones exhibited strong cytokine-inducing activities. Moreover, the results revealed that the essential factors for cytokine induction include the branches of ß-1,3-glucans, high (tens of thousands) molecular weights, and hydrophobicity. The results suggests that artificial polymers comprising these factors exhibit immunostimulating activity and could be developed as therapeutic agents.


Asunto(s)
Glucanos , beta-Glucanos , Glucanos/química , Polímeros , beta-Glucanos/química , Citocinas/metabolismo , Lectinas Tipo C
19.
Int J Biol Macromol ; 265(Pt 2): 130933, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508554

RESUMEN

Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.


Asunto(s)
Glucanos , Saccharomyces cerevisiae , Glucanos/química , Saccharomyces cerevisiae/química , Polisacáridos/química , Agua
20.
Adv Healthc Mater ; 13(13): e2304587, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334308

RESUMEN

Medical adhesives are emerging as an important clinical tool as adjuvants for sutures and staples in wound closure and healing and in the achievement of hemostasis. However, clinical adhesives combining cytocompatibility, as well as strong and stable adhesion in physiological conditions, are still in demand. Herein, a mussel-inspired strategy is explored to produce adhesive coacervates using tannic acid (TA) and methacrylate pullulan (PUL-MA). TA|PUL-MA coacervates mainly comprise van der Waals forces and hydrophobic interactions. The methacrylic groups in the PUL backbone increase the number of interactions in the adhesives matrix, resulting in enhanced cohesion and adhesion strength (72.7 Jm-2), compared to the non-methacrylated coacervate. The adhesive properties are kept in physiologic-mimetic solutions (72.8 Jm-2) for 72 h. The photopolymerization of TA|PUL-MA enables the on-demand detachment of the adhesive. The poor cytocompatibility associated with the use of phenolic groups is here circumvented by mixing reactive oxygen species-degrading enzyme in the adhesive coacervate. This addition does not hamper the adhesive character of the materials, nor their anti-microbial or hemostatic properties. This affordable and straightforward methodology, together with the tailorable adhesivity even in wet environments, high cytocompatibility, and anti-bacterial activity, enables foresee TA|PUL-MA as a promising ready-to-use bioadhesive for biomedical applications.


Asunto(s)
Antibacterianos , Taninos , Antibacterianos/química , Antibacterianos/farmacología , Taninos/química , Taninos/farmacología , Animales , Polifenoles/química , Polifenoles/farmacología , Adhesivos/química , Adhesivos/farmacología , Glucanos/química , Glucanos/farmacología , Humanos , Ratones , Escherichia coli/efectos de los fármacos , Metacrilatos/química , Polímeros/química , Polímeros/farmacología , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...