Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 313: 111063, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763857

RESUMEN

Kiwifruit is known as 'the king of vitamin C' because of the high content of ascorbic acid (AsA) in the fruit. Deciphering the regulatory network and identification of the key regulators mediating AsA biosynthesis is vital for fruit nutrition and quality improvement. To date, however, the key transcription factors regulating AsA metabolism during kiwifruit developmental and ripening processes remains largely unknown. Here, we generated a putative transcriptional regulatory network mediating ascorbate metabolism by transcriptome co-expression analysis. Further studies identified an ethylene response factor AcERF91 from this regulatory network, which is highly co-expressed with a GDP-galactose phosphorylase encoding gene (AcGGP3) during fruit developmental and ripening processes. Through dual-luciferase reporter and yeast one-hybrid assays, it was shown that AcERF91 is able to bind and directly activate the activity of the AcGGP3 promoter. Furthermore, transient expression of AcERF91 in kiwifruit fruits resulted in a significant increase in AsA content and AcGGP3 transcript level, indicating a positive role of AcERF91 in controlling AsA accumulation via regulation of the expression of AcGGP3. Overall, our results provide a new insight into the regulation of AsA metabolism in kiwifruit.


Asunto(s)
Actinidia/genética , Actinidia/metabolismo , Ácido Ascórbico/metabolismo , Etilenos/metabolismo , Galactosa/metabolismo , Guanosina Difosfato/metabolismo , Fosforilasas/metabolismo , Ácido Ascórbico/genética , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Frutas/genética , Frutas/metabolismo , Galactosa/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Guanosina Difosfato/genética , Fosforilasas/genética
2.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34769272

RESUMEN

Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gß and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gßγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Animales , Subunidades alfa de la Proteína de Unión al GTP/genética , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Proteínas de Plantas/genética , Plantas/genética
3.
Plant Physiol ; 185(4): 1574-1594, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793952

RESUMEN

The enzymes involved in l-ascorbate biosynthesis in photosynthetic organisms (the Smirnoff-Wheeler [SW] pathway) are well established. Here, we analyzed their subcellular localizations and potential physical interactions and assessed their role in the control of ascorbate synthesis. Transient expression of C terminal-tagged fusions of SW genes in Nicotiana benthamiana and Arabidopsis thaliana mutants complemented with genomic constructs showed that while GDP-d-mannose epimerase is cytosolic, all the enzymes from GDP-d-mannose pyrophosphorylase (GMP) to l-galactose dehydrogenase (l-GalDH) show a dual cytosolic/nuclear localization. All transgenic lines expressing functional SW protein green fluorescent protein fusions driven by their endogenous promoters showed a high accumulation of the fusion proteins, with the exception of those lines expressing GDP-l-galactose phosphorylase (GGP) protein, which had very low abundance. Transient expression of individual or combinations of SW pathway enzymes in N. benthamiana only increased ascorbate concentration if GGP was included. Although we did not detect direct interaction between the different enzymes of the pathway using yeast-two hybrid analysis, consecutive SW enzymes, as well as the first and last enzymes (GMP and l-GalDH) associated in coimmunoprecipitation studies. This association was supported by gel filtration chromatography, showing the presence of SW proteins in high-molecular weight fractions. Finally, metabolic control analysis incorporating known kinetic characteristics showed that previously reported feedback repression at the GGP step, combined with its relatively low abundance, confers a high-flux control coefficient and rationalizes why manipulation of other enzymes has little effect on ascorbate concentration.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Ascórbico/biosíntesis , Galactosa/metabolismo , Guanosina Difosfato/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fosforilasas/metabolismo , Ácido Ascórbico/genética , Galactosa/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Guanosina Difosfato/genética , Mutación , Fosforilasas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
4.
Methods Mol Biol ; 2193: 97-109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32808262

RESUMEN

The small GTPase RhoA participates in actin and microtubule machinery, cell migration and invasion, gene expression, vesicular trafficking and cell cycle, and its dysregulation is a determining factor in many pathological conditions. Similar to other Rho GTPases, RhoA is a key component of the wound-healing process, regulating the activity of different participating cell types. RhoA gets activated upon binding to guanine nucleotide exchange factors (GEFs), which catalyze the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP). GTPase-activating proteins (GAPs) mediate the exchange of GTP to GDP, inactivating RhoA, whereas guanine nucleotide dissociation inhibitors (GDIs) preserve the inactive pool of RhoA proteins in the cytosol. RhoA and Rho GEF activation is detected by protein pull-down assays, which use chimeric proteins with Rhotekin and G17A mutant RhoA as "bait" to pull down active RhoA and RhoA GEFs, respectively. In this chapter, we describe an optimized protocol for performing RhoA and GEF pull-down assays.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Biología Molecular/métodos , Proteína de Unión al GTP rhoA/genética , Proteínas Activadoras de GTPasa/aislamiento & purificación , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Humanos , Unión Proteica/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/aislamiento & purificación , Proteína de Unión al GTP rhoA/aislamiento & purificación
5.
ACS Synth Biol ; 8(10): 2418-2427, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31550146

RESUMEN

Human milk oligosaccharides (HMOs) have been proven to be beneficial to infants' intestinal health and immune systems. 2'-Fucosyllactose (2'-FL) is the most abundant and thoroughly studied HMO and has been approved to be an additive of infant formula. How to construct efficient and safe microbial cell factories for the production of 2'-FL attracts increasing attention. In this work, we engineered the Bacillus subtilis as an efficient 2'-FL producer by engineering the substrate transport and cofactor guanosine 5'-triphosphate (GTP) regeneration systems. First, we constructed a synthesis pathway for the 2'-FL precursor guanosine 5'-diphosphate-l-fucose (GDP-l-fucose) by introducing the salvage pathway gene fkp from Bacteriodes fragilis and improved the fucose importation by overexpressing the transporters. Then, the complete synthesis pathway of 2'-FL was constructed by introducing the heterologous fucosyltransferases from different sources, and it was found that the gene from Helicobacter pylori was the best one for 2'-FL synthesis. We also improved the substrate lactose importation by introducing heterologous lactose permeases and eliminated endogenous ß-galactosidase (yesZ) to block the lactose degradation. Next, the production of 2'-FL and GDP-l-fucose was improved by fine-tuning the expression of cofactor guanosine 5'-triphosphate regeneration module genes gmd, ndk, guaA, guaC, ykfN, deoD, and xpt. Finally, a 3 L fed-batch fermentation was performed, and the highest 2'-FL titer reached 5.01 g/L with a yield up to 0.85 mol/mol fucose. We optimized the synthesis modules of 2'-FL in B. subtilis, and this provides a good starting point for metabolic engineering to further improve 2'-FL production in the future.


Asunto(s)
Bacillus subtilis/genética , Regeneración/genética , Trisacáridos/genética , Fermentación/genética , Fucosa/genética , Fucosiltransferasas/genética , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Helicobacter pylori/genética , Lactosa/genética , Ingeniería Metabólica/métodos , Leche Humana/metabolismo , Oligosacáridos/genética
6.
Biol Pharm Bull ; 42(9): 1532-1537, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474712

RESUMEN

Glucose-stimulated insulin secretion is controlled by both exocytosis and endocytosis in pancreatic ß-cells. Although endocytosis is a fundamental step to maintain cellular responses to the secretagogue, the molecular mechanism of endocytosis remains poorly defined. We have previously shown that in response to high concentrations of glucose, guanosine 5'-diphosphate (GDP)-bound Rab27a is recruited to the plasma membrane where IQ motif-containing guanosine 5'-triphosphatase (GTPase)-activating protein 1 (IQGAP1) is expressed, and that complex formation promotes endocytosis of secretory membranes after insulin secretion. In the present study, the regulatory mechanisms of dissociation of the complex were investigated. Phosphorylation of IQGAP1 on serine (Ser)-1443, a site recognized by protein kinase Cε (PKCε), inhibited the interaction of GDP-bound Rab27a with IQGAP1 in a Cdc42-independent manner. Glucose stimulation caused a translocation of PKCε from the cytosol to the plasma membrane. In addition, glucose-induced endocytosis was inhibited by the knockdown of IQGAP1 with small interfering RNA (siRNA). However, the expression of the non-phosphorylatable or phosphomimetic form of IQGAP1 could not rescue the inhibition, suggesting that a phosphorylation-dephosphorylation cycle of IQGAP1 is required for endocytosis. These results suggest that IQGAP1 phosphorylated by PKCε promotes the dissociation of the IQGAP1-GDP-bound Rab27a complex in pancreatic ß-cells, thereby regulating endocytosis of secretory membranes following insulin secretion.


Asunto(s)
Endocitosis , Guanosina Difosfato/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Sitios de Unión , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Glucosa/farmacología , Proteínas Fluorescentes Verdes/genética , Guanosina Difosfato/genética , Inmunoprecipitación , Células Secretoras de Insulina/efectos de los fármacos , Fosforilación , Unión Proteica , Proteínas rab27 de Unión a GTP/genética , Proteínas Activadoras de ras GTPasa/genética
7.
Proteomics ; 19(9): e1800385, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30866160

RESUMEN

The rice heterotrimeric G-protein complex, a guanine-nucleotide-dependent on-off switch, mediates vital cellular processes and responses to biotic and abiotic stress. Exchange of bound GDP (resting state) for GTP (active state) is spontaneous in plants including rice and thus there is no need for promoting guanine nucleotide exchange in vivo as a mechanism for regulating the active state of signaling as it is well known for animal G signaling. As such, a master regulator controlling the G-protein activation state is unknown in plants. Therefore, an ab initio approach is taken to discover candidate regulators. The rice Gα subunit (RGA1) is used as bait to screen for nucleotide-dependent protein partners. A total of 264 proteins are identified by tandem mass spectrometry of which 32 were specific to the GDP-bound inactive state and 22 specific to the transition state. Approximately, 10% are validated as previously identified G-protein interactors.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/genética , Oryza/genética , Subunidades de Proteína/genética , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Nucleótidos/genética , Transducción de Señal/genética
8.
J Biol Chem ; 294(15): 5907-5913, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30796162

RESUMEN

Mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). Recently, we showed that a disease-associated mutation R1441H rendered the GTPase domain of LRRK2 catalytically less active and thereby trapping it in a more persistently "on" conformation. However, the mechanism involved and characteristics of this on conformation remained unknown. Here, we report that the Ras of complex protein (ROC) domain of LRRK2 exists in a dynamic dimer-monomer equilibrium that is oppositely driven by GDP and GTP binding. We also observed that the PD-associated mutations at residue 1441 impair this dynamic and shift the conformation of ROC to a GTP-bound-like monomeric conformation. Moreover, we show that residue Arg-1441 is critical for regulating the conformational dynamics of ROC. In summary, our results reveal that the PD-associated substitutions at Arg-1441 of LRRK2 alter monomer-dimer dynamics and thereby trap its GTPase domain in an activated state.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mutación Missense , Enfermedad de Parkinson , Multimerización de Proteína , Sustitución de Aminoácidos , Guanosina Difosfato/química , Guanosina Difosfato/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Dominios Proteicos
9.
Sci Rep ; 8(1): 6701, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712939

RESUMEN

Secretory lysosomes are required for the specialised functions of various types of differentiated cells. In osteoclasts, the lysosomal proton pump V-ATPase (vacuolar-type ATPase) is targeted to the plasma membrane via secretory lysosomes and subsequently acidifies the extracellular compartment, providing optimal conditions for bone resorption. However, little is known about the mechanism underlying this trafficking of secretory lysosomes. Here, we demonstrate that the lysosome-specific a3 isoform of the V-ATPase a subunit plays an indispensable role in secretory lysosome trafficking, together with Rab7, a small GTPase involved in organelle trafficking. In osteoclasts lacking a3, lysosomes were not transported to the cell periphery, and Rab7 was not localised to lysosomes but diffused throughout the cytoplasm. Expression of dominant-negative (GDP-bound form) Rab7 inhibited lysosome trafficking in wild-type cells. Furthermore, a3 directly interacted with the GDP-bound forms of Rab7 and Rab27A. These findings reveal a novel role for the proton pump V-ATPase in secretory lysosome trafficking and an unexpected mechanistic link with Rab GTPases.


Asunto(s)
Lisosomas/genética , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Unión al GTP rab/genética , Proteínas rab27 de Unión a GTP/genética , Animales , Citoplasma/genética , Regulación Enzimológica de la Expresión Génica , Guanosina Difosfato/genética , Humanos , Lisosomas/enzimología , Ratones , Ratones Noqueados , Orgánulos/genética , Isoformas de Proteínas/genética , Transporte de Proteínas/genética , Proteínas de Unión a GTP rab7
10.
IUBMB Life ; 70(3): 192-196, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29417736

RESUMEN

The question of what governs the translation elongation rate in eukaryotes has not yet been completely answered. Earlier, different availability of different tRNAs was considered as a main factor involved, however, recent data revealed that the elongation rate does not always depend on tRNA availability. Here, we offer another, codon-independent approach to explain specific tRNA-dependence of the elongation rate in eukaryotes. We hypothesize that the exit rate of eukaryotic translation elongation factor 1A (eEF1A)*GDP from the 80S ribosome depends on the protein affinity to specific aminoacyl-tRNA remaining on the ribosome after GTP hydrolysis. Subsequently, a slower dissociation of eEF1A*GDP from certain aminoacyl-tRNAs in the ribosome can negatively influence the ribosomal elongation rate in a tRNA-dependent and mRNA-independent way. The specific tRNA-dependent departure rate of eEF1A*GDP from the ribosome is suggested to be a novel factor contributing to the overall translation elongation control in eukaryotic cells. © 2018 IUBMB Life, 70(3):192-196, 2018.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Ribosomas/genética , Codón , Células Eucariotas/metabolismo , Guanosina Difosfato/genética , Factor 1 de Elongación Peptídica/genética , ARN Mensajero/genética
11.
J Biol Chem ; 291(37): 19674-86, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27462082

RESUMEN

G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the ß6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and ß2-ß3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Activación Enzimática , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína
12.
Clin Cancer Res ; 22(21): 5383-5393, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27267853

RESUMEN

PURPOSE: This study was performed to further our understanding of the biological and genetic basis of follicular lymphoma and to identify potential novel therapy targets. EXPERIMENTAL DESIGN: We analyzed previously generated whole exome sequencing data of 23 follicular lymphoma cases and one transformed follicular lymphoma case and expanded findings to a combined total of 125 follicular lymphoma/3 transformed follicular lymphoma. We modeled the three-dimensional location of RRAGC-associated hotspot mutations. We performed functional studies on novel RRAGC mutants in stable retrovirally transduced HEK293T cells, stable lentivirally transduced lymphoma cell lines, and in Saccharomyces cerevisiae RESULTS: We report recurrent mutations, including multiple amino acid hotspots, in the small G-protein RRAGC, which is part of a protein complex that signals intracellular amino acid concentrations to MTOR, in 9.4% of follicular lymphoma cases. Mutations in RRAGC distinctly clustered on one protein surface area surrounding the GTP/GDP-binding sites. Mutated RRAGC proteins demonstrated increased binding to RPTOR (raptor) and substantially decreased interactions with the product of the tumor suppressor gene FLCN (folliculin). In stable retrovirally transfected 293T cells, cultured in the presence or absence of leucine, multiple RRAGC mutations demonstrated elevated MTOR activation as evidenced by increased RPS6KB/S6-kinase phosphorylation. Similar activation phenotypes were uncovered in yeast engineered to express mutations in the RRAGC homolog Gtr2 and in multiple lymphoma cell lines expressing HA-tagged RRAGC-mutant proteins. CONCLUSIONS: Our discovery of activating mutations in RRAGC in approximately 10% of follicular lymphoma provides the mechanistic rationale to study mutational MTOR activation and MTOR inhibition as a potential novel actionable therapeutic target in follicular lymphoma. Clin Cancer Res; 22(21); 5383-93. ©2016 AACR.


Asunto(s)
Linfoma Folicular/genética , Proteínas de Unión al GTP Monoméricas/genética , Mutación/genética , Recurrencia Local de Neoplasia/genética , Serina-Treonina Quinasas TOR/genética , Aminoácidos/genética , Sitios de Unión/genética , Línea Celular , Genes Supresores de Tumor/fisiología , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación/genética , Proteína Reguladora Asociada a mTOR/genética , Transducción de Señal/genética
13.
Proc Natl Acad Sci U S A ; 113(21): 5946-51, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162341

RESUMEN

Multifunctional ß-catenin, with critical roles in both cell-cell adhesion and Wnt-signaling pathways, was among HeLa cell proteins coimmunoprecipitated by antibodies against brefeldin A-inhibited guanine nucleotide-exchange factors 1 and 2 (BIG1 or BIG2) that activate ADP-ribosylation factors (Arfs) by accelerating the replacement of bound GDP with GTP. BIG proteins also contain A-kinase anchoring protein (AKAP) sequences that can act as scaffolds for multimolecular assemblies that facilitate and limit cAMP signaling temporally and spatially. Direct interaction of BIG1 N-terminal sequence with ß-catenin was confirmed using yeast two-hybrid assays and in vitro synthesized proteins. Depletion of BIG1 and/or BIG2 or overexpression of guanine nucleotide-exchange factor inactive mutant, but not wild-type, proteins interfered with ß-catenin trafficking, leading to accumulation at perinuclear Golgi structures. Both phospholipase D activity and vesicular trafficking were required for effects of BIG1 and BIG2 on ß-catenin activation. Levels of PKA-phosphorylated ß-catenin S675 and ß-catenin association with PKA, BIG1, and BIG2 were also diminished after BIG1/BIG2 depletion. Inferring a requirement for BIG1 and/or BIG2 AKAP sequence in PKA modification of ß-catenin and its effect on transcription activation, we confirmed dependence of S675 phosphorylation and transcription coactivator function on BIG2 AKAP-C sequence.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sistemas de Mensajero Secundario/fisiología , beta Catenina/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Factores de Ribosilacion-ADP/genética , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Fosforilación/fisiología , Dominios Proteicos , beta Catenina/genética
14.
J Biol Chem ; 291(26): 13571-9, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129208

RESUMEN

Myosin-5a contains two heavy chains, which are dimerized via the coiled-coil regions. Thus, myosin-5a comprises two heads and two globular tail domains (GTDs). The GTD is the inhibitory domain that binds to the head and inhibits its motor function. Although the two-headed structure is essential for the processive movement of myosin-5a along actin filaments, little is known about the role of GTD dimerization. Here, we investigated the effect of GTD dimerization on its inhibitory activity. We found that the potent inhibitory activity of the GTD is dependent on its dimerization by the preceding coiled-coil regions, indicating synergistic interactions between the two GTDs and the two heads of myosin-5a. Moreover, we found that alanine mutations of the two conserved basic residues at N-terminal extension of the GTD not only weaken the inhibitory activity of the GTD but also enhance the activation of myosin-5a by its cargo-binding protein melanophilin (Mlph). These results are consistent with the GTD forming a head to head dimer, in which the N-terminal extension of the GTD interacts with the Mlph-binding site in the counterpart GTD. The Mlph-binding site at the GTD-GTD interface must be exposed prior to the binding of Mlph. We therefore propose that the inhibited Myo5a is equilibrated between the folded state, in which the Mlph-binding site is buried, and the preactivated state, in which the Mlph-binding site is exposed, and that Mlph is able to bind to the Myo5a in preactivated state and activates its motor function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Pliegue de Proteína , Multimerización de Proteína/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Guanosina Difosfato/química , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Mutación Missense , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/química , Miosina Tipo V/genética , Dominios Proteicos , Estructura Cuaternaria de Proteína
15.
J Biol Chem ; 290(48): 28887-900, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26453300

RESUMEN

K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding.


Asunto(s)
Guanosina Difosfato/química , Guanosina Trifosfato/química , Mutación , Proteínas Proto-Oncogénicas p21(ras)/química , Sustitución de Aminoácidos , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
16.
J Biol Chem ; 289(16): 11331-11341, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24596087

RESUMEN

Receptor-mediated activation of the Gα subunit of heterotrimeric G proteins requires allosteric communication between the receptor binding site and the guanine nucleotide binding site, which are separated by >30 Å. Structural changes in the allosteric network connecting these sites are predicted to be transient in the wild-type Gα subunit, making studies of these connections challenging. In the current work, site-directed mutants that alter the energy barriers between the activation states are used as tools to better understand the transient features of allosteric signaling in the Gα subunit. The observed differences in relative receptor affinity for intact Gαi1 subunits versus C-terminal Gαi1 peptides harboring the K345L mutation are consistent with this mutation modulating the allosteric network in the protein subunit. Measurement of nucleotide exchange rates, affinity for metarhodopsin II, and thermostability suggest that the K345L Gαi1 variant has reduced stability in both the GDP-bound and nucleotide-free states as compared with wild type but similar stability in the GTPγS-bound state. High resolution x-ray crystal structures reveal conformational changes accompanying the destabilization of the GDP-bound state. Of these, the conformation for Switch I was stabilized by an ionic interaction with the phosphate binding loop. Further site-directed mutagenesis suggests that this interaction between Switch I and the phosphate binding loop is important for receptor-mediated nucleotide exchange in the wild-type Gαi1 subunit.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Guanosina 5'-O-(3-Tiotrifosfato)/química , Guanosina Difosfato/química , Regulación Alostérica/fisiología , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/genética , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Mutación Missense , Estructura Secundaria de Proteína , Ratas
17.
J Biol Chem ; 289(7): 3828-41, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24338018

RESUMEN

The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al GTP/química , Helicobacter pylori/enzimología , Níquel/química , Zinc/química , Secuencias de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/genética , Citidina Trifosfato/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Helicobacter pylori/genética , Humanos , Hidrogenasas/química , Hidrogenasas/genética , Hidrogenasas/metabolismo , Níquel/metabolismo , Estructura Terciaria de Proteína , Ureasa/química , Ureasa/genética , Ureasa/metabolismo , Zinc/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(51): 20587-92, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297905

RESUMEN

Receptor tyrosine kinases participate in several signaling pathways through small G proteins such as Ras (rat sarcoma). An important component in the activation of these G proteins is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. For optimal activity, a second Ras molecule acts as an allosteric activator by binding to a second Ras-binding site within SOS. This allosteric Ras-binding site is blocked by autoinhibitory domains of SOS. We have reported recently that Ras activation also requires the actin-binding proteins ezrin, radixin, and moesin. Here we report the mechanism by which ezrin modulates SOS activity and thereby Ras activation. Active ezrin enhances Ras/MAPK signaling and interacts with both SOS and Ras in vivo and in vitro. Moreover, in vitro kinetic assays with recombinant proteins show that ezrin also is important for the activity of SOS itself. Ezrin interacts with GDP-Ras and with the Dbl homology (DH)/pleckstrin homology (PH) domains of SOS, bringing GDP-Ras to the proximity of the allosteric site of SOS. These actions of ezrin are antagonized by the neurofibromatosis type 2 tumor-suppressor protein merlin. We propose an additional essential step in SOS/Ras control that is relevant for human cancer as well as all physiological processes involving Ras.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Guanosina Difosfato/metabolismo , Sistema de Señalización de MAP Quinasas , Neurofibromina 2/metabolismo , Proteína Oncogénica p21(ras)/metabolismo , Proteínas Son Of Sevenless/metabolismo , Animales , Proteínas del Citoesqueleto/genética , Guanosina Difosfato/genética , Humanos , Ratones , Células 3T3 NIH , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neurofibromina 2/genética , Proteína Oncogénica p21(ras)/genética , Proteínas Son Of Sevenless/genética
19.
Mol Cell ; 52(5): 643-54, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24211265

RESUMEN

The universally conserved signal recognition particle (SRP) system mediates the targeting of membrane proteins to the translocon in a multistep process controlled by GTP hydrolysis. Here we present the 2.6 Å crystal structure of the GTPase domains of the E. coli SRP protein (Ffh) and its receptor (FtsY) in complex with the tetraloop and the distal region of SRP-RNA, trapped in the activated state in presence of GDP:AlF4. The structure reveals the atomic details of FtsY recruitment and, together with biochemical experiments, pinpoints G83 as the key RNA residue that stimulates GTP hydrolysis. Insertion of G83 into the FtsY active site orients a single glutamate residue provided by Ffh (E277), triggering GTP hydrolysis and complex disassembly at the end of the targeting cycle. The complete conservation of the key residues of the SRP-RNA and the SRP protein implies that the suggested chemical mechanism of GTPase activation is applicable across all kingdoms.


Asunto(s)
Proteínas Bacterianas/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Compuestos de Aluminio/farmacología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoruros/farmacología , Activadores de GTP Fosfohidrolasa/farmacología , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Hidrólisis/efectos de los fármacos , Datos de Secuencia Molecular , ARN/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Análisis de Secuencia de ADN
20.
J Biol Chem ; 288(43): 30980-9, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23996001

RESUMEN

MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5'-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx(-) to form the putative transition state analog, GDP·AlF4(-). The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.


Asunto(s)
Transferasas Alquil y Aril/química , Proteínas Bacterianas/química , Guanosina Difosfato/química , Methylobacterium extorquens/enzimología , Chaperonas Moleculares/química , Vitamina B 12/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Humanos , Metilmalonil-CoA Mutasa/química , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Methylobacterium extorquens/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Vitamina B 12/genética , Vitamina B 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...