Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
FEBS J ; 289(2): 363-373, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33725420

RESUMEN

Cells have to deal with conditions that can cause damage to biomolecules and eventually cell death. To protect against these adverse conditions and promote recovery, cells undergo dramatic changes upon exposure to stress. This involves activation of signaling pathways, cell cycle arrest, translational reprogramming, and reorganization of the cytoplasm. Notably, many stress conditions cause a global inhibition of mRNA translation accompanied by the formation of cytoplasmic condensates called stress granules (SGs), which sequester mRNA together with RNA-binding proteins, translation initiation factors, and other components. SGs are highly conserved in eukaryotes, suggesting that they perform an important function during the stress response. Over the years, many different roles have been assigned to SGs, including translational control, mRNA storage, regulation of mRNA decay, antiviral innate immune response, and modulation of signaling pathways. Most of our understanding, however, has been deduced from correlative data based upon the composition of SGs and only recently have technological innovations allowed hypotheses for SG function to be directly tested. Here, we discuss these challenges and explore the evidence related to the function of SGs.


Asunto(s)
Gránulos Citoplasmáticos/genética , Inmunidad Innata/genética , ARN Mensajero/genética , Gránulos de Estrés/genética , Gránulos Citoplasmáticos/inmunología , Respuesta al Choque Térmico/genética , Humanos , Estrés Oxidativo/genética , Estabilidad del ARN/genética , Estabilidad del ARN/inmunología , Gránulos de Estrés/inmunología
2.
Mol Immunol ; 136: 98-109, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34098345

RESUMEN

The Poaceae family is composed of 12,000 plant species. Some of these species produce highly allergenic anemophilous pollen grains (PGs). Phleum pratense pollen grains (PPPGs) emerged as a model for studies related to grass allergy. The biochemical composition of allergenic PGs has not yet been fully described despite potential health effects of PG constituents other than allergenic proteins. This review brings together the information available in literature aiming at creating a comprehensive picture of the current knowledge about the chemical composition of allergenic PGs from timothy grass. PPPGs have an average diameter between 30-35 µm and the mass of a single PG was reported between 11 and 26 ng. The pollen cytoplasm is filled with two types of pollen cytoplasmic granules (PCGs): the starch granules and the polysaccharide particles (p-particles). Starch granules have a size between 0.6-2.5 µm with an average diameter of 1.1 µm (estimated number of 1000 granules per PG) while p-particles have a size ranging around 0.3 to 0.4 µm (estimated number between 61,000-230,000 p-particles per PG). The rupture of PG induces the release of PCGs and the dispersion of allergens in the inhalable fraction of atmospheric aerosol. PPPGs are composed of sporopollenin, sugars, polysaccharides, starch, glycoproteins (including allergens), amino-acids, lipids, flavonoids (including isorhamnetin), various elements (the more abundant being Si, Mg and Ca), phenolic compounds, phytoprostanoids, carotenoids (pigments) metals and adsorbed pollutants. PPPG contains about a hundred different proteins with molecular masses ranging from 10 to 94 kDa, with isoelectric points from 3.5-10.6. Among these proteins, allergens are classified in eleven groups from 1 to 13 with allergens from groups 1 and 5 being the major contributors to Phl p pollen allergy. Major allergen Phl p 5 was quantified in PPPGs by several studies with concentration ranging from 2.7 and 3.5 µg.mg-1 in unpolluted environment. Values for other allergens are scarce in literature; only one quantitative assessment exists for allergen groups Phl p 1, 2 and 4. The extractible lipid fraction of PPPGs is estimated between 1.7-2.2% of the total PG mass. The main chemical families of lipids reported in PPPGs are: alkanes, alkenes, alcohols, saturated and unsaturated fatty acids, di- and tri-hydroxylated fatty acids, aldehydes and sterols. Several lipid compounds with potential adjuvant effects on allergy have been specifically quantified in PPPGs: E2-like prostaglandin (PGE2), B4-like leukotriene (LTB4), unsaturated fatty acids (linoleic and linolenic acids and their hydroxylated derivatives), adenosine, vitamins and phenolic compounds. Some other biochemical characteristics such as NAD(P)H oxidase, protease activity and pollen microbiome were described in the literature. The bioaccessibility in physiological conditions has not been described for most biochemicals transported by allergenic PPPGs. There is also a considerable lack of knowledge about the potential health effects of pollen constituents other than allergens. The variability of pollen composition remains also largely unknown despite its importance for plant reproduction and allergy in an environment characterized by chemical pollution, climate change and loss of biodiversity.


Asunto(s)
Phleum/química , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Polen/química , Polen/inmunología , Alérgenos/química , Alérgenos/inmunología , Asma/inmunología , Asma/patología , Gránulos Citoplasmáticos/inmunología , Humanos , Phleum/inmunología , Rinitis Alérgica Estacional/inmunología , Rinitis Alérgica Estacional/patología
3.
Elife ; 102021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110282

RESUMEN

Nuclear factor 90 (NF90) is a novel virus sensor that serves to initiate antiviral innate immunity by triggering stress granule (SG) formation. However, the regulation of the NF90-SG pathway remains largely unclear. We found that Tim-3, an immune checkpoint inhibitor, promotes the ubiquitination and degradation of NF90 and inhibits NF90-SG-mediated antiviral immunity. Vesicular stomatitis virus (VSV) infection induces the up-regulation and activation of Tim-3 in macrophages, which in turn recruit the E3 ubiquitin ligase TRIM47 to the zinc finger domain of NF90 and initiate a proteasome-dependent degradation via K48-linked ubiquitination at Lys297. Targeted inactivation of Tim-3 enhances the NF90 downstream SG formation by selectively increasing the phosphorylation of protein kinase R and eukaryotic translation initiation factor 2α, the expression of SG markers G3BP1 and TIA-1, and protecting mice from VSV challenge. These findings provide insights into the crosstalk between Tim-3 and other receptors in antiviral innate immunity and its related clinical significance.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Inmunidad Innata/inmunología , Proteínas del Factor Nuclear 90 , Ubiquitinación/inmunología , Virosis/inmunología , Animales , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Proteínas del Factor Nuclear 90/inmunología , Proteínas del Factor Nuclear 90/metabolismo , Infecciones por Rhabdoviridae/inmunología , Vesiculovirus
4.
PLoS Pathog ; 17(2): e1008690, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635931

RESUMEN

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs exert anti-viral functions due to their involvement in protein synthesis shut off and recruitment of innate immune signaling intermediates. The largest RNA viruses, coronaviruses, impose great threat to public safety and animal health; however, the significance of SGs in coronavirus infection is largely unknown. Infectious Bronchitis Virus (IBV) is the first identified coronavirus in 1930s and has been prevalent in poultry farm for many years. In this study, we provided evidence that IBV overcomes the host antiviral response by inhibiting SGs formation via the virus-encoded endoribonuclease nsp15. By immunofluorescence analysis, we observed that IBV infection not only did not trigger SGs formation in approximately 80% of the infected cells, but also impaired the formation of SGs triggered by heat shock, sodium arsenite, or NaCl stimuli. We further demonstrated that the intrinsic endoribonuclease activity of nsp15 was responsible for the interference of SGs formation. In fact, nsp15-defective recombinant IBV (rIBV-nsp15-H238A) greatly induced the formation of SGs, along with accumulation of dsRNA and activation of PKR, whereas wild type IBV failed to do so. Consequently, infection with rIBV-nsp15-H238A strongly triggered transcription of IFN-ß which in turn greatly affected rIBV-nsp15-H238A replication. Further analysis showed that SGs function as an antiviral hub, as demonstrated by the attenuated IRF3-IFN response and increased production of IBV in SG-defective cells. Additional evidence includes the aggregation of pattern recognition receptors (PRRs) and signaling intermediates to the IBV-induced SGs. Collectively, our data demonstrate that the endoribonuclease nsp15 of IBV interferes with the formation of antiviral hub SGs by regulating the accumulation of viral dsRNA and by antagonizing the activation of PKR, eventually ensuring productive virus replication. We further demonstrated that nsp15s from PEDV, TGEV, SARS-CoV, and SARS-CoV-2 harbor the conserved function to interfere with the formation of chemically-induced SGs. Thus, we speculate that coronaviruses employ similar nsp15-mediated mechanisms to antagonize the host anti-viral SGs formation to ensure efficient virus replication.


Asunto(s)
COVID-19/virología , Gránulos Citoplasmáticos/metabolismo , Endorribonucleasas/inmunología , Endorribonucleasas/metabolismo , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , COVID-19/metabolismo , Línea Celular , Coronavirus/inmunología , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Humanos , Interferón beta/inmunología , Interferón beta/metabolismo , SARS-CoV-2/metabolismo , Transducción de Señal , Replicación Viral/fisiología
5.
Viruses ; 12(9)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899736

RESUMEN

Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.


Asunto(s)
Gránulos Citoplasmáticos/inmunología , Virosis/inmunología , Virosis/virología , Fenómenos Fisiológicos de los Virus , Animales , Gránulos Citoplasmáticos/virología , Humanos , Virosis/genética , Replicación Viral , Virus/genética , Virus/inmunología
6.
J Leukoc Biol ; 108(2): 617-626, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32421916

RESUMEN

Neutrophils are the most abundant leukocytes in circulation and are key "first responders" in the immune response to infectious and non-infectious stimuli. Unlike other immune cells, neutrophils can mount a robust response (including a change in surface markers and the production of extracellular traps and reactive oxygen species) just minutes after sensing a disturbance. It has been speculated that, in some individuals, the activation of neutrophils inadvertently leads to the generation of anti-neutrophil cytoplasmic autoantibodies (ANCA) against particular neutrophil proteins (antigens) such as myeloperoxidase (MPO) and proteinase 3 (PR3). In these individuals, continuous ANCA-antigen interactions are thought to drive persistent activation of neutrophils, chronic immune activation, and disease, most notably, small vessel vasculitis. There are significant gaps however in our understanding of the underlying mechanisms and even the pathogenicity of ANCA given that vasculitis can develop in the absence of ANCA, and that ANCA have been found in circulation in other conditions with no apparent contribution to disease. These gaps are particularly evident in the context of human studies. Herein, we review knowledge on neutrophil-derived ANCA antigens PR3 and MPO, ANCA generation, and ANCA-antigen interaction(s) that may promote immune activation and disease.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Antígenos/inmunología , Autoanticuerpos/inmunología , Autoinmunidad , Neutrófilos/inmunología , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Activación Neutrófila/inmunología , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Transporte de Proteínas
7.
Viruses ; 12(4)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244383

RESUMEN

Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.


Asunto(s)
ADP-Ribosilación/inmunología , Virus ARN/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/inmunología , Adenosina Difosfato Ribosa/metabolismo , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Humanos , Interferones/inmunología , Mutación , Poli(ADP-Ribosa) Polimerasas/inmunología , Dominios Proteicos , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
8.
Nat Immunol ; 21(2): 135-144, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932813

RESUMEN

The antimicrobial functions of neutrophils are facilitated by a defensive armamentarium of proteins stored in granules, and by the formation of neutrophil extracellular traps (NETs). However, the toxic nature of these structures poses a threat to highly vascularized tissues, such as the lungs. Here, we identified a cell-intrinsic program that modified the neutrophil proteome in the circulation and caused the progressive loss of granule content and reduction of the NET-forming capacity. This program was driven by the receptor CXCR2 and by regulators of circadian cycles. As a consequence, lungs were protected from inflammatory injury at times of day or in mouse mutants in which granule content was low. Changes in the proteome, granule content and NET formation also occurred in human neutrophils, and correlated with the incidence and severity of respiratory distress in pneumonia patients. Our findings unveil a 'disarming' strategy of neutrophils that depletes protein stores to reduce the magnitude of inflammation.


Asunto(s)
Ritmo Circadiano/inmunología , Inflamación/metabolismo , Neutrófilos/metabolismo , Neumonía/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Animales , Degranulación de la Célula/inmunología , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Humanos , Inflamación/inmunología , Ratones , Neutrófilos/inmunología , Neumonía/complicaciones , Neumonía/inmunología , Proteoma/inmunología , Proteoma/metabolismo , Síndrome de Dificultad Respiratoria/inmunología
9.
Methods Mol Biol ; 2087: 215-222, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31728994

RESUMEN

Neutrophils play a pivotal role in innate immunity and in the inflammatory reactions. Upon activation, neutrophils release several toxic molecules directed against microbial pathogens into the phagosome. These molecules include reactive oxygen species (ROS), myeloperoxidase, glucosidases, proteases, and antibacterial peptides. In resting cells these proteins and the enzyme responsible for ROS production (NOX2) are stored inside or at the membranes of different granules called azurophil or primary, specific or secondary, gelatinase or tertiary, and the secretory vesicles. Each granule has a specific density, content, and markers. Myeloperoxidase (MPO) is the azurophil granule marker, and the neutrophil-gelatinase-associated lipocalin (NGAL) is the specific granule marker. After cell activation by different stimuli, granule contents are released into the phagosome or in the extracellular space through a process called degranulation. Also during this process, membrane granules fuse with the phagosome and plasma membrane allowing expression of new markers at the cell surface. The degranulation can be assessed by measuring either the release of different proteins by neutrophils or the expression of granule markers at the plasma membrane. In this chapter, we describe the techniques used to measure degranulation of azurophil and specific neutrophil granules using different approaches such as measurement of MPO enzymatic activity and detection of MPO and NGAL proteins by SDS-PAGE and Western blot.


Asunto(s)
Degranulación de la Célula/inmunología , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Activación Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Biomarcadores , Separación Celular/métodos , Electroforesis en Gel de Poliacrilamida , Humanos , Lipocalina 2/metabolismo , Peroxidasa/metabolismo
10.
Cell Rep ; 29(13): 4496-4508.e4, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875556

RESUMEN

Mutations in the FUS gene cause familial amyotrophic lateral sclerosis (ALS-FUS). In ALS-FUS, FUS-positive inclusions are detected in the cytoplasm of neurons and glia, a condition known as FUS proteinopathy. Mutant FUS incorporates into stress granules (SGs) and can spontaneously form cytoplasmic RNA granules in cultured cells. However, it is unclear what can trigger the persistence of mutant FUS assemblies and lead to inclusion formation. Using CRISPR/Cas9 cell lines and patient fibroblasts, we find that the viral mimic dsRNA poly(I:C) or a SG-inducing virus causes the sustained presence of mutant FUS assemblies. These assemblies sequester the autophagy receptor optineurin and nucleocytoplasmic transport factors. Furthermore, an integral component of the antiviral immune response, type I interferon, promotes FUS protein accumulation by increasing FUS mRNA stability. Finally, mutant FUS-expressing cells are hypersensitive to dsRNA toxicity. Our data suggest that the antiviral immune response is a plausible second hit for FUS proteinopathy.


Asunto(s)
Esclerosis Amiotrófica Lateral/inmunología , Interacciones Huésped-Patógeno/inmunología , Neuronas Motoras/inmunología , Proteína FUS de Unión a ARN/inmunología , Virus Sincitiales Respiratorios/inmunología , Médula Espinal/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/virología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Línea Celular , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/inmunología , Cuerpos de Inclusión/virología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Neuronas Motoras/metabolismo , Neuronas Motoras/virología , Neuroglía/inmunología , Neuroglía/metabolismo , Neuroglía/virología , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/inmunología , Poli I-C/farmacología , Cultivo Primario de Células , Agregado de Proteínas/genética , Agregado de Proteínas/inmunología , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/inmunología , Proteína FUS de Unión a ARN/genética , Virus Sincitiales Respiratorios/patogenicidad , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/virología
11.
Front Immunol ; 10: 1855, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447853

RESUMEN

Cytotoxic T lymphocytes kill infected or malignant cells through the directed release of cytotoxic substances at the site of target cell contact, the immunological synapse. While genetic association studies of genes predisposing to early-onset life-threatening hemophagocytic lymphohistiocytosis has identified components of the plasma membrane fusion machinery, the identity of the vesicular components remain enigmatic. Here, we identify VAMP7 as an essential component of the vesicular fusion machinery of primary, human T cells. VAMP7 co-localizes with granule markers throughout all stages of T cell maturation and simultaneously fuses with granule markers at the IS. Knock-down of VAMP7 expression significantly decreased the killing efficiency of T cells, without diminishing early T cell receptor signaling. VAMP7 exerts its function in a SNARE complex with Syntaxin11 and SNAP-23 on the plasma membrane. The identification of the minimal fusion machinery in T cells provides a starting point for the development of potential drugs in immunotherapy.


Asunto(s)
Degranulación de la Célula/inmunología , Gránulos Citoplasmáticos/inmunología , Proteínas R-SNARE/inmunología , Linfocitos T Citotóxicos/inmunología , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Proteínas R-SNARE/metabolismo , Vesículas Secretoras/inmunología , Vesículas Secretoras/metabolismo , Linfocitos T Citotóxicos/metabolismo
12.
mBio ; 10(3)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213553

RESUMEN

The integrated stress response (ISR) is a cellular response system activated upon different types of stresses, including viral infection, to restore cellular homeostasis. However, many viruses manipulate this response for their own advantage. In this study, we investigated the association between murine norovirus (MNV) infection and the ISR and demonstrate that MNV regulates the ISR by activating and recruiting key ISR host factors. We observed that during MNV infection, there is a progressive increase in phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in the suppression of host translation, and yet MNV translation still progresses under these conditions. Interestingly, the shutoff of host translation also impacts the translation of key signaling cytokines such as beta interferon, interleukin-6, and tumor necrosis factor alpha. Our subsequent analyses revealed that the phosphorylation of eIF2α was mediated via protein kinase R (PKR), but further investigation revealed that PKR activation, phosphorylation of eIF2α, and translational arrest were uncoupled during infection. We further observed that stress granules (SGs) are not induced during MNV infection and that MNV can restrict SG nucleation and formation. We observed that MNV recruited the key SG nucleating protein G3BP1 to its replication sites and intriguingly the silencing of G3BP1 negatively impacts MNV replication. Thus, it appears that MNV utilizes G3BP1 to enhance replication but equally to prevent SG formation, suggesting an anti-MNV property of SGs. Overall, this study highlights MNV manipulation of SGs, PKR, and translational control to regulate cytokine translation and to promote viral replication.IMPORTANCE Viruses hijack host machinery and regulate cellular homeostasis to actively replicate their genome, propagate, and cause disease. In retaliation, cells possess various defense mechanisms to detect, destroy, and clear infecting viruses, as well as signal to neighboring cells to inform them of the imminent threat. In this study, we demonstrate that the murine norovirus (MNV) infection stalls host protein translation and the production of antiviral and proinflammatory cytokines. However, virus replication and protein translation still ensue. We show that MNV further prevents the formation of cytoplasmic RNA granules, called stress granules (SGs), by recruiting the key host protein G3BP1 to the MNV replication complex, a recruitment that is crucial to establishing and maintaining virus replication. Thus, MNV promotes immune evasion of the virus by altering protein translation. Together, this evasion strategy delays innate immune responses to MNV infection and accelerates disease onset.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Gránulos Citoplasmáticos/virología , ADN Helicasas/inmunología , Factor 2 Eucariótico de Iniciación/inmunología , Evasión Inmune , Proteínas de Unión a Poli-ADP-Ribosa/inmunología , ARN Helicasas/inmunología , Proteínas con Motivos de Reconocimiento de ARN/inmunología , eIF-2 Quinasa/inmunología , Animales , Gránulos Citoplasmáticos/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Ratones , Fosforilación , Biosíntesis de Proteínas , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
13.
Front Immunol ; 10: 700, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031745

RESUMEN

Phosphoinositides, together with the phospholipids phosphatidylserine and phosphatidic acid, are important components of the plasma membrane acting as second messengers that, with diacylglycerol, regulate a diverse range of signaling events converting extracellular changes into cellular responses. Local changes in their distribution and membrane charge on the inner leaflet of the plasma membrane play important roles in immune cell function. Here we discuss their distribution and regulators highlighting the importance of membrane changes across the immune synapse on the cytoskeleton and the impact on the function of cytotoxic T lymphocytes.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Sinapsis Inmunológicas/metabolismo , Fosfolípidos/metabolismo , Actinas/inmunología , Actinas/metabolismo , Cilios/inmunología , Cilios/metabolismo , Gránulos Citoplasmáticos/inmunología , Citoesqueleto/inmunología , Citoesqueleto/metabolismo , Humanos , Sinapsis Inmunológicas/inmunología , Redes y Vías Metabólicas , Fosfolípidos/inmunología , Transducción de Señal , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
14.
Methods Mol Biol ; 1884: 119-130, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30465198

RESUMEN

Cancer development is under surveillance by the immune system of the host. Tumor cells can be recognized and killed by cytotoxic lymphocytes- such as CD8+ T lymphocytes and natural killer (NK) cells-mainly through the immune secretion of lytic granules that kill target cells. This process involves the fusion of the granule membrane with the cytoplasmic membrane of the immune effector cell, resulting in surface exposure of lysosomal-associated proteins that are typically present on the lipid bilayer surrounding lytic granules, such as CD107a. Therefore, membrane expression of CD107a constitutes a marker of immune cell activation and cytotoxic degranulation. In this chapter, we detail the steps required to isolate peripheral blood mononuclear cells (PBMCs), coculture them with target tumor cell lines, and evaluate the cytotoxic immune function by means of flow cytometry evaluation of CD107a expression on the surface of NK cells.


Asunto(s)
Degranulación de la Célula/inmunología , Separación Celular/métodos , Citometría de Flujo/métodos , Proteínas de Membrana de los Lisosomas/metabolismo , Neoplasias/inmunología , Capa Leucocitaria de la Sangre/citología , Membrana Celular/inmunología , Membrana Celular/metabolismo , Separación Celular/instrumentación , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Citometría de Flujo/instrumentación , Colorantes Fluorescentes/química , Voluntarios Sanos , Humanos , Vigilancia Inmunológica , Células K562 , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Proteínas de Membrana de los Lisosomas/inmunología , Cultivo Primario de Células/instrumentación , Cultivo Primario de Células/métodos
15.
Front Immunol ; 9: 2763, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534130

RESUMEN

Eosinophils are an enigmatic white blood cell, whose immune functions are still under intense investigation. Classically, the eosinophil was considered to fulfill a protective role against parasitic infections, primarily large multicellular helminths. Although eosinophils are predominantly associated with parasite infections, evidence of a role for eosinophils in mediating immunity against bacterial, viral, and fungal infections has been recently reported. Among the mechanisms by which eosinophils are proposed to exert their protective effects is the production of DNA-based extracellular traps (ETs). Remarkably, DNA serves a role that extends beyond its biochemical function in encoding RNA and protein sequences; it is also a highly effective substance for entrapment of bacteria and other extracellular pathogens, and serves as valuable scaffolding for antimicrobial mediators such as granule proteins from immune cells. Extracellular trap formation from eosinophils appears to fulfill an important immune response against extracellular pathogens, although overproduction of traps is evident in pathologies. Here, we discuss the discovery and characterization of eosinophil extracellular traps (EETs) in response to a variety of stimuli, and suggest a role for these structures in the pathogenesis of disease as well as the establishment of autoimmunity in chronic, unresolved inflammation.


Asunto(s)
Enfermedad de Crohn/inmunología , Eosinófilos/inmunología , Trampas Extracelulares/inmunología , Helmintiasis , Hipersensibilidad Inmediata/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Animales , Quimiocinas/inmunología , Enfermedad de Crohn/patología , Gránulos Citoplasmáticos/inmunología , Eosinófilos/patología , Helmintiasis/inmunología , Helmintiasis/patología , Humanos , Hipersensibilidad Inmediata/patología , Inflamación/inmunología , Inflamación/patología , Mediadores de Inflamación/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología
16.
J Immunol ; 201(10): 2899-2909, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30282752

RESUMEN

NK cells eliminate viral-infected and malignant cells through a highly orchestrated series of cytoskeletal rearrangements, resulting in the release of cytolytic granule contents toward the target cell. Central to this process is the convergence of cytolytic granules to a common point, the microtubule-organizing center (MTOC), before delivery to the synapse. In this study, we show that vasodialator-stimulated phosphoprotein (VASP), an actin regulatory protein, localizes to the cytolytic synapse, but surprisingly, shows no impact on conjugate formation or synaptic actin accumulation despite being required for human NK cell-mediated killing. Interestingly, we also find that a pool of VASP copurifies with lytic granules and localizes with lytic granules at the MTOC. Significantly, depletion of VASP decreased lytic granule convergence without impacting MTOC polarization. Using the KHYG-1 cell line in which lytic granules are in a constitutively converged state, we find that either VASP depletion or F-actin destabilization promoted spreading of formerly converged granules. Our results demonstrate a novel requirement for VASP and actin polymerization in maintaining lytic granule convergence during NK cell-mediated killing.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Gránulos Citoplasmáticos/inmunología , Citotoxicidad Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Proteínas de Microfilamentos/inmunología , Fosfoproteínas/inmunología , Citoesqueleto de Actina/inmunología , Humanos , Centro Organizador de los Microtúbulos/inmunología
17.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29793959

RESUMEN

In response to virus-induced shutoff host protein synthesis, dynamic aggregates containing mRNA, RNA-binding proteins and translation factors termed stress granules (SGs) often accumulate within the cytoplasm. SGs typically form following phosphorylation and inactivation of the eukaryotic translation initiation factor 2α (eIF2α), a substrate of the double-stranded RNA (dsRNA)-activated kinase protein kinase R (PKR). The detection of innate immune sensors and effectors like PKR at SGs suggests a role in pathogen nucleic acid sensing. However, the functional importance of SGs in host innate responses is unclear and has primarily been examined in response to infection with select RNA viruses. During infection with the DNA virus herpes simplex virus 1 (HSV-1), the virus-encoded virion host shutoff (VHS) endoribonuclease is required to restrict interferon production, PKR activation, and SG formation, although the relationship between these activities remains incompletely understood. Here, we show that in cells infected with a VHS-deficient HSV-1 (ΔVHS) dsRNA accumulated and localized to SGs. Surprisingly, formation of dsRNA and its concentration at SGs was not required for beta interferon mRNA induction, indicating that suppression of type I interferon induction by VHS does not stem from its control of dsRNA accumulation. Instead, STING signaling downstream of cGMP-AMP synthase (cGAS)-dependent DNA sensing is required for beta interferon induction. In contrast, significantly less PKR activation is observed when SG assembly is disrupted by ISRIB, an inhibitor of phosphorylated eIF2α-mediated translation repression, or depleting SG scaffolding proteins G3BP1 or TIA1. This demonstrates that PKR activation is intimately linked to SG formation and that SGs form important hubs to potentiate PKR activation during infection.IMPORTANCE Formation of cytoplasmic stress granules that are enriched for innate immune sensors and effectors is suppressed during many viral infections. It is unclear, however, to what extent this is a side effect of viral efforts to maintain protein synthesis or intentional disruption of a hub for innate immune sensing. In this study, we utilize a herpes simplex virus 1 mutant lacking the RNA nuclease VHS which upon infection induces SGs, PKR activation, and beta interferon to address this question. We show that dsRNA is localized to SGs and that SGs can function to promote PKR activation in the context of a DNA virus infection, but we find no evidence to support their importance for interferon induction during HSV-1 infection.


Asunto(s)
Gránulos Citoplasmáticos/inmunología , Fibroblastos/inmunología , Herpesvirus Humano 1/inmunología , Inmunidad Innata , Ribonucleasas/inmunología , Transducción de Señal/inmunología , Proteínas Virales/inmunología , Células Cultivadas , Gránulos Citoplasmáticos/enzimología , Gránulos Citoplasmáticos/genética , Fibroblastos/metabolismo , Fibroblastos/virología , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Transducción de Señal/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
18.
Front Immunol ; 9: 588, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651288

RESUMEN

Specific granule deficiency (SGD) is a rare disorder characterized by abnormal neutrophils evidenced by reduced granules, absence of granule proteins, and atypical bilobed nuclei. Mutations in CCAAT/enhancer-binding protein-ε (CEBPE) are one molecular etiology of the disease. Although C/EBPε has been studied extensively, the impact of CEBPE mutations on neutrophil biology remains elusive. Here, we identified two SGD patients bearing a previously described heterozygous mutation (p.Val218Ala) in CEBPE. We took this rare opportunity to characterize SGD neutrophils in terms of granule distribution and protein content. Granules of patient neutrophils were clustered and polarized, suggesting that not only absence of specific granules but also defects affecting other granules contribute to the phenotype. Our analysis showed that remaining granules displayed mixed protein content and lacked several glycoepitopes. To further elucidate the impact of mutant CEBPE, we performed detailed proteomic analysis of SGD neutrophils. Beside an absence of several granule proteins in patient cells, we observed increased expression of members of the linker of nucleoskeleton and cytoskeleton complex (nesprin-2, vimentin, and lamin-B2), which control nuclear shape. This suggests that absence of these proteins in healthy individuals might be responsible for segmented shapes of neutrophilic nuclei. We further show that the heterozygous mutation p.Val218Ala in CEBPE causes SGD through prevention of nuclear localization of the protein product. In conclusion, we uncover that absence of nuclear C/EBPε impacts on spatiotemporal expression and subsequent distribution of several granule proteins and further on expression of proteins controlling nuclear shape.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Lactoferrina/deficiencia , Trastornos Leucocíticos/etiología , Trastornos Leucocíticos/metabolismo , Mutación , Neutrófilos/metabolismo , Proteoma , Adulto , Biomarcadores , Estudios de Casos y Controles , Niño , Preescolar , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/metabolismo , Epítopos/inmunología , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Humanos , Lactoferrina/metabolismo , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Neutrófilos/inmunología , Proteómica/métodos
19.
Immun Inflamm Dis ; 6(2): 312-321, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29642281

RESUMEN

INTRODUCTION: T cell and NK cell cytotoxicity can be mediated via the perforin/granzyme system and Fas Ligand (FasL, CD178). FasL is synthesized as a type II transmembrane protein that binds its cognate receptor Fas (CD95). Membrane-bound FasL is expressed on the plasma membrane of activated lymphocytes and is the main form of FasL with cytotoxic activity, but whether FasL is delivered to the immune synapse along with granzyme and perforin-containing granules is unclear. METHODS: We stably expressed FasL-fluorescent fusion proteins into human NK cells and examined the localization of FasL relative to other intracellular markers by confocal and immunoelectron microscopy, and examined the trafficking of FasL during formation of immune synapses with HLA-deficient B cells. RESULTS: FasL co-localized with CD63 more strongly than perforin or Lamp1+ in cytolytic granules. Electron microscopy revealed that FasL is enriched on intraluminal vesicles (ILVs) adjacent to the dense-core within cytolytic granules. In NK cells forming immune synapses with HLA-deficient B cells, a portion of FasL-containing granules re-localize toward the immune synapse, while a distinct pool of FasL remains at the distal pole of the cell. CONCLUSIONS: Localization of FasL to intra-luminal vesicles within cytolytic granules facilitates FasL trafficking to immune synapses and cytotoxic function in NK cells.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteína Ligando Fas/metabolismo , Sinapsis Inmunológicas/metabolismo , Células Asesinas Naturales/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/ultraestructura , Proteína Ligando Fas/inmunología , Proteína Ligando Fas/ultraestructura , Granzimas/metabolismo , Antígenos HLA/metabolismo , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/ultraestructura , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/ultraestructura , Microscopía Electrónica , Perforina/metabolismo , Tetraspanina 30/inmunología , Tetraspanina 30/metabolismo
20.
Nat Commun ; 9(1): 751, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467448

RESUMEN

Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that ß-1,3-glucan, a component of the fungal cell wall, binds to NKp30. We further demonstrate that ß-1,3-glucan stimulates granule convergence and polarization, as shown by live cell imaging. Through Src Family Kinase signaling, ß-1,3-glucan increases expression and clustering of NKp30 at the microbial and NK cell synapse to induce perforin release for fungal cytotoxicity. Rather than blocking the interaction between fungi and NK cells, soluble ß-1,3-glucan enhances fungal killing and restores defective cryptococcal killing by NK cells from HIV-positive individuals, implicating ß-1,3-glucan to be both an activating ligand and a soluble PAMP that shapes NK cell host immunity.


Asunto(s)
Candida albicans/inmunología , Cryptococcus neoformans/inmunología , Células Asesinas Naturales/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Línea Celular , Polaridad Celular/inmunología , Gránulos Citoplasmáticos/inmunología , Citotoxicidad Inmunológica , Infecciones por VIH/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Sinapsis Inmunológicas/inmunología , Ligandos , Microscopía de Fuerza Atómica , Receptor 3 Gatillante de la Citotoxidad Natural/inmunología , Perforina/inmunología , Proteínas Recombinantes/inmunología , Solubilidad , beta-Glucanos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...