Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pediatr Gastroenterol Nutr ; 78(2): 313-319, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374566

RESUMEN

OBJECTIVES: Eosinophilic esophagitis (EoE) is an immune-mediated antigen-triggered inflammatory disease of the esophagus. Our aim was to investigate inflammatory responses by an ex vivo biopsy provocation-based method, stimulating biopsies with milk, wheat, and egg extracts. METHODS: An experimental study was conducted on esophageal biopsies from children who underwent esophagogastroduodenoscopy. Supernatants were collected before and after stimulation of the biopsies with food extracts and analyzed for 45 different inflammatory markers. Biopsies were also stained for histological analyzes. RESULTS: Study subjects included 13 controls, 9 active EoE, and 4 EoE in remission, median age 12 years. Of the 45 markers analyzed, three had significant differences between controls and patients with active EoE, Granzyme B, (GzmB), IL-1ra, and CXCL8 (p < .05). Levels of GzmB were higher, and levels of IL-1ra were lower in patients with active EoE compared with controls and EoE in remission both at baseline and after food extract stimulation. CXCL8 increased in active EoE compared with controls only after stimulation. The number of histologically detected GzmB-positive cells were significantly higher in patients with active EoE in contrast to control and EoE remission (p < .05). CONCLUSIONS: The levels of the barrier-damaging protease GzmB were higher in the supernatant both before and after stimulation with food extract ex vivo in patients with active EoE. GzmB was also observed histologically in biopsies from patients with active EoE. The presence of elevated serine protease GzmB in esophageal mucosa of children with active EoE suggests a role in the pathogenesis of this disorder.


Asunto(s)
Esofagitis Eosinofílica , Granzimas , Niño , Humanos , Alérgenos , Biopsia/efectos adversos , Esofagitis Eosinofílica/diagnóstico , Esofagitis Eosinofílica/patología , Granzimas/química , Granzimas/metabolismo , Proteína Antagonista del Receptor de Interleucina 1
2.
PLoS One ; 16(12): e0262198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972191

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with a 5% 5-year survival rate for metastatic disease, yet with limited therapeutic advancements due to insufficient understanding of and inability to accurately capture high-risk CRC patients who are most likely to recur. We aimed to improve high-risk classification by identifying biological pathways associated with outcome in adjuvant stage II/III CRC. METHODS AND FINDINGS: We included 1062 patients with stage III or high-risk stage II colon carcinoma from the prospective three-arm randomized phase 3 AVANT trial, and performed expression profiling to identify a prognostic signature. Data from validation cohort GSE39582, The Cancer Genome Atlas, and cell lines were used to further validate the prognostic biology. Our retrospective analysis of the adjuvant AVANT trial uncovered a prognostic signature capturing three biological functions-stromal, proliferative and immune-that outperformed the Consensus Molecular Subtypes (CMS) and recurrence prediction signatures like Oncotype Dx in an independent cohort. Importantly, within the immune component, high granzyme B (GZMB) expression had a significant prognostic impact while other individual T-effector genes were less or not prognostic. In addition, we found GZMB to be endogenously expressed in CMS2 tumor cells and to be prognostic in a T cell independent fashion. A limitation of our study is that these results, although robust and derived from a large dataset, still need to be clinically validated in a prospective study. CONCLUSIONS: This work furthers our understanding of the underlying biology that propagates stage II/III CRC disease progression and provides scientific rationale for future high-risk stratification and targeted treatment evaluation in biomarker defined subpopulations of resectable high-risk CRC. Our results also shed light on an alternative GZMB source with context-specific implications on the disease's unique biology.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Granzimas/fisiología , Transcriptoma , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Neoplasias Colorrectales/mortalidad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Granzimas/química , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Estudios Retrospectivos , Riesgo , Linfocitos T/metabolismo , Resultado del Tratamiento
3.
Nat Nanotechnol ; 16(10): 1130-1140, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34385682

RESUMEN

Despite the enormous therapeutic potential of immune checkpoint blockade (ICB), it benefits only a small subset of patients. Some chemotherapeutics can switch 'immune-cold' tumours to 'immune-hot' to synergize with ICB. However, safe and universal therapeutic platforms implementing such immune effects remain scarce. We demonstrate that sphingomyelin-derived camptothecin nanovesicles (camptothesomes) elicit potent granzyme-B- and perforin-mediated cytotoxic T lymphocyte (CTL) responses, potentiating PD-L1/PD-1 co-blockade to eradicate subcutaneous MC38 adenocarcinoma with developed memory immunity. In addition, camptothesomes improve the pharmacokinetics and lactone stability of camptothecin, avoid systemic toxicities, penetrate deeply into the tumour and outperform the antitumour efficacy of Onivyde. Camptothesome co-load the indoleamine 2,3-dioxygenase inhibitor indoximod into its interior using the lipid-bilayer-crossing capability of the immunogenic cell death inducer doxorubicin, eliminating clinically relevant advanced orthotopic CT26-Luc tumours and late-stage B16-F10-Luc2 melanoma, and achieving complete metastasis remission when combined with ICB and folate targeting. The sphingomyelin-derived nanotherapeutic platform and doxorubicin-enabled transmembrane transporting technology are generalizable to various therapeutics, paving the way for transformation of the cancer immunochemotherapy paradigm.


Asunto(s)
Camptotecina/farmacología , Quimioterapia , Inmunoterapia , Nanopartículas/química , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Camptotecina/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Modelos Animales de Enfermedad , Granzimas/química , Granzimas/farmacología , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/farmacología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Perforina/química , Perforina/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Esfingomielinas/química , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología
4.
Adv Mater ; 33(33): e2101110, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34235790

RESUMEN

Although T-cell therapy is a remarkable breakthrough in cancer immunotherapy, the therapeutic efficacy is limited for solid tumors. A major cause of the low efficacy is T-cell exhaustion by immunosuppressive mechanisms of solid tumors, which are mainly mediated by programmed death-ligand 1 (PD-L1) and transforming growth factor-beta (TGF-ß). Herein, T-cell-derived nanovesicles (TCNVs) produced by the serial extrusion of cytotoxic T cells through membranes with micro-/nanosized pores that inhibit T-cell exhaustion and exhibit antitumoral activity maintained in the immunosuppressive tumor microenvironment (TME) are presented. TCNVs, which have programmed cell death protein 1 and TGF-ß receptor on their surface, block PD-L1 on cancer cells and scavenge TGF-ß in the immunosuppressive TME, thereby preventing cytotoxic-T-cell exhaustion. In addition, TCNVs directly kill cancer cells via granzyme B delivery. TCNVs successfully suppress tumor growth in syngeneic-solid-tumor-bearing mice. Taken together, TCNV offers an effective cancer immunotherapy strategy to overcome the tumor's immunosuppressive mechanisms.


Asunto(s)
Granzimas/química , Inmunosupresores/química , Inmunoterapia/métodos , Nanocápsulas/química , Neoplasias/terapia , Linfocitos T Citotóxicos/química , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Granzimas/metabolismo , Humanos , Inmunosupresores/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos
5.
Cancer Immunol Res ; 9(1): 2-7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33397791

RESUMEN

The impressive success of current cancer immunotherapy in some patients but lack of effectiveness in most patients suggests that additional strategies to promote antitumor immunity are needed. How cancer cells die, whether spontaneously or in response to therapeutic intervention, has a profound effect on the type of immune response mobilized. Here, we review research that highlights a previously unappreciated role of gasdermin-mediated inflammatory death (pyroptosis) to promote antitumor immunity and identifies gasdermin E as a tumor suppressor. Immune elimination of tumor cells by natural killer cells and cytotoxic T lymphocytes, which is the final key event in antitumor immunity, was previously thought to be noninflammatory. The research shows that gasdermin expression in tumor cells converts immune cell-mediated killing to inflammatory pyroptosis when cell death-inducing granzymes directly cleave and activate gasdermins. Granzyme B cleaves gasdermin E, and granzyme A cleaves gasdermin B. The data suggest the potential to harness pyroptosis in the tumor to ignite an effective immune response to immunologically cold tumors. Gasdermin expression also augments toxicity of cancer therapy-gasdermin E expression by B-cell leukemias and lymphomas is a root cause of chimeric antigen receptor (CAR) T-cell cytokine storm, and its expression in normal tissues promotes the toxicity of chemotherapeutic drugs. Even though our knowledge about the role of pyroptosis in cancer is growing, there is still a lot to learn-what activates it, how it is regulated, when it is beneficial, and how it can be harnessed therapeutically to improve cancer immunotherapy or reduce therapy-related toxicity.


Asunto(s)
Granzimas/metabolismo , Células Asesinas Naturales/inmunología , Piroptosis , Linfocitos T Citotóxicos/inmunología , Animales , Granzimas/química , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Receptores Quiméricos de Antígenos/metabolismo , Receptores de Estrógenos/metabolismo
6.
Angew Chem Int Ed Engl ; 60(11): 5699-5703, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33300671

RESUMEN

Natural killer (NK) cells are immune cells that can kill certain types of cancer cells. Adoptive transfer of NK cells represents a promising immunotherapy for malignant tumours; however, there is a lack of methods to validate anti-tumour activity of NK cells in vivo. Herein, we report a new chemiluminescent probe to image in situ the granzyme B-mediated killing activity of NK cells against cancer cells. We have optimised a granzyme B-specific construct using an activatable phenoxydioxetane reporter so that enzymatic cleavage of the probe results in bright chemiluminescence. The probe shows high selectivity for active granzyme B over other proteases and higher signal-to-noise ratios than commercial fluorophores. Finally, we demonstrate that the probe can detect NK cell activity in mouse models, being the first chemiluminescent probe for in vivo imaging of NK cell activity in live tumours.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Granzimas/metabolismo , Células Asesinas Naturales/metabolismo , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/química , Granzimas/química , Humanos , Células Asesinas Naturales/patología , Mediciones Luminiscentes , Ratones , Estructura Molecular , Neoplasias/diagnóstico por imagen , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Imagen Óptica
7.
Molecules ; 25(13)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32646038

RESUMEN

The human immune system is a complex system which protects against invaders and maintains tissue homeostasis. It is broadly divided into the innate and adaptive branches. Granzyme B is serine protease that plays an important role in both and can serve as a biomarker for cellular activation. Because of this, a granzyme B PET agent (GZP) has recently been developed and has been shown to be able to monitor response to immunotherapy. Here, we evaluated the utility of granzyme B PET imaging to assess the innate immune response. We subcutaneously administered LPS to mice to induce inflammation and performed granzyme B PET imaging after 24 and 120 h. We dissected out tissue in the region of injection and performed granzyme B immunofluorescence (IF) to confirm specificity of the GZP radiotracer. Granzyme B PET imaging demonstrated increased uptake in the region of LPS injection after 24 h, which normalized at 120 h. Granzyme B immunofluorescence showed specific staining in tissue from the 24 h time point compared to the PBS-injected control. These findings support the use of granzyme B PET for imaging innate immunity. In certain clinical contexts, the use of GZP PET imaging may be superior to currently available agents, and we therefore suggest further preclinical studies with the ultimate goal of translation to clinical use.


Asunto(s)
Granzimas , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos , Tomografía de Emisión de Positrones , Animales , Granzimas/química , Granzimas/farmacología , Inflamación/inducido químicamente , Inflamación/diagnóstico por imagen , Inflamación/inmunología , Ratones , Ratones Mutantes
8.
Elife ; 92020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32696761

RESUMEN

Understanding T cell function in vivo is of key importance for basic and translational immunology alike. To study T cells in vivo, we developed a new knock-in mouse line, which expresses a fusion protein of granzyme B, a key component of cytotoxic granules involved in T cell-mediated target cell-killing, and monomeric teal fluorescent protein from the endogenous Gzmb locus. Homozygous knock-ins, which are viable and fertile, have cytotoxic T lymphocytes with endogeneously fluorescent cytotoxic granules but wild-type-like killing capacity. Expression of the fluorescent fusion protein allows quantitative analyses of cytotoxic granule maturation, transport and fusion in vitro with super-resolution imaging techniques, and two-photon microscopy in living knock-ins enables the visualization of tissue rejection through individual target cell-killing events in vivo. Thus, the new mouse line is an ideal tool to study cytotoxic T lymphocyte biology and to optimize personalized immunotherapy in cancer treatment.


Cytotoxic, or killer, T cells are a key part of the immune system. They carry a lethal mixture of toxic chemicals, stored in packages called cytotoxic granules. Killer T cells inject the contents of these granules into infected, cancerous or otherwise foreign cells, forcing them to safely self-destruct. In test tubes, T cells are highly efficient serial killers, moving from one infected cell to the next at high speed. But, inside the body, their killing rate slows down. Researchers think that this has something to do with how killer T cells interact with other immune cells, but the details remain unclear. To get to grips with how killer T cells work in their natural environment, researchers need a way to follow them inside the body. One approach could be to use genetic engineering to attach a fluorescent tag to a protein found inside killer T cells. That tag then acts as a beacon, lighting the cells up and allowing researchers to track their movements. Tagging a protein inside the cytotoxic granules would allow close monitoring of T cells as they encounter, recognize and kill their targets. But fluorescent tags are bulky, and they can stop certain proteins from working as they should. To find out whether it is possible to track killer T cells with fluorescent tags, Chitirala, Chang et al. developed a new type of genetically modified mouse. The modification added a teal-colored tag to a protein inside the granules of the killer T cells. Chitirala, Chang et al. then used a combination of microscopy techniques inside and outside of the body to find out if the T cells still worked. This analysis showed that, not only were the tagged T cells able to kill diseased cells as normal, the tags made it possible to watch it happening in real time. Super-resolution microscopy outside of the body allowed Chitirala, Chang et al. to watch the killer T cells release their toxic granule content. It was also possible to follow individual T cells as they moved into, and destroyed, foreign tissue that had been transplanted inside the mice. These new mice provide a tool to understand how killer T cells really work. They could allow study not only of the cells themselves, but also their interactions with other immune cells inside the body. This could help to answer open questions in T cell research, such as why T cells seem to be so much more efficient at killing in test tubes than they are inside the body. Understanding this better could support the development of new treatments for viruses and cancer.


Asunto(s)
Granzimas/química , Proteínas Fluorescentes Verdes/química , Ratones Transgénicos/fisiología , Linfocitos T Citotóxicos/fisiología , Animales , Ratones
9.
J Biol Chem ; 295(28): 9567-9582, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32439802

RESUMEN

Natural killer (NK) cells are key innate immunity effectors that combat viral infections and control several cancer types. For their immune function, human NK cells rely largely on five different cytotoxic proteases, called granzymes (A/B/H/K/M). Granzyme B (GrB) initiates at least three distinct cell death pathways, but key aspects of its function remain unexplored because selective probes that detect its activity are currently lacking. In this study, we used a set of unnatural amino acids to fully map the substrate preferences of GrB, demonstrating previously unknown GrB substrate preferences. We then used these preferences to design substrate-based inhibitors and a GrB-activatable activity-based fluorogenic probe. We show that our GrB probes do not significantly react with caspases, making them ideal for in-depth analyses of GrB localization and function in cells. Using our quenched fluorescence substrate, we observed GrB within the cytotoxic granules of human YT cells. When used as cytotoxic effectors, YT cells loaded with GrB attacked MDA-MB-231 target cells, and active GrB influenced its target cell-killing efficiency. In summary, we have developed a set of molecular tools for investigating GrB function in NK cells and demonstrate noninvasive visual detection of GrB with an enzyme-activated fluorescent substrate.


Asunto(s)
Colorantes Fluorescentes/química , Granzimas , Imagen Óptica , Péptidos/química , Linfocitos T/enzimología , Línea Celular Tumoral , Granzimas/química , Granzimas/metabolismo , Humanos
10.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140457, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32473350

RESUMEN

We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme BP (GzmBP/P) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmBW/W) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmBP and GzmBW activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly. Consequently, neither alloform initiated mitochondrial outer membrane permeabilization, or was blocked by Bcl-2, Bcl-XL or co-expression of MCMV proteins M38.5/M41.1, which together stabilize mitochondria by sequestering Bak/Bax. Remarkably, mass spectrometric analysis of proteins from MCMV-infected primary mouse embryonic fibroblasts identified 13 cleavage sites in nine viral proteins (M18, M25, M28, M45, M80, M98, M102, M155, M164) that were cleaved >20-fold more efficiently by either GzmBP or GzmBW. Notably, M18, M28, M45, M80, M98, M102 and M164 were cleaved 20- >100-fold more efficiently by GzmBW, and so, would persist in infected cells targeted by CTLs from GzmBP/P mice. Conversely, M155 was cleaved >100-fold more efficiently by GzmBP, and would persist in cells targeted by CTLs of GzmBW/W mice. M25 was cleaved efficiently by both proteases, but at different sites. We conclude that different susceptibility to MCMV does not result from skewed endogenous cell death pathways, but rather, to as yet uncharacterised MCMV-intrinsic pathways that ultimately inhibit granzyme B-induced cell death.


Asunto(s)
Granzimas/química , Granzimas/metabolismo , Muromegalovirus/inmunología , Péptidos/metabolismo , Animales , Apoptosis , Caspasas/metabolismo , Muerte Celular , Línea Celular , Modelos Animales de Enfermedad , Femenino , Granzimas/genética , Infecciones por Herpesviridae/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Péptidos/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especificidad por Sustrato , Linfocitos T Citotóxicos/inmunología , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Proteína bcl-X/metabolismo
11.
Science ; 368(6494)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32299851

RESUMEN

Cytotoxic lymphocyte-mediated immunity relies on granzymes. Granzymes are thought to kill target cells by inducing apoptosis, although the underlying mechanisms are not fully understood. Here, we report that natural killer cells and cytotoxic T lymphocytes kill gasdermin B (GSDMB)-positive cells through pyroptosis, a form of proinflammatory cell death executed by the gasdermin family of pore-forming proteins. Killing results from the cleavage of GSDMB by lymphocyte-derived granzyme A (GZMA), which unleashes its pore-forming activity. Interferon-γ (IFN-γ) up-regulates GSDMB expression and promotes pyroptosis. GSDMB is highly expressed in certain tissues, particularly digestive tract epithelia, including derived tumors. Introducing GZMA-cleavable GSDMB into mouse cancer cells promotes tumor clearance in mice. This study establishes gasdermin-mediated pyroptosis as a cytotoxic lymphocyte-killing mechanism, which may enhance antitumor immunity.


Asunto(s)
Granzimas/metabolismo , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis/inmunología , Linfocitos T Citotóxicos/enzimología , Animales , Granzimas/química , Células HEK293 , Humanos , Interferón gamma , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Dominios Proteicos , Proteolisis
12.
J Med Chem ; 63(6): 3359-3369, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32142286

RESUMEN

Cytotoxic T-lymphocytes (CTLs) and natural killer cells (NKs) kill compromised cells to defend against tumor and viral infections. Both effector cell types use multiple strategies to induce target cell death including Fas/CD95 activation and the release of perforin and a group of lymphocyte granule serine proteases called granzymes. Granzymes have relatively broad and overlapping substrate specificities and may hydrolyze a wide range of peptidic epitopes; it is therefore challenging to identify their natural and synthetic substrates and to distinguish their localization and functions. Here, we present a specific and potent substrate, an inhibitor, and an activity-based probe of Granzyme A (GrA) that can be used to follow functional GrA in cells.


Asunto(s)
Cumarinas/farmacología , Colorantes Fluorescentes/farmacología , Granzimas/análisis , Oligopéptidos/farmacología , Inhibidores de Serina Proteinasa/farmacología , Línea Celular Tumoral , Cumarinas/síntesis química , Cumarinas/toxicidad , Diseño de Fármacos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/toxicidad , Granzimas/química , Humanos , Oligopéptidos/síntesis química , Oligopéptidos/toxicidad , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/toxicidad , Especificidad por Sustrato
13.
ACS Appl Mater Interfaces ; 12(13): 15823-15829, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32150373

RESUMEN

Intracellular delivery is essential to therapeutic applications such as genome engineering and disease diagnosis. Current methods lack simple, noninvasive strategies and are often hindered by long incubation time or high toxicity. Hydrodynamic approaches offer rapid and controllable delivery of small molecules, but thus far have not been demonstrated for delivering functional proteins. In this work, we developed a robust hydrodynamic approach based on gigahertz (GHz) acoustics to achieve rapid and noninvasive cytosolic delivery of biologically active proteins. With this method, GHz-based acoustic devices trigger oscillations through a liquid medium (acoustic streaming), generating shear stress on the cell membrane and inducing transient nanoporation. This mechanical effect enhances membrane permeability and enables cytosolic access to cationic proteins without disturbing their bioactivity. We evaluated the versatility of this approach through the delivery of cationic fluorescent proteins to a range of cell lines, all of which displayed equally efficient delivery speed (≤20 min). Delivery of multiple enzymatically active proteins with functionality related to apoptosis or genetic recombination further demonstrated the relevance of this method.


Asunto(s)
Citosol/metabolismo , Proteínas/metabolismo , Ondas de Radio , Acústica , Animales , Línea Celular , Supervivencia Celular , Citocromos c/química , Citocromos c/metabolismo , Granzimas/química , Granzimas/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Iones/química , Ratones , Proteínas/química
14.
Mol Biol Rep ; 46(3): 3129-3140, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30937652

RESUMEN

As one of the most prevalent malignancies, breast cancer still remains a significant risk for public health. Common therapeutic strategies include invasive surgery, chemotherapy and anti-herceptin antibodies. Adverse effects, drug resistance and low efficacy of current therapies necessitates the emergence of more effective platforms. Naturally released by the immune system, granzyme B activates multiple pro-apoptotic pathways by cleaving critical substrates. Bacterial cupredoxin, azurin, selectively targets cancer cells via a p53-dependent pathway. Fused by a linker, GrB-Azurin fusion protein was overexpressed in HEK293T cells, and purified by metal chromatography. SDS-PAGE, Western blotting and ELISA were performed to confirm successful expression, purification and analyze binding properties of the fusion protein. After treatment of various breast cancer cell lines with increasing concentrations of GrB-Azurin, quantitative real-time RT-PCR was used to measure relative expression of p21, Fas and DR5 pro-apoptotic genes. The results of DNA fragmentation and WST-1 cell viability assays indicated significant apoptosis induction in MDA-MB-231, MCF7 and SK-BR-3 cells, while insignificant cytotoxicity was detected on MCF 10A normal breast cells. Herein, we report the development of a novel biotherapeutic against breast cancer. Selective effectiveness of GrB-Azurin fusion protein on different breast cancer cells highlighted the potential of the designed construct as a candidate anti-cancer biodrug.


Asunto(s)
Azurina/genética , Granzimas/genética , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Azurina/química , Azurina/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Activación Enzimática , Femenino , Expresión Génica , Orden Génico , Vectores Genéticos/genética , Granzimas/química , Granzimas/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transfección
15.
Immunogenetics ; 70(9): 585-597, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29947943

RESUMEN

Granzymes are a family of serine proteases found in the lytic granules of cytotoxic T lymphocytes and natural killer (NK) cells, which are involved in killing of susceptible target cells. Most information on granzymes and their enzymatic specificities derive from studies in humans and mice. Although granzymes shared by both species show a high level of conservation, the complement of granzyme genes differs between the species. The aim of this study was to identify granzyme genes expressed in cattle, determine their genomic locations and analyse their sequences to predict likely functional specificities. Orthologues of the five granzyme genes found in humans (A, B, H, K and M) were identified, as well a novel gene designated granzyme O, most closely related to granzyme A. An orthologue of granzyme O was found in pigs and a non-function version was detected in the human genome. Use of specific PCRs demonstrated that all of these genes, including granzyme O, are expressed in activated subsets of bovine lymphocytes, with particularly high levels in CD8 T cells. Consistent with findings in humans and mice, the granzyme-encoding genes were located on three distinct genomic loci, which correspond to different proteolytic enzymatic activities, namely trypsin-like, chymotrypsin-like and metase-like. Analysis of amino acid sequences indicated that the granzyme proteins have broadly similar enzymatic specificities to their human and murine counterparts but indicated that granzyme B has a different secondary specificity. These findings provide the basis for further work to examine their role in the cytotoxic activity of bovine CD8 T cells.


Asunto(s)
Granzimas/genética , Linfocitos/enzimología , Filogenia , Animales , Bovinos , Mapeo Cromosómico , Granzimas/química , Granzimas/metabolismo , Activación de Linfocitos , Anotación de Secuencia Molecular , Perforina/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tripsina/genética
16.
Cancer Prev Res (Phila) ; 10(12): 684-693, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29018057

RESUMEN

Oral squamous cell carcinoma (OSCC) is preceded by progressive oral premalignant lesions (OPL). Therefore, therapeutic strategies that prevent malignant progression of OPLs are expected to reduce the incidence of OSCC development. Immune checkpoint inhibitors that target the interaction of programmed death receptor 1 (PD-1) on T cells with the PD-1 ligand PD-L1 on cancer cells have been shown to extend the survival of patients with advanced OSCC. Here, we used the 4-nitroquinoline-1-oxide (4-NQO) mouse model of oral carcinogenesis to test the hypothesis that PD-1 blockade may control the progression of OPLs. Mice were exposed to 4-NQO in their drinking water and then randomly assigned to two treatment groups that received either a blocking antibody for PD-1 or a control IgG. We found that anti-PD-1 treatment significantly reduced the number of oral lesions that developed in these mice and prevented malignant progression. Low-grade dysplastic lesions responded to PD-1 blockade with a significant increase in the recruitment of CD8+ and CD4+ T cells and the accumulation of CTLA-4+ T cells in their microenvironment. Notably, PD-1 inhibition was accompanied by induction of IFNγ, STAT1 activation and the production of the T-cell effector granzyme B in infiltrating cells, and by the induction of apoptosis in the epithelial cells of the oral lesions, suggesting that T-cell activation mediates the immunopreventive effects of anti-PD-1. These results support the potential clinical benefit of PD-1 immune checkpoint blockade to prevent OSCC development and progression and suggest that CTLA-4 inhibitors may enhance the preventive effects of anti-PD-1. Cancer Prev Res; 10(12); 684-93. ©2017 AACRSee related editorial by Gutkind et al., p. 681.


Asunto(s)
Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/prevención & control , Lesiones Precancerosas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , 4-Nitroquinolina-1-Óxido/química , Animales , Anticuerpos Monoclonales/química , Apoptosis , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Carcinógenos , Progresión de la Enfermedad , Femenino , Granzimas/química , Inmunoglobulina G/química , Inmunohistoquímica , Interferón gamma/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Boca/inducido químicamente , Quinolonas/química , Factor de Transcripción STAT1/metabolismo
17.
J Proteome Res ; 16(1): 355-365, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27700100

RESUMEN

Proteolysis of autoantigens can alter normal MHC class II antigen processing and has been implicated in the induction of autoimmune diseases. Many autoantigens are substrates for the protease granzyme B (GrB), but the mechanistic significance of this association is unknown. Peptidylarginine deiminase 4 (PAD4) is a frequent target of autoantibodies in patients with rheumatoid arthritis (RA) and a substrate for GrB. RA is strongly associated with specific MHC class II alleles, and elevated levels of GrB and PAD4 are found in the joints of RA patients, suggesting that GrB may alter the presentation of PAD4 by RA-associated class II alleles. In this study, complementary proteomic and immunologic approaches were utilized to define the effects of GrB cleavage on the structure, processing, and immunogenicity of PAD4. Hydrogen-deuterium exchange and a cell-free MHC class II antigen processing system revealed that proteolysis of PAD4 by GrB induced discrete structural changes in PAD4 that promoted enhanced presentation of several immunogenic peptides capable of stimulating PAD4-specific CD4+ T cells from patients with RA. This work demonstrates the existence of PAD4-specific T cells in patients with RA and supports a mechanistic role for GrB in enhancing the presentation of autoantigenic CD4+ T cell epitopes.


Asunto(s)
Artritis Reumatoide/inmunología , Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Granzimas/inmunología , Hidrolasas/inmunología , Anciano , Secuencia de Aminoácidos , Presentación de Antígeno , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Autoanticuerpos/biosíntesis , Autoantígenos/química , Autoantígenos/genética , Sitios de Unión , Linfocitos T CD4-Positivos/patología , Estudios de Casos y Controles , Medición de Intercambio de Deuterio , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Expresión Génica , Granzimas/química , Granzimas/genética , Humanos , Hidrolasas/química , Hidrolasas/genética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Especificidad por Sustrato
18.
Oncotarget ; 7(26): 39171-39183, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27322555

RESUMEN

An age-related decline in cytolytic activity has been described in CD8+ T cells and we have previously shown that the poor CD8+ effector T cell responses to influenza A/H3N2 challenge result from a decline in the proportion and function of these cytolytic T lymphocytes (CTL). Here, we describe that addition of exogenous cytokines to influenza-stimulated PBMC from both aged mice and humans, enhances the generation of influenza specific CD8 CTL by increasing their proliferation and survival. Our data show that the addition of IL-2 and IL-6 to splenocytes from mice previously infected with influenza virus restores the aged CD8+ T cell response to that observed in young mice. In humans, IL-2 plus IL-6 also reduces the proportion of apoptotic effector CD8+ T cells to levels resembling those of younger adults. In HLA-A2+ donors, MHC Class I tetramer staining showed that adding both exogenous IL-2 and IL-6 resulted in greater differentiation into influenza-specific effector CD8+ T cells. Since this effect of IL-2/IL-6 supplementation can be reproduced with the addition of Toll-like receptor agonists, it may be possible to exploit this mechanism and design new vaccines to improve the CD8 T cell response to influenza vaccination in older adults.


Asunto(s)
Envejecimiento , Linfocitos T CD8-positivos/virología , Gripe Humana/inmunología , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Animales , Apoptosis , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Granzimas/química , Humanos , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Leucocitos Mononucleares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/citología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 32(2): 205-11, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-26927382

RESUMEN

OBJECTIVE: To investigate the possibility of the biosynthesis and release of granzyme B (GZB) by NK92 cells bypassing the way of secretory lysosomes (SLs) and the possible mechanism. METHODS: As cell models, NK92 cells were activated by the phorbol myristate acetate (PMA) and ionomycin (ION). Within 4 hours following the activation, immuno- fluorescence and electron microscopy were used to detect the content and distribution of 35 000 (Mr) and 32 000 (Mr) GZB in the cytoplasm of NK92 before and after the protein synthesis was inhibited; Western blotting was performed to detect GZB inside and outside the SLs. After blocking the release of 32 000 (Mr) GZB by inhibiting the exocytosis of SLs with EDTA, we tested the content of Mr 35 000 GZB in activated NK92 supernatant. Activated NK92 cells were co-cultured with K562 cells to observe whether the Mr 35 000 GZB could enter the K562 cells. Activated NK92 cell death rate was determined and the enzyme activity of secreted Mr 35 000 GZB was examined. RESULTS: Four hours after stimulated by PMA/ION, NK92 cells generated large amount of Mr 35 000 GZB in the cytoplasm outside SLs where Mr 32 000 GZB was located. Immunoelectron microscope and immunofluorescence further approved that Mr 35 000 GZB outside SLs was located in vesicles. In addition, Mr 35 000 GZB could be secreted outside NK92 cells. Further investigation found that GZB/Serpinb9 composite and Mr 35 000 GZB could simultaneously emerge in the cytoplasm outside SLs. However, activated NK92 cell death rate did not rise. Mr 32 000 GZB inside SLs had enzyme activity in contrast with the Mr 35 000 GZB in zymogen form outside SLs, which suggested that Mr 35 000 GZB was not originated from the SLs. CONCLUSION: The activated human NK cell lines could secreted rapidly inactive Mr 35 000 GZB outside SLs, and the GZB could enter the extracellular matrix or target cells bypassing SLs, which provides a part of the extracellular GZB.


Asunto(s)
Precursores Enzimáticos/metabolismo , Granzimas/biosíntesis , Células Asesinas Naturales/metabolismo , Lisosomas/metabolismo , Western Blotting , Ionóforos de Calcio/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Precursores Enzimáticos/genética , Granzimas/química , Granzimas/genética , Humanos , Ionomicina/farmacología , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/ultraestructura , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Peso Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Acetato de Tetradecanoilforbol/farmacología , Factores de Tiempo
20.
Dev Comp Immunol ; 60: 33-40, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26872543

RESUMEN

Granzymes are serine proteases involved in the induction of cell death against non-self cells. The enzymes differ in their primary substrate specificity and have one of four hydrolysis activities: tryptase, Asp-ase, Met-ase and chymase. Although granzyme genes have been isolated from several fishes, evidence for their involvement in cytotoxicity has not yet been reported. In the present study, we attempted to purify and characterize a fish granzyme involved in cytotoxicity using ginbuna crucian carp. The cytotoxicity of leukocytes was significantly inhibited by the serine protease inhibitor ''3, 4-dichloroisocoumarin''. In addition, we found that granzymeA-like activity (hydrolysis of Z-GPR-MCA) was inhibited by the same inhibitor and significantly enhanced by allo-antigen stimulation in vivo. Proteins from leukocyte extracts were subjected to two steps of chromatographic purification using benzamidine-Sepharose and SP-Sepharose. The molecular weight of the purified enzyme was estimated to be 26,900 Da by SDS-PAGE analysis. The purified enzyme displayed a Km of 220 µM, a Kcat of 21.7 sec(-1) and a Kcat/Km of 98,796 sec(-1) M(-1) with an optimal pH of 9.5 for the Z-GPR-MCA substrate. The protease was totally inhibited by serine protease inhibitors and showed granzymeA-like substrate specificity. Therefore, we conclude that the purified enzyme belongs to the mammalian granzymeA (EC 3.4.21.78) and appears to be involved in cytotoxicity in fish.


Asunto(s)
Proteínas de Peces/química , Granzimas/química , Animales , Carpas/inmunología , Línea Celular , Proteínas de Peces/antagonistas & inhibidores , Proteínas de Peces/aislamiento & purificación , Granzimas/antagonistas & inhibidores , Granzimas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Hidrólisis , Inmunidad Celular , Cinética , Inhibidores de Proteasas/química , Proteolisis , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...