Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
1.
World J Microbiol Biotechnol ; 40(9): 271, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030369

RESUMEN

Microalgal biomass for biofuel production, integration into functional food, and feed supplementation has generated substantial interest worldwide due to its high growth rate, non-competitiveness for agronomic land, ease of cultivation in containments, and presence of several bioactive molecules. In this study, genetic engineering tools were employed to develop transgenic lines of freshwater microalga Chlorella vulgaris with a higher starch content, by up-regulating ADP-glucose pyrophosphorylase (AGPase), which is a rate-limiting enzyme in starch biosynthesis. Expression of the Escherichia coli glgC (AGPase homolog) gene in C. vulgaris led to an increase in total carbohydrate content up to 45.1% (dry cell weight, DCW) in the transgenic line as compared to 34.2% (DCW) in the untransformed control. The starch content improved up to 16% (DCW) in the transgenic alga compared to 10% (DCW) in the control. However, the content of total lipid, carotenoid, and chlorophyll decreased differentially in the transgenic lines. The carbohydrate-rich biomass from the transgenic algal line was used to produce bioethanol via yeast fermentation, which resulted in a higher ethanol yield of 82.82 mg/L as compared to 54.41 mg/L from the untransformed control. The in vitro digestibility of the transgenic algal starch revealed a resistant starch content of up to 7% of total starch. Faster growth of four probiotic bacterial species along with a lowering of the pH of the growth medium indicated transgenic alga to exert a positive prebiotic effect. Taken together, the study documents the utilization of genetically engineered C. vulgaris with enriched carbohydrates as bioethanol feedstock and functional food ingredients.


Asunto(s)
Biocombustibles , Biomasa , Chlorella vulgaris , Escherichia coli , Etanol , Fermentación , Glucosa-1-Fosfato Adenililtransferasa , Microalgas , Prebióticos , Almidón , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Etanol/metabolismo , Almidón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microalgas/metabolismo , Microalgas/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Ingeniería Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería Metabólica/métodos
2.
New Phytol ; 243(1): 162-179, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38706429

RESUMEN

Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.


Asunto(s)
Glucógeno , Fotosíntesis , Complejo de Proteína del Fotosistema II , Synechocystis , Synechocystis/metabolismo , Synechocystis/efectos de los fármacos , Synechocystis/crecimiento & desarrollo , Synechocystis/genética , Glucógeno/metabolismo , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Mutación/genética , Glucosa/metabolismo , Dióxido de Carbono/metabolismo , Oxígeno/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/genética
3.
J Mol Graph Model ; 129: 108761, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38552302

RESUMEN

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.


Asunto(s)
Oryza , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Oryza/genética , Endospermo/genética , Endospermo/metabolismo , Simulación por Computador , Almidón/metabolismo , Subunidades de Proteína/metabolismo
4.
Plant Physiol Biochem ; 207: 108407, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38340690

RESUMEN

Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Triticum/genética , Triticum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894964

RESUMEN

ADP-Glc pyrophosphorylase (AGPase), which catalyzes the transformation of ATP and glucose-1-phosphate (Glc-1-P) into adenosine diphosphate glucose (ADP-Glc), acts as a rate-limiting enzyme in crop starch biosynthesis. Prior research has hinted at the regulation of AGPase by phosphorylation in maize. However, the identification and functional implications of these sites remain to be elucidated. In this study, we identified the phosphorylation site (serine at the 31st position of the linear amino acid sequence) of the AGPase large subunit (Sh2) using iTRAQTM. Subsequently, to ascertain the impact of Sh2 phosphorylation on AGPase, we carried out site-directed mutations creating Sh2-S31A (serine residue replaced with alanine) to mimic dephosphorylation and Sh2-S31D (serine residue replaced with aspartic acid) or Sh2-S31E (serine residue replaced with glutamic acid) to mimic phosphorylation. Preliminary investigations were performed to determine Sh2 subcellular localization, its interaction with Bt2, and the resultant AGPase enzymatic activity. Our findings indicate that phosphorylation exerts no impact on the stability or localization of Sh2. Furthermore, none of these mutations at the S31 site of Sh2 seem to affect its interaction with Bt2 (smaller subunit). Intriguingly, all S31 mutations in Sh2 appear to enhance AGPase activity when co-transfected with Bt2, with Sh2-S31E demonstrating a substantial five-fold increase in AGPase activity compared to Sh2. These novel insights lay a foundational groundwork for targeted improvements in AGPase activity, thus potentially accelerating the production of ADP-Glc (the primary substrate for starch synthesis), promising implications for improved starch biosynthesis, and holding the potential to significantly impact agricultural practices.


Asunto(s)
Almidón , Almidón/metabolismo , Fosforilación , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Secuencia de Aminoácidos , Adenosina Difosfato/metabolismo
6.
Protein Sci ; 32(9): e4747, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37551561

RESUMEN

ADP-glucose pyrophosphorylase is a key regulatory enzyme involved in starch and glycogen synthesis in plants and bacteria, respectively. It has been hypothesized that inter-subunit communications are important for the allosteric effect in this enzyme. However, no specific interactions have been identified as part of the regulatory signal. The enzyme from Agrobacterium tumefaciens is a homotetramer allosterically regulated by fructose 6-phosphate and pyruvate. Three pairs of distinct subunit-subunit interfaces are present. Here we focus on an interface that features two symmetrical interactions between Arg11 and Asp141 from one subunit with residues Asp141 and Arg11 of the neighbor subunit, respectively. Previously, scanning mutagenesis showed that a mutation at the Arg11 position disrupted the activation of the enzyme. Considering the distance of these residues from the allosteric and catalytic sites, we hypothesized that the interaction between Arg11 and Asp141 is critical for allosteric signaling rather than effector binding. To prove our hypothesis, we mutated those two sites (D141A, D141E, D141N, D141R, R11D, and R11K) and performed kinetic and binding analysis. Mutations that altered the charge affected the regulation the most. To prove that the interaction per se (rather than the presence of specific residues) is critical, we partially rescued the R11D protein by introducing a second mutation (R11D/D141R). This could not restore the activator effect on kcat , but it did rescue the effect on substrate affinity. Our results indicate the critical functional role of Arg11 and Asp141 to relay the allosteric signal in this subunit interface.


Asunto(s)
Agrobacterium tumefaciens , Almidón , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Mutación , Ácido Pirúvico , Cinética , Regulación Alostérica/genética
7.
Plant Physiol Biochem ; 200: 107796, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37269824

RESUMEN

The development of storage roots is a key factor determining the yields of crop plants, including sweet potato. Here, using combined bioinformatic and genomic approaches, we identified a sweet potato yield-related gene, ADP-glucose pyrophosphorylase (AGP) small subunit (IbAPS). We found that IbAPS positively affects AGP activity, transitory starch biosynthesis, leaf development, chlorophyll metabolism, and photosynthesis, ultimately affecting the source strength. IbAPS overexpression in sweet potato led to increased vegetative biomass and storage root yield. RNAi of IbAPS resulted in reduced vegetative biomass, accompanied with a slender stature and stunted root development. In addition to the effects on root starch metabolism, we found that IbAPS affects other storage root development-associated events, including lignification, cell expansion, transcriptional regulation, and production of the storage protein sporamins. A combinatorial analysis based on transcriptomes, as well as morphological and physiological data, revealed that IbAPS affects several pathways that determine development of vegetative tissues and storage roots. Our work establishes an important role of IbAPS in concurrent control of carbohydrate metabolism, plant growth, and storage root yield. We showed that upregulation of IbAPS results in superior sweet potato with increased green biomass, starch content, and storage root yield. The findings expand our understanding of the functions of AGP enzymes and advances our ability to increase the yield of sweet potato and, perhaps, other crop plants.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Almidón/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Raíces de Plantas/metabolismo , Fotosíntesis
8.
World J Microbiol Biotechnol ; 39(8): 209, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237168

RESUMEN

Although ADP glucose pyrophosphorylase (AGPase), with two large subunits (ls) and two small subunits (ss), is a promising knockout target for increasing the neutral lipid content, the details regarding the sequence-structure features and their distribution within metabolic system in microalgae is rather limited. Against this backdrop, a comprehensive genome-wide comparative analysis on 14 sequenced microalgal genomes was performed. For the first time the heterotetrameric structure of the enzyme and the interaction of the catalytic unit with the substrate was also studied. Novel findings of the present study includes: (i) at the DNA level, the genes controlling the ss are more conserved than those controlling the ls; the variation in both the gene groups is mainly due to exon number, exon length and exon phase distribution; (ii) at protein level, the ss genes are more conserved relative to those for ls; (III) three putative key consensus sequences 'LGGGAGTRLYPLTKNRAKPAV', 'WFQGTADAV' and 'ASMGIYVFRKD' were ubiquitously conserved in all the AGPases; (iv) molecular dynamics investigations revealed that the modeled AGPase heterotetrameric structure, from oleaginous algae Chlamydomonas reinharditii, was completely stable in real time environment; (v) The binding interfaces of catalytic unit, ssAGPase, from C. reinharditii with α-D-glucose 1-phosphate (αGP) was also analyzed. The results of the present study have provided system-based insights into the structure-function of the genes and encoded proteins, which provided clues for exploitation of variability in these genes that, could be further utilized to design site-specific mutagenic experiments for engineering of microalgal strains towards sustainable development of biofuel.


Asunto(s)
Biocombustibles , Microalgas , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Secuencia de Aminoácidos , Microalgas/genética , Microalgas/metabolismo , Secuencia de Bases
9.
Plant Sci ; 332: 111727, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37149228

RESUMEN

Rerouting the starch biosynthesis pathway in maize can generate specialty types, like sweet corn and waxy corn, with a drastically increasing global demand. Hence, a fine-tuning of starch metabolism is relevant to create diverse maize cultivars for end-use applications. Here, we characterized a new maize brittle endosperm mutant, referred to as bt1774, which exhibited decreased starch content but a dramatic increase of soluble sugars at maturity. Both endosperm and embryo development was impaired in bt1774 relative to the wild-type (WT), with a prominently arrested basal endosperm transfer layer (BETL). Map-based cloning revealed that BRITTLE ENDOSPERM2 (Bt2), which encodes a small subunit of ADP-glucose pyrophosphorylase (AGPase), is the causal gene for bt1774. A MuA2 element was found to be inserted into intron 2 of Bt2, leading to a severe decrease of its expression, in bt1774. This is in line with the irregular and loosely packed starch granules in the mutant. Transcriptome of endosperm at grain filling stage identified 1,013 differentially expressed genes in bt1774, which were notably enriched in the BETL compartment, including ZmMRP1, Miniature1, MEG1, and BETLs. Gene expression of the canonical starch biosynthesis pathway was marginally disturbed in bt1774. Combined with the residual 60 % of starch in this nearly null mutant of Bt2, this data strongly suggests that an AGPase-independent pathway compensates for starch synthesis in the endosperm. Consistent with the BETL defects, zein accumulation was impaired in bt1774. Co-expression network analysis revealed that Bt2 probably has a role in intracellular signal transduction, besides starch synthesis. Altogether, we propose that Bt2 is likely involved in carbohydrate flux and balance, thus regulating both the BETL development and the starchy endosperm filling.


Asunto(s)
Endospermo , Zea mays , Endospermo/genética , Endospermo/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo
11.
Planta ; 257(5): 97, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052727

RESUMEN

MAIN CONCLUSION: ZmSUS1 increases the amylose content of maize by regulating the expression of Shrunken2 (Sh2) and Brittle2 (Bt2) which encode the size subunits of endosperm ADP-glucose pyrophosphorylase, and Granule bound starchsynthase1 (GBSS1) and Starch synthase1 (SS1). Cereal crops accumulate starch in seeds as an energy reserve. Sucrose Synthase (SuSy) plays an important role in grain starch synthesis. In this study, ZmSUS1 was transformed into maize inbred line KN5585, and transgenic plants were obtained. Compared with the non-transgenic negative control, the content and activity of SuSy were significantly increased, the amylose content in mature seeds of transgenic maize increased by 41.1-69.2%, the total starch content increased by 5.0-13.5%, the 100-grain weight increased by 19.0-26.2% and the average diameter of starch granules increased by 10.8-17.2%. These results indicated that overexpression of ZmSUS1 can significantly improve the traits of maize seeds and obtain new lines with high amylose content. It was also found that the overexpression of ZmSUS1 may increase the amylose content by altering the expression of endosperm ADP-glucose pyrophosphorylase (AGPase) subunits Shrunken2 (Sh2) and Brittle2 (Bt2). Moreover, the ectopic expression of ZmSUS1 also affected the expression of Granule bound starch synthase1 (GBSS1) and Starch synthase1 (SS1) which encode starch synthase. This study proved the important role of ZmSUS1 in maize starch synthesis and provided a new technology strategy for improving maize starch content and yield.


Asunto(s)
Endospermo , Almidón , Endospermo/genética , Endospermo/metabolismo , Almidón/metabolismo , Zea mays/genética , Zea mays/metabolismo , Amilosa/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/metabolismo
12.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769375

RESUMEN

In this study, the influences of long-term soil drought with three levels [soil-relative water content (SRWC) (75 ± 5)%, as the control; SRWC (55 ± 5)%, mild drought; SRWC (45 ± 5)%, severe drought] were investigated on sucrose-starch metabolism in sweet potato tuberous roots (TRs) by pot experiment. Compared to the control, drought stress increased soluble sugar and sucrose content by 4-60% and 9-75%, respectively, but reduced starch accumulation by 30-66% through decreasing the starch accumulate rate in TRs. In the drought-treated TRs, the inhibition of sucrose decomposition was attributed to the reduced activities of acid invertase (AI) and alkaline invertase (AKI) and the IbA-INV3 expression, rather than sucrose synthase (SuSy), consequently leading to the increased sucrose content in TRs. In addition, starch synthesis was inhibited mainly by reducing ADP-glucose pyrophosphorylase (AGPase), granular starch synthase (GBSS) and starch branching enzyme (SBE) activities in TRs under drought stress, and AGPase was the rate-limiting enzyme. Furthermore, soil drought remarkably up-regulated the IbSWEET11, IbSWEET605, and IbSUT4 expressions in Jishu 26 TRs, while it down-regulated or had no significant differences in Xushu 32 and Ningzishu 1 TRs. These results suggested that the sucrose-loading capability in Jishu 26 TRs were stronger than that in Xushu 32 and Ningzishu 1 TRs. Moreover, IbA-INV3, IbAGPS1, IbAGPS2, IbGBSSI and IbSBEII play important roles in different drought-tolerant cultivars under drought stress.


Asunto(s)
Ipomoea batatas , Almidón , Almidón/metabolismo , Ipomoea batatas/metabolismo , Sequías , Suelo , beta-Fructofuranosidasa , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Sacarosa/metabolismo
13.
Protein Sci ; 31(7): e4376, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35762722

RESUMEN

The allosteric regulation of ADP-glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.


Asunto(s)
Agrobacterium tumefaciens , Serina , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Fructosa , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Glucógeno/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Fosfatos , Serina/genética , Sulfatos
14.
Nat Plants ; 8(5): 574-582, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35484201

RESUMEN

Many plants accumulate transitory starch reserves in their leaves during the day to buffer their carbohydrate supply against fluctuating light conditions, and to provide carbon and energy for survival at night. It is universally accepted that transitory starch is synthesized from ADP-glucose (ADPG) in the chloroplasts. However, the consensus that ADPG is made in the chloroplasts by ADPG pyrophosphorylase has been challenged by a controversial proposal that ADPG is made primarily in the cytosol, probably by sucrose synthase (SUS), and then imported into the chloroplasts. To resolve this long-standing controversy, we critically re-examined the experimental evidence that appears to conflict with the consensus pathway. We show that when precautions are taken to avoid artefactual changes during leaf sampling, Arabidopsis thaliana mutants that lack SUS activity in mesophyll cells (quadruple sus1234) or have no SUS activity (sextuple sus123456) have wild-type levels of ADPG and starch, while ADPG is 20 times lower in the pgm and adg1 mutants that are blocked in the consensus chloroplastic pathway of starch synthesis. We conclude that the ADPG needed for starch synthesis in leaves is synthesized primarily by ADPG pyrophosphorylase in the chloroplasts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Difosfato Glucosa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Glucosiltransferasas , Hojas de la Planta/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo
15.
Biomed Res Int ; 2022: 5455593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309169

RESUMEN

Background: Landoltia punctata can be used as renewable and sustainable biofuel feedstock because it can quickly accumulate high starch levels. ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step during starch biosynthesis in higher plants. The heterotetrameric structure of plant AGPases comprises pairs of large subunits (LSs) and small subunits (SSs). Although several studies have reported on the high starch accumulation capacity of duckweed, no study has explored the underlying molecular accumulation mechanisms and their linkage with AGPase. Therefore, this study focused on characterizing the roles of different L. punctate AGPases. Methodology. Expression patterns of LpAGPs were determined through comparative transcriptome analyses, followed by coexpressing their coding sequences in Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana tabacum. Results: Comparative transcriptome analyses showed that there are five AGPase subunits encoding cDNAs in L. punctata (LpAGPS1, LpAGPS2, LpAGPL1, LpAGPL2, and LpAGPL3). Nutrient starvation (distilled water treatment) significantly upregulated the expression of LpAGPS1, LpAGPL2, and LpAGPL3. Coexpression of LpAGPSs and LpAGPLs in Escherichia coli generated six heterotetramers, but only four (LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3) exhibited AGPase activities and displayed a brownish coloration upon exposure to iodine staining. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays validated the interactions between LpAGPS1/LpAGPL2, LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3. All the five LpAGPs were fusion-expressed with hGFP in Arabidopsis protoplasts, and their green fluorescence signals were uniformly localized in the chloroplast, indicating that they are plastid proteins. Conclusions: This study uncovered the cDNA sequences, structures, subunit interactions, expression patterns, and subcellular localization of AGPase. Collectively, these findings provide new insights into the molecular mechanism of fast starch accumulation in L. punctata.


Asunto(s)
Arabidopsis , Araceae , Arabidopsis/genética , Arabidopsis/metabolismo , Araceae/genética , ADN Complementario/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Almidón/metabolismo
16.
Plant Sci ; 316: 111163, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35151448

RESUMEN

The sucrose supply to bean fruits remains almost constant during seed development, and the early stages of this process are characterized by a significant amount of starch and soluble sugars (glucose, fructose and sucrose) accumulated in the pericarp. Bean fruits are photosynthetically active; however, our results indicated that starch synthesis in the pericarp was largely dependent on the photosynthetic activity of the leaves. The photosynthetic activity and the amount of the Rubisco large subunit were gradually reduced in the fruit pericarp, and a large increase in the amount of the ADP-glucose pyrophosphorylase small subunit (AGPase SS) was observed. These changes suggested differentiation of chloroplasts into amyloplasts. Pericarp chloroplasts imported glucose 1-P to support starch synthesis, and their differentiation into amyloplasts allowed the surplus sucrose to be used in the synthesis of starch, which was later degraded to meet the needs of fast-growing seeds. Starch stored in the bean fruit pericarp was not degraded in response to drought stress, but it was rapidly used under severe nutrient restriction. Together, this work indicated that starch accumulation in the pericarp of bean fruits is important to adjust the needs of developing seeds to the amount of sucrose that is provided to fruits.


Asunto(s)
Frutas , Almidón , Cloroplastos , Glucosa-1-Fosfato Adenililtransferasa , Plastidios
17.
Microb Cell Fact ; 21(1): 27, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183173

RESUMEN

BACKGROUND: The photosynthetic microorganism Chlamydomonas reinhardtii has been approved as generally recognized as safe (GRAS) recently, this can excessively produce carotenoid pigments and fatty acids. Zeaxanthin epoxidase (ZEP), which converts zeaxanthin to violaxanthin, and ADP-glucose pyrophosphorylase (AGP). These are key regulating genes for the xanthophyll and starch pathways in C. reinhardtii respectively. In this study, to produce macular pigment-enriched microalgal oil, we attempted to edit the AGP gene as an additional knock-out target in the zep mutant as a parental strain. RESULTS: Using a sequential CRISPR-Cas9 RNP-mediated knock-out method, we generated double knock-out mutants (dZAs), in which both the ZEP and AGP genes were deleted. In dZA1, lutein (2.93 ± 0.22 mg g-1 DCW: dried cell weight), zeaxanthin (3.12 ± 0.30 mg g-1 DCW), and lipids (450.09 ± 25.48 mg g-1 DCW) were highly accumulated in N-deprivation condition. Optimization of the culture medium and process made it possible to produce pigments and oil via one-step cultivation. This optimization process enabled dZAs to achieve 81% higher oil productivity along with similar macular pigment productivity, than the conventional two-step process. The hexane/isopropanol extraction method was developed for the use of macular pigment-enriched microalgal oil for food. As a result, 196 ± 20.1 mg g-1 DCW of edible microalgal oil containing 8.42 ± 0.92 mg g-1 lutein of oil and 7.69 ± 1.03 mg g-1 zeaxanthin of oil was produced. CONCLUSION: Our research showed that lipids and pigments are simultaneously induced in the dZA strain. Since dZAs are generated by introducing pre-assembled sgRNA and Cas9-protein into cells, antibiotic resistance genes or selective markers are not inserted into the genome of dZA, which is advantageous for applying dZA mutant to food. Therefore, the enriched macular pigment oil extracted from improved strains (dZAs) can be further applied to various food products and nutraceuticals.


Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Edición Génica , Pigmento Macular/biosíntesis , Microalgas/genética , Microalgas/metabolismo , Aceites/metabolismo , Sistemas CRISPR-Cas , Medios de Cultivo , Genoma , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Lípidos/biosíntesis , Luteína/análisis , Mutación , Aceites/química , Zeaxantinas/análisis
18.
Plant Mol Biol ; 108(4-5): 307-323, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35006475

RESUMEN

KEY MESSAGE: This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.


Asunto(s)
Evolución Molecular , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/fisiología , Plantas/enzimología , Regulación Alostérica , Glucosa-1-Fosfato Adenililtransferasa/genética , Modelos Moleculares , Conformación Proteica , Almidón/biosíntesis , Almidón/química
19.
Plant Mol Biol ; 108(4-5): 379-398, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34671919

RESUMEN

KEY MESSAGE: High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.


Asunto(s)
Oryza/enzimología , Almidón Sintasa/metabolismo , Almidón/metabolismo , Conformación de Carbohidratos , Cruzamientos Genéticos , Pleiotropía Genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Oryza/química , Oryza/genética , Fitomejoramiento , Semillas/anatomía & histología , Almidón/química , Almidón Sintasa/química , Almidón Sintasa/genética
20.
Biochimie ; 192: 30-37, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34560201

RESUMEN

Until recently, the cyanobacterial phylum only included oxygenic photosynthesizer members. The discovery of Melainabacteria as a group of supposed non-photosynthetic cyanobacteria asked to revisit such scenario. From metagenomic data, we were able to identify sequences encoding putative ADP-glucose pyrophosphorylases (ADP-GlcPPase) from free-living and intestinal Melainabacteria. The respective genes were de novo synthesized and over-expressed in Escherichia coli. The purified recombinant proteins from both Melainabacteria species were active as ADP-GlcPPases, exhibiting Vmax values of 2.3 (free-living) and 7.1 U/mg (intestinal). The enzymes showed similar S0.5 values (∼0.3 mM) for ATP, while the one from the intestinal source exhibited a 6-fold higher affinity toward glucose-1P. Both recombinant ADP-GlcPPases were sensitive to glucose-6P activation (A0.5 ∼0.3 mM) and Pi and ADP inhibition (I0.5 between 0.2 and 3 mM). Interestingly, the enzymes from Melainabacteria were insensitive to 3-phosphoglycerate, which is the principal activator of ADP-GlcPPases from photosynthetic cyanobacteria. As far as we know, this is the first biochemical characterization of an active enzyme from Melainabacteria. This work contributes to a better understanding of the evolution of allosteric regulation in the ADP-GlcPPase family, which is critical for synthesizing the main reserve polysaccharide in prokaryotes (glycogen) and plants (starch). In addition, our results offer further information to discussions regarding the phylogenetic position of Melainabacteria.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/enzimología , Glucosa-1-Fosfato Adenililtransferasa/química , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cianobacterias/genética , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA