Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.872
Filtrar
1.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717261

RESUMEN

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Asunto(s)
Glutatión Transferasa , Larva , Locomoción , Tenebrio , Zearalenona , Animales , Tenebrio/efectos de los fármacos , Tenebrio/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Zearalenona/toxicidad , Glutatión Transferasa/metabolismo , Locomoción/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo
2.
Chemosphere ; 358: 142162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697568

RESUMEN

This study investigates the combined impact of microplastics (MP) and Chlorpyriphos (CPF) on sea urchin larvae (Paracentrotus lividus) under the backdrop of ocean warming and acidification. While the individual toxic effects of these pollutants have been previously reported, their combined effects remain poorly understood. Two experiments were conducted using different concentrations of CPF (EC10 and EC50) based on previous studies from our group. MP were adsorbed in CPF to simulate realistic environmental conditions. Additionally, water acidification and warming protocols were implemented to mimic future ocean conditions. Sea urchin embryo toxicity tests were conducted to assess larval development under various treatment combinations of CPF, MP, ocean acidification (OA), and temperature (OW). Morphometric measurements and biochemical analyses were performed to evaluate the effects comprehensively. Results indicate that combined stressors lead to significant morphological alterations, such as increased larval width and reduced stomach volume. Furthermore, biochemical biomarkers like acetylcholinesterase (AChE), glutathione S-transferase (GST), and glutathione reductase (GRx) activities were affected, indicating oxidative stress and impaired detoxification capacity. Interestingly, while temperature increase was expected to enhance larval growth, it instead induced thermal stress, resulting in lower growth rates. This underscores the importance of considering multiple stressors in ecological assessments. Biochemical biomarkers provided early indications of stress responses, complementing traditional growth measurements. The study highlights the necessity of holistic approaches when assessing environmental impacts on marine ecosystems. Understanding interactions between pollutants and environmental stressors is crucial for effective conservation strategies. Future research should delve deeper into the impacts at lower biological levels and explore adaptive mechanisms in marine organisms facing multiple stressors. By doing so, we can better anticipate and mitigate the adverse effects of anthropogenic pollutants on marine biodiversity and ecosystem health.


Asunto(s)
Biomarcadores , Cambio Climático , Larva , Paracentrotus , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Biomarcadores/metabolismo , Paracentrotus/efectos de los fármacos , Glutatión Transferasa/metabolismo , Microplásticos/toxicidad , Acetilcolinesterasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Agua de Mar/química , Glutatión Reductasa/metabolismo
3.
Sci Total Environ ; 931: 172962, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705306

RESUMEN

Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 µg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.


Asunto(s)
Ácidos Alcanesulfónicos , Antioxidantes , Astacoidea , Fluorocarburos , Microbioma Gastrointestinal , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Astacoidea/efectos de los fármacos , Astacoidea/fisiología , Astacoidea/microbiología , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Glutatión Transferasa/metabolismo
4.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38711406

RESUMEN

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Asunto(s)
Antioxidantes , Fungicidas Industriales , Glutatión , Ratas Wistar , Especies Reactivas de Oxígeno , Tiram , Animales , Masculino , Ratas , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fungicidas Industriales/toxicidad , Tiram/toxicidad , Antioxidantes/farmacología , Boca/metabolismo , Boca/efectos de los fármacos , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Peroxidasa/metabolismo
5.
J Biochem Mol Toxicol ; 38(4): e23708, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597299

RESUMEN

Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.


Asunto(s)
Acetatos , Antioxidantes , Halomonas , Fármacos Neuroprotectores , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Pez Cebra/metabolismo , Fármacos Neuroprotectores/farmacología , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacología , Glutatión Transferasa/metabolismo
6.
PLoS One ; 19(4): e0297572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630788

RESUMEN

BACKGROUND: Currently, it is acknowledged that vitamin E, insulin sensitizers and anti-diabetic drugs are used to manage non-alcoholic fatty liver disease (NAFLD), however, these therapeutic interventions harbour adverse side effects. Pioglitazone, an anti-diabetic drug, is currently the most effective therapy to manage NAFLD. The use of natural medicines is widely embraced due to the lack of evidence of their negative side effects. Rooibos has been previously shown to decrease inflammation and oxidative stress in experimental models of diabetes, however, this is yet to be explored in a setting of NAFLD. This study was aimed at investigating the effects of an aspalathin-rich green rooibos extract (Afriplex GRTTM) against markers of hepatic oxidative stress, inflammation and apoptosis in an in vitro model of NAFLD. METHODS: Oleic acid [1 mM] was used to induce hepatic steatosis in C3A liver cells. Thereafter, the therapeutic effect of Afriplex GRTTM, with or without pioglitazone, was determined by assessing its impact on cell viability, changes in mitochondrial membrane potential, intracellular lipid accumulation and the expression of genes and proteins (ChREBP, SREBF1, FASN, IRS1, SOD2, Caspase-3, GSTZ1, IRS1 and TNF-α) that are associated with the development of NAFLD. RESULTS: Key findings showed that Afriplex GRTTM added to the medium alone or combined with pioglitazone, could effectively block hepatic lipid accumulation without inducing cytotoxicity in C3A liver cells exposed oleic acid. This positive outcome was consistent with effective regulation of genes involved in insulin signaling, as well as carbohydrate and lipid metabolism (IRS1, SREBF1 and ChREBP). Interestingly, in addition to reducing protein levels of an inflammatory marker (TNF-α), the Afriplex GRTTM could ameliorate oleic acid-induced hepatic steatotic damage by decreasing the protein expression of oxidative stress and apoptosis related markers such as GSTZ1 and caspase-3. CONCLUSION: Afriplex GRTTM reduced hepatic steatosis in oleic acid induced C3A liver cells by modulating SREBF1, ChREBP and IRS-1 gene expression. The extract may also play a role in alleviating inflammation by reducing TNF-α expression, suggesting that additional experiments are required for its development as a suitable therapeutic option against NAFLD. Importantly, further research is needed to explore its antioxidant role in this model.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Caspasa 3/metabolismo , Ácido Oléico/farmacología , Pioglitazona/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Inflamación/metabolismo , Insulina/metabolismo , Dieta Alta en Grasa , Glutatión Transferasa/metabolismo
7.
Bioorg Med Chem ; 104: 117712, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593670

RESUMEN

Glutathione-S-transferases are key to the cellular detoxification of xenobiotics and products of oxidative damage. GSTs catalyse the reaction of glutathione (GSH) with electrophiles to form stable thioether adducts. GSTK1-1 is the main GST isoform in the mitochondrial matrix, but the GSTA1-1 and GSTA4-4 isoforms are also thought to be in the mitochondria with their distribution altering in transformed cells, thus potentially providing a cancer specific target. A mitochondria-targeted version of the GST substrate 1-chloro-2,4-dinitrobenzene (CDNB), MitoCDNB, has been used to manipulate the mitochondrial GSH pool. To finesse this approach to target particular GST isoforms in the context of cancer, here we have determined the kcat/Km for the human isoforms of GSTK1-1, GSTA1-1 and GSTA4-4 with respect to GSH and CDNB. We show how the rate of the GST-catalysed reaction between GSH and CDNB analogues can be modified by both the electron withdrawing substituents, and by the position of the mitochondria-targeting triphenylphosphonium on the chlorobenzene ring to tune the activity of mitochondria-targeted substrates. These findings can now be exploited to selectively disrupt the mitochondrial GSH pools of cancer cells expressing particular GST isoforms.


Asunto(s)
Glutatión Transferasa , Mitocondrias , Humanos , Dinitrobencenos , Glutatión , Glutatión Transferasa/metabolismo , Cinética , Mitocondrias/metabolismo , Compuestos Organofosforados , Isoformas de Proteínas
8.
Biochem Biophys Res Commun ; 711: 149914, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38608434

RESUMEN

The steroid hormone ecdysone is essential for the reproduction and survival of insects. The hormone is synthesized from dietary sterols such as cholesterol, yielding ecdysone in a series of consecutive enzymatic reactions. In the insect orders Lepidoptera and Diptera a glutathione transferase called Noppera-bo (Nobo) plays an essential, but biochemically uncharacterized, role in ecdysteroid biosynthesis. The Nobo enzyme is consequently a possible target in harmful dipterans, such as disease-carrying mosquitoes. Flavonoid compounds inhibit Nobo and have larvicidal effects in the yellow-fever transmitting mosquito Aedes aegypti, but the enzyme is functionally incompletely characterized. We here report that within a set of glutathione transferase substrates the double-bond isomerase activity with 5-androsten-3,17-dione stands out with an extraordinary specific activity of 4000 µmol min-1 mg-1. We suggest that the authentic function of Nobo is catalysis of a chemically analogous ketosteroid isomerization in ecdysone biosynthesis.


Asunto(s)
Aedes , Aedes/enzimología , Aedes/metabolismo , Animales , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Ecdisona/metabolismo , Proteínas de Insectos/metabolismo , Especificidad por Sustrato , Esteroide Isomerasas/metabolismo , Esteroide Isomerasas/genética , Mosquitos Vectores/metabolismo , Cetosteroides/metabolismo , Cetosteroides/química
9.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 53-60, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678627

RESUMEN

Cobalt protoporphyrin (CoPP) is a synthetic heme analog that has been observed to reduce food intake and promote sustained weight loss. While the precise mechanisms responsible for these effects remain elusive, earlier research has hinted at the potential involvement of nitric oxide synthase in the hypothalamus. This study aimed to delve into CoPP's impact on the activities of crucial antioxidant enzymes: superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) across seven distinct brain regions (hippocampus, hypothalamus, prefrontal cortex, motor cortex, striatum, midbrain, and cerebellum), as well as in the liver and kidneys. Female Wistar rats weighing 180 to 200 grams received a single subcutaneous dose of 25 µmol/kg CoPP. After six days, brain tissue was extracted to assess the activities of antioxidant enzymes and quantify malondialdehyde levels. Our findings confirm that CoPP administration triggers the characteristic effects of decreased food intake and reduced body weight. Moreover, it led to an increase in SOD activity in the hypothalamus, a pivotal brain region associated with food intake regulation. Notably, CoPP-treated rats exhibited elevated enzymatic activity of catalase, GR, and GST in the motor cortex without concurrent signs of heightened oxidative stress. These results underscore a strong connection between the antioxidant system and food intake regulation. They also emphasize the need for further investigation into the roles of antioxidant enzymes in modulating food intake and the ensuing weight loss, using CoPP as a valuable research tool.


Asunto(s)
Antioxidantes , Hipotálamo , Corteza Motora , Protoporfirinas , Ratas Wistar , Superóxido Dismutasa , Animales , Femenino , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/enzimología , Antioxidantes/metabolismo , Protoporfirinas/farmacología , Corteza Motora/efectos de los fármacos , Corteza Motora/metabolismo , Corteza Motora/enzimología , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Ratas , Estrés Oxidativo/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Glutatión Transferasa/metabolismo , Peso Corporal/efectos de los fármacos , Glutatión Reductasa/metabolismo , Malondialdehído/metabolismo
10.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673745

RESUMEN

Age-related macular degeneration (AMD) is a chronic disease that usually develops in older people. Pathogenetic changes in this disease include anatomical and functional complexes. Harmful factors damage the retina and macula. These changes may lead to partial or total loss of vision. The disease can occur in two clinical forms: dry (the progression is slow and gentle) and exudative (wet-progression is acute and severe), which usually starts in the dry form; however, the coexistence of both forms is possible. The etiology of AMD is not fully understood, and the precise mechanisms of the development of this illness are still unknown. Extensive genetic studies have shown that AMD is a multi-factorial disease and that genetic determinants, along with external and internal environmental and metabolic-functional factors, are important risk factors. This article reviews the role of glutathione (GSH) enzymes engaged in maintaining the reduced form and polymorphism in glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase mu-1 (GSTM1) in the development of AMD. We only chose papers that confirmed the influence of the parameters on the development of AMD. Because GSH is the most important antioxidant in the eye, it is important to know the influence of the enzymes and genetic background to ensure an optimal level of glutathione concentration. Numerous studies have been conducted on how the glutathione system works till today. This paper presents the current state of knowledge about the changes in GSH, GST, GR, and GPx in AMD. GST studies clearly show increased activity in ill people, but for GPx, the results relating to activity are not so clear. Depending on the research, the results also suggest higher and lower GPx activity in patients with AMD. The analysis of polymorphisms in GST genes confirmed that mutations lead to weaker antioxidant barriers and may contribute to the development of AMD; unfortunately, a meta-analysis and some research did not confirm that connection. Unspecific results of many of the parameters that make up the glutathione system show many unknowns. It is so important to conduct further research to understand the exact mechanism of defense functions of glutathione against oxidative stress in the human eye.


Asunto(s)
Glutatión Transferasa , Glutatión , Degeneración Macular , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/genética , Degeneración Macular/patología , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Animales , Estrés Oxidativo
11.
Pestic Biochem Physiol ; 201: 105863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685216

RESUMEN

The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.


Asunto(s)
Glutatión Transferasa , Hemípteros , Resistencia a los Insecticidas , Insecticidas , Neonicotinoides , Nitrocompuestos , Hemípteros/efectos de los fármacos , Hemípteros/genética , Hemípteros/metabolismo , Animales , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Resistencia a los Insecticidas/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Interferencia de ARN , Imidazoles/farmacología , Imidazoles/metabolismo
12.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640799

RESUMEN

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Asunto(s)
Cobre , Daphnia , Dibutil Ftalato , Ácidos Ftálicos , Contaminantes Químicos del Agua , Animales , Daphnia/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Cobre/toxicidad , Dibutil Ftalato/toxicidad , Nanopartículas del Metal/toxicidad , Ésteres/toxicidad , Microbiota/efectos de los fármacos , Glutatión Transferasa/metabolismo , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Metaboloma/efectos de los fármacos , Daphnia magna
13.
Ecotoxicol Environ Saf ; 277: 116374, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677072

RESUMEN

Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.


Asunto(s)
Cloropirifos , Proteínas HSP70 de Choque Térmico , Nitrilos , Oligoquetos , Estrés Oxidativo , Piretrinas , Contaminantes del Suelo , Superóxido Dismutasa , Animales , Oligoquetos/efectos de los fármacos , Cloropirifos/toxicidad , Piretrinas/toxicidad , Nitrilos/toxicidad , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Carboxilesterasa/metabolismo , Insecticidas/toxicidad , Caspasa 3/metabolismo , Caspasa 3/genética , Calreticulina/genética , Calreticulina/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética
14.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38618721

RESUMEN

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a los Insecticidas , Piretrinas , Especies Reactivas de Oxígeno , Tephritidae , Animales , Especies Reactivas de Oxígeno/metabolismo , Piretrinas/farmacología , Piretrinas/metabolismo , Resistencia a los Insecticidas/genética , Tephritidae/microbiología , Tephritidae/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efectos de los fármacos , Lactobacillales/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efectos de los fármacos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo
15.
Biochemistry (Mosc) ; 89(3): 553-561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648772

RESUMEN

Glutathione S-transferases (GSTs) belong to the superfamily of multifunctional detoxification isoenzymes with an important role in cellular signaling. They can prevent reactive electrophilic compounds from harming the body by covalently binding identical type of moleculs to each other. GSTs can be used alone or in combination for cancer detection or diagnosis, in addition to therapeutic interventions. In recent years, indoles have become important due to their structural properties and biological activities such as antitubercular, antiulcer, anti-oxidant, and antidiabetic, as well as for the development of new anticancer agents. The current research investigated effects of some indoles with 3-carboxaldehyde structure on the GST enzyme activity. Impacts of various concentrations of indoles on the in vitro GST activity were examined. While IC50 values for the compounds ranged from 0.042 to 1.570 mM, Ki values changed between 0.018 ± 0.01 and 1.110 ± 0.15 mM. 6-Methylindole-3-carboxaldehyde (1b) exhibited the highest inhibitory effect among the indoles examined. Indole derivatives used in the study can be evaluated in further pharmacological studies due to their effects on GST activity.


Asunto(s)
Glutatión Transferasa , Indoles , Indoles/farmacología , Indoles/química , Glutatión Transferasa/metabolismo , Glutatión Transferasa/antagonistas & inhibidores , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cinética
16.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673847

RESUMEN

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa , Solanum melongena , Antocianinas/metabolismo , Antocianinas/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Frutas/genética , Frutas/metabolismo , Genoma de Planta , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum melongena/enzimología , Solanum melongena/genética , Solanum melongena/metabolismo
17.
Chemosphere ; 357: 142074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657693

RESUMEN

The objective of this study was to assess the photolysis-mediated degradation of malathion in standard and commercial formulations, and to determine the toxicity of these degraded formulations. Degradation tests were carried out with 500 µg L-1 of malathion and repeated three times. The initial and residual toxicity was assessed by using Lactuca sativa seeds for phytotoxicity, Stegomyia aegypti larvae for acute toxicity, and Stegomyia aegypti mosquitoes (cultivated from the larval stage until emergence as mosquitoes) to evaluate the biochemical markers of sublethal concentrations. For the standard formulations the photolytic process efficiently reduced the initial concentration of malathion to levels below the regulatory limits however, the formation of byproducts was revealed by chromatography, which allowed for a more complete proposal of photolytic-mediated malathion degradation route. The degraded formulations inhibited the growth of L. sativa seeds, while only the untreated formulations showed larvicidal activity and mortality. Both formulations slightly inhibited acetylcholinesterase activity in S. aegypti mosquitoes, while the standard formulation decreased and the commercial formulation increased glutathione S-transferase activity. However, there were no significant differences for superoxide dismutase, esterase-α, esterase-ß and lipid peroxidation. These findings indicate that in the absence of the target compound, the presence of byproducts can alter the enzymatic activity. In general, photolysis effectively degrade malathion lower than the legislation values; however, longer treatment times must be evaluated for the commercial formulation.


Asunto(s)
Insecticidas , Larva , Malatión , Fotólisis , Malatión/química , Malatión/toxicidad , Animales , Insecticidas/química , Insecticidas/toxicidad , Insecticidas/farmacología , Larva/efectos de los fármacos , Aedes/efectos de los fármacos , Aedes/crecimiento & desarrollo , Acetilcolinesterasa/metabolismo , Ecotoxicología , Biomarcadores/metabolismo , Lactuca/efectos de los fármacos , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Superóxido Dismutasa/metabolismo
18.
Plant Physiol Biochem ; 210: 108660, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678945

RESUMEN

The combined stress studies provide fundamental knowledge that could assist in producing multiple stress resilient crops. The fungal phytopathogen, Macrophomina phaseolina is a major limiting factor in the productivity of the crop, Vigna radiata (mungbean). This fungal species tends to flourish under hot and dry conditions. Therefore, in this study the salicylic acid (SA) mediated stress responses in contrasting mungbean cultivars (Shikha and RMG-975) exposed to combined M. phaseolina infection (F) and drought stress (D) have been elucidated. The combined stress was applied to ten days seedlings in three orders i.e. drought followed by fungal infection (DF), drought followed by fungal infection with extended water deficit (DFD) and fungal infection followed by drought stress (FD). The severity of infection was analyzed using ImageJ analysis. Besides, the concentration of SA has been correlated with the phenylpropanoid pathway products, expression of pathogenesis-related proteins (ß-1,3-glucanase and chitinase) and the specific activity of certain related enzymes (phenylalanine ammonia lyase, lipoxygenase and glutathione-S-transferase). The data revealed that the cultivar RMG-975 was relatively more tolerant than Shikha under individual stresses. However, the former became more susceptible to the infection under DFD treatment while the latter showed tolerance. Otherwise, the crown rot severity was reduced in both the cultivars under other combined treatments. The stress response analysis suggested that enhanced chitinase expression is vital for tolerance against both, the pathogen and drought stress. Also, it was noted that plants treat each stress combination differently and the role of SA was more prominently visible under individual stress conditions.


Asunto(s)
Ascomicetos , Sequías , Enfermedades de las Plantas , Ácido Salicílico , Estrés Fisiológico , Vigna , Ácido Salicílico/metabolismo , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Vigna/microbiología , Vigna/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Quitinasas/metabolismo , Lipooxigenasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Glutatión Transferasa/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
Artículo en Inglés | MEDLINE | ID: mdl-38583695

RESUMEN

Human activities have directly impacted the environment, causing significant ecological imbalances. From the different contaminants resulting from human activities, plastics are of major environmental concern. Due to their high use and consequent discharge, plastics tend to accumulate in aquatic environments. There, plastics can form smaller particles (microplastics, MPs), due to fragmentation and weathering, which are more prone to interact with aquatic organisms and cause deleterious effects, including at the basis of different food webs. This study assessed the effects of two microplastics (polyethylene terephthalate, PET; and polypropylene, PP; both of common domestic use) in the freshwater cladoceran species Daphnia magna. Toxic effects were assessed by measuring reproductive traits (first brood and total number of offspring), and activities of biomarkers involved in xenobiotic metabolism (phase I: cytochrome P-450 isoenzymes CYP1A1, 1A2 and 3A4; phase II/conjugation: glutathione S-transferases; and antioxidant defense (catalase)). Both MPs showed a potential to significantly reduce reproductive parameters in D. magna. Furthermore, PET caused a significant increase in some isoenzymes of CYP450 in acutely exposed organisms, but this effect was not observed in chronically exposed animals. Similarly, the activity of the antioxidant defense (CAT) was significantly increased in acutely exposed animals, but not in chronically exposed organisms. This pattern of effects suggests a possible mechanism of long-term adaptation to the presence of the tested MPs. In conclusion, the herein tested MPs have shown the potential to induce deleterious effects on D. magna mainly observed in terms of the reproductive outcomes. Changes at the biochemical level seems transient and are not likely to occur in long term, environmentally exposed crustaceans.


Asunto(s)
Daphnia , Microplásticos , Reproducción , Contaminantes Químicos del Agua , Animales , Daphnia/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Microplásticos/toxicidad , Agua Dulce , Biomarcadores/metabolismo , Glutatión Transferasa/metabolismo , Polipropilenos/toxicidad , Sistema Enzimático del Citocromo P-450/metabolismo , Daphnia magna
20.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598868

RESUMEN

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Poaceae , Compuestos de Sulfonilurea , Resistencia a los Herbicidas/genética , Compuestos de Sulfonilurea/farmacología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Herbicidas/farmacología , Poaceae/genética , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Imidazoles/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Simulación del Acoplamiento Molecular , Benzoatos , Pirimidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...