Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(5): 600-607, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997761

RESUMEN

Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.


Asunto(s)
Proteínas de Escherichia coli , Guanosina Tetrafosfato , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Rayos Ultravioleta , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Reparación del ADN , Transcripción Genética , Regulación Bacteriana de la Expresión Génica
2.
mBio ; 12(6): e0267921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34749534

RESUMEN

During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5'-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control. IMPORTANCE The stringent response is a bacterial signaling network that utilizes the nucleotides pppGpp and ppGpp to reprogram cells in order to survive nutritional stresses. However, much about how these important nucleotides control cellular reprogramming is unknown. Our previous work revealed that (p)ppGpp can bind to and inhibit the enzymatic activity of four ribosome-associated GTPases (RA-GTPases), enzymes that facilitate maturation of the 50S and 30S ribosomal subunits. Here, we examine how this occurs mechanistically and demonstrate that this interaction prevents the accommodation of RA-GTPases on ribosomal subunits both in vitro and within bacterial cells, with the ppGpp-bound state structurally mimicking the inactive GDP-bound conformation of the enzyme. We additionally reveal that these GTPase enzymes have a greater affinity for OFF-state-inducing nucleotides, which is a mechanism likely to control ribosome assembly during growth. With this, we further our understanding of how ribosome function is controlled by (p)ppGpp, enabling bacterial survival during stress.


Asunto(s)
Proteínas Bacterianas/metabolismo , GTP Fosfohidrolasas/metabolismo , Subunidades Ribosómicas/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Pentafosfato/química , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Modelos Moleculares , Unión Proteica , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética
3.
Commun Biol ; 3(1): 671, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188280

RESUMEN

Guanosine 3',5'-bis(pyrophosphate) (ppGpp) functions as a second messenger in bacteria to adjust their physiology in response to environmental changes. In recent years, the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), was shown to have important roles for growth under nutrient deficiency in Drosophila melanogaster. Curiously, however, ppGpp has never been detected in animal cells, and therefore the physiological relevance of this molecule, if any, in metazoans has not been established. Here, we report the detection of ppGpp in Drosophila and human cells and demonstrate that ppGpp accumulation induces metabolic changes, cell death, and eventually lethality in Drosophila. Our results provide the evidence of the existence and function of the ppGpp-dependent stringent response in animals.


Asunto(s)
Guanosina Tetrafosfato , Transducción de Señal/fisiología , Animales , Bacterias/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Guanosina Tetrafosfato/fisiología , Pirofosfatasas/metabolismo , Pirofosfatasas/fisiología , Sistemas de Mensajero Secundario
4.
Biochemistry ; 59(13): 1361-1366, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32202416

RESUMEN

The modularity of protein domains is well-known, but the existence of independent domains that confer function in RNA is less established. Recently, a family of RNA aptamers termed ykkC was discovered; they bind at least four ligands of very different chemical composition, including guanidine, phosphoribosyl pyrophosphate (PRPP), and guanosine tetraphosphate (ppGpp) (graphical abstract). Structures of these aptamers revealed an architecture characterized by two coaxial helical stacks. The first helix appears to be a generic scaffold, while the second helix forms the most contacts to the ligands. To determine if these two regions within the aptamer are modular units for ligand recognition, we swapped the ligand-binding coaxial stacks of a guanidine aptamer and a PRPP aptamer. This operation, in combination with a single mutation in the scaffold domain, achieved full switching of ligand specificity. This finding suggests that the ligand-binding helix largely dictates the ligand specificity of ykkC RNAs and that the scaffold coaxial stack is generally compatible with various ykkC ligand-binding modules. This work presents an example of RNA domain modularity comparable to that of a ligand-binding protein, showcasing the versatility of RNA as an entity capable of molecular evolution through adaptation of existing motifs.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(17): 8310-8319, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30971496

RESUMEN

The second messenger nucleotide ppGpp dramatically alters gene expression in bacteria to adjust cellular metabolism to nutrient availability. ppGpp binds to two sites on RNA polymerase (RNAP) in Escherichia coli, but it has also been reported to bind to many other proteins. To determine the role of the RNAP binding sites in the genome-wide effects of ppGpp on transcription, we used RNA-seq to analyze transcripts produced in response to elevated ppGpp levels in strains with/without the ppGpp binding sites on RNAP. We examined RNAs rapidly after ppGpp production without an accompanying nutrient starvation. This procedure enriched for direct effects of ppGpp on RNAP rather than for indirect effects on transcription resulting from starvation-induced changes in metabolism or on secondary events from the initial effects on RNAP. The transcriptional responses of all 757 genes identified after 5 minutes of ppGpp induction depended on ppGpp binding to RNAP. Most (>75%) were not reported in earlier studies. The regulated transcripts encode products involved not only in translation but also in many other cellular processes. In vitro transcription analysis of more than 100 promoters from the in vivo dataset identified a large collection of directly regulated promoters, unambiguously demonstrated that most effects of ppGpp on transcription in vivo were direct, and allowed comparison of DNA sequences from inhibited, activated, and unaffected promoter classes. Our analysis greatly expands our understanding of the breadth of the stringent response and suggests promoter sequence features that contribute to the specific effects of ppGpp.


Asunto(s)
Sitios de Unión/genética , ARN Polimerasas Dirigidas por ADN , Escherichia coli/genética , Guanosina Tetrafosfato , Transcripción Genética/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Genoma Bacteriano/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Regiones Promotoras Genéticas/genética , Transcriptoma
6.
Mol Cell ; 74(6): 1239-1249.e4, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31023582

RESUMEN

The stringent response alarmones pppGpp and ppGpp are essential for rapid adaption of bacterial physiology to changes in the environment. In Escherichia coli, the nucleosidase PpnN (YgdH) regulates purine homeostasis by cleaving nucleoside monophosphates and specifically binds (p)ppGpp. Here, we show that (p)ppGpp stimulates the catalytic activity of PpnN both in vitro and in vivo causing accumulation of several types of nucleobases during stress. The structure of PpnN reveals a tetramer with allosteric (p)ppGpp binding sites located between subunits. pppGpp binding triggers a large conformational change that shifts the two terminal domains to expose the active site, providing a structural rationale for the stimulatory effect. We find that PpnN increases fitness and adjusts cellular tolerance to antibiotics and propose a model in which nucleotide levels can rapidly be adjusted during stress by simultaneous inhibition of biosynthesis and stimulation of degradation, thus achieving a balanced physiological response to constantly changing environments.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , N-Glicosil Hidrolasas/química , Regulación Alostérica , Secuencia de Aminoácidos , Antibacterianos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Modelos Moleculares , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Especificidad por Sustrato
7.
Chembiochem ; 20(13): 1717-1721, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30843657

RESUMEN

Guanosine penta- or tetraphosphate (pppGpp or ppGpp, respectively) is a nucleotide signalling molecule with a marked effect on bacterial physiology during stress. Its accumulation slows down cell metabolism and replication, supposedly leading to the formation of the antibiotic-tolerant persister phenotype. A specifically tailored fluorescent chemosensor, PyDPA, allows the detection of (p)ppGpp in solution with high selectivity, relative to that of other nucleotides. Herein, an optimised synthetic approach is presented that improves the overall yield from 9 to 67 % over 7 steps. The simplicity and robustness of this approach will allow groups investigating the many facets of (p)ppGpp easy access to this probe.


Asunto(s)
Complejos de Coordinación/síntesis química , Colorantes Fluorescentes/síntesis química , Guanosina Pentafosfato/análisis , Guanosina Tetrafosfato/análisis , Pirenos/síntesis química , Fluorescencia , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , Zinc/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-30170292

RESUMEN

A fast and facile hydrophilic interaction liquid chromatography (HILIC) method was developed and applied to quantify physiologically important ppGpp and its analogues in a tough sample, the astaxanthin-accumulating alga Hameatococcus pluvialis. The method is able to analyze simultaneously seven nucleotides, including ppGpp at the order of pmol g-1 cells within 12 min. Mechanism on the elution order was investigated. It was found that 1) phosphate salt competed for the amide groups on the HILIC column with the phosphate groups of the nucleotides; 2) intramolecular hydrogen bonds might contribute to the elution order by offsetting and reducing the number of free hydrogen acceptor/donor of the nucleotide molecules interacting with the amide groups. This is the first HILIC method for ppGpp, which is feasible and applicable to a wide range of samples, especially tough samples, e.g., algae and plants.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Guanosina Tetrafosfato/análisis , Volvocida/química , Acetonitrilos , Guanosina Tetrafosfato/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Reproducibilidad de los Resultados
9.
Elife ; 72018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29877798

RESUMEN

Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.


Asunto(s)
Aptámeros de Nucleótidos/química , Conformación de Ácido Nucleico , ARN Bacteriano/química , Riboswitch , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligandos , Modelos Moleculares , Mutación , Motivos de Nucleótidos , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Pliegue del ARN , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
10.
Nucleic Acids Res ; 46(14): 7284-7295, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29878276

RESUMEN

RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/química , Conformación Proteica , Transcripción Genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Unión Proteica , Estabilidad Proteica
11.
Nature ; 534(7606): 277-280, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279228

RESUMEN

In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a ß-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.


Asunto(s)
Aminoácidos/deficiencia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , GTP Pirofosfoquinasa/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , GTP Pirofosfoquinasa/antagonistas & inhibidores , GTP Pirofosfoquinasa/genética , GTP Pirofosfoquinasa/ultraestructura , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Fosforilación , Biosíntesis de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/ultraestructura , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Sistemas de Mensajero Secundario
12.
Mol Microbiol ; 101(4): 531-44, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27149325

RESUMEN

The alarmones (p)ppGpp are important second messengers that orchestrate pleiotropic adaptations of bacteria and plant chloroplasts in response to starvation and stress. Here, we review our structural and mechanistic knowledge on (p)ppGpp metabolism including their synthesis, degradation and interconversion by a highly diverse set of enzymes. Increasing structural information shows how (p)ppGpp interacts with an incredibly diverse set of different targets that are essential for replication, transcription, translation, ribosome assembly and metabolism. This raises the question how the chemically rather simple (p)ppGpp is able to interact with these different targets? Structural analysis shows that the diversity of (p)ppGpp interaction with cellular targets critically relies on the conformational flexibility of the 3' and 5' phosphate moieties allowing alarmones to efficiently modulate the activity of target structures in a broad concentration range. Current approaches in the design of (p)ppGpp-analogs as future antibiotics might be aided by the comprehension of conformational flexibility exhibited by the magic dancers (p)ppGpp.


Asunto(s)
Guanosina Pentafosfato/metabolismo , Animales , Bacterias/metabolismo , Cloroplastos/metabolismo , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Humanos
13.
Genes Cells ; 20(12): 1006-16, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26606426

RESUMEN

(p)ppGpp, a secondary messenger, is induced under stress and shows pleiotropic response. It binds to RNA polymerase and regulates transcription in Escherichia coli. More than 25 years have passed since the first discovery was made on the direct interaction of ppGpp with E. coli RNA polymerase. Several lines of evidence suggest different modes of ppGpp binding to the enzyme. Earlier cross-linking experiments suggested that the ß-subunit of RNA polymerase is the preferred site for ppGpp, whereas recent crystallographic studies pinpoint the interface of ß'/ω-subunits as the site of action. With an aim to validate the binding domain and to follow whether tetra- and pentaphosphate guanosines have different location on RNA polymerase, this work was initiated. RNA polymerase was photo-labeled with 8-azido-ppGpp/8-azido-pppGpp, and the product was digested with trypsin and subjected to mass spectrometry analysis. We observed three new peptides in the trypsin digest of the RNA polymerase labeled with 8-azido-ppGpp, of which two peptides correspond to the same pocket on ß'-subunit as predicted by X-ray structural analysis, whereas the third peptide was mapped on the ß-subunit. In the case of 8-azido-pppGpp-labeled RNA polymerase, we have found only one cross-linked peptide from the ß'-subunit. However, we were unable to identify any binding site of pppGpp on the ß-subunit. Interestingly, we observed that pppGpp at high concentration competes out ppGpp bound to RNA polymerase more efficiently, whereas ppGpp cannot titrate out pppGpp. The competition between tetraphosphate guanosine and pentaphosphate guanosine for E. coli RNA polymerase was followed by gel-based assay as well as by a new method known as DRaCALA assay.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Sitios de Unión , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , Espectrometría de Masas , Modelos Moleculares , Etiquetas de Fotoafinidad/farmacología , Unión Proteica , Estructura Secundaria de Proteína
14.
Mol Cell ; 57(4): 735-749, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25661490

RESUMEN

The nucleotide (p)ppGpp mediates bacterial stress responses, but its targets and underlying mechanisms of action vary among bacterial species and remain incompletely understood. Here, we characterize the molecular interaction between (p)ppGpp and guanylate kinase (GMK), revealing the importance of this interaction in adaptation to starvation. Combining structural and kinetic analyses, we show that (p)ppGpp binds the GMK active site and competitively inhibits the enzyme. The (p)ppGpp-GMK interaction prevents the conversion of GMP to GDP, resulting in GMP accumulation upon amino acid downshift. Abolishing this interaction leads to excess (p)ppGpp and defective adaptation to amino acid starvation. A survey of GMKs from phylogenetically diverse bacteria shows that the (p)ppGpp-GMK interaction is conserved in members of Firmicutes, Actinobacteria, and Deinococcus-Thermus, but not in Proteobacteria, where (p)ppGpp regulates RNA polymerase (RNAP). We propose that GMK is an ancestral (p)ppGpp target and RNAP evolved more recently as a direct target in Proteobacteria.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Evolución Molecular , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanilato-Quinasas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Unión Competitiva , Dominio Catalítico , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/metabolismo , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , Guanosina Trifosfato/metabolismo , Guanilato-Quinasas/química , Modelos Biológicos , Especificidad de la Especie , Estrés Fisiológico
15.
Analyst ; 139(23): 6284-9, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25315398

RESUMEN

Stringent alarmone, namely, guanosine 3'-diphosphate-5'-diphosphate (ppGpp), is a global regulator that plays a critical role in the survival, growth, metabolism, and many other vital processes of microorganisms. Because of its structural similarity to normal nucleotides, it is also a challenge for the selective and sensitive detection of ppGpp nowadays. Herein, we developed a colorimetric method for the selective detection of ppGpp by inhibiting the redox reaction between Fenton-like reagent (composed of Fe(3+) and H2O2) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Owing to the strong coordination affinity between ppGpp and Fe(3+), the chromogenic reaction between ABTS and Fenton-like reagent, occurred in aqueous medium at 37 °C and resulted in a bluish-green solution, which was inhibited with the addition of ppGpp. This phenomenon forms the basis for the colorimetric detection of ppGpp, with a detection limit of 0.19 µM and good selectivity for ppGpp over other nucleotides and anions. Furthermore, the results could be visualized by the naked eye, and the sensitivity of the naked-eye observation could even be further improved with the aid of the introduction of a background color.


Asunto(s)
Colorimetría/métodos , Guanosina Tetrafosfato/química , Peróxido de Hidrógeno/química , Hierro/química , Colorantes/química , Sensibilidad y Especificidad
16.
J Mol Biol ; 426(24): 3973-3984, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25311862

RESUMEN

Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis.


Asunto(s)
ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Biocatálisis , ADN Bacteriano/química , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Factor sigma/química , Factor sigma/genética , Factor sigma/metabolismo , Sitio de Iniciación de la Transcripción
17.
Biosci Biotechnol Biochem ; 78(6): 1022-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036129

RESUMEN

The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.


Asunto(s)
Adenilosuccinato Sintasa/metabolismo , Guanosina Tetrafosfato/farmacología , Oryza/enzimología , Purinas/biosíntesis , Bacillus subtilis/enzimología , Escherichia coli/enzimología , Guanosina Tetrafosfato/química , Cinética , Oryza/metabolismo , Homología de Secuencia de Aminoácido
18.
Bioengineered ; 5(4): 264-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24874800

RESUMEN

Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease.


Asunto(s)
AMP Cíclico/química , GMP Cíclico/análogos & derivados , Guanosina Tetrafosfato/química , Polifosfatos/química , Proteasa La/química , Secuencia de Aminoácidos , Sitios de Unión , Caseínas/química , GMP Cíclico/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Datos de Secuencia Molecular , Proteolisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-23895352

RESUMEN

A new, straightforward, reliable, and convenient protection-free one-pot method for the synthesis of 2'-deoxynucleoside-5'-tetraphosphate and ribonucleoside-5'-tetraphosphate is reported. The present synthetic strategy involves the monophosphorylation of a nucleoside followed by reaction with tris-(tri-n-butylammonium) triphosphate and subsequent hydrolysis of the putative cyclic tetrametaphosphate intermediate to provide nucleoside-5'-tetraphosphate in moderate yield with high purity. A plausible mechanism is proposed to account for the formation of product.


Asunto(s)
Nucleótidos de Adenina/síntesis química , Fosfatos de Dinucleósidos/síntesis química , Guanosina Tetrafosfato/síntesis química , Nucleótidos de Uracilo/síntesis química , Nucleótidos de Adenina/química , Fosfatos de Dinucleósidos/química , Guanosina Tetrafosfato/química , Hidrólisis , Fosforilación , Polifosfatos/química , Nucleótidos de Uracilo/química
20.
Nucleic Acids Res ; 41(12): 6175-89, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23620295

RESUMEN

Both ppGpp and pppGpp are thought to function collectively as second messengers for many complex cellular responses to nutritional stress throughout biology. There are few indications that their regulatory effects might be different; however, this question has been largely unexplored for lack of an ability to experimentally manipulate the relative abundance of ppGpp and pppGpp. Here, we achieve preferential accumulation of either ppGpp or pppGpp with Escherichia coli strains through induction of different Streptococcal (p)ppGpp synthetase fragments. In addition, expression of E. coli GppA, a pppGpp 5'-gamma phosphate hydrolase that converts pppGpp to ppGpp, is manipulated to fine tune differential accumulation of ppGpp and pppGpp. In vivo and in vitro experiments show that pppGpp is less potent than ppGpp with respect to regulation of growth rate, RNA/DNA ratios, ribosomal RNA P1 promoter transcription inhibition, threonine operon promoter activation and RpoS induction. To provide further insights into regulation by (p)ppGpp, we have also determined crystal structures of E. coli RNA polymerase-σ(70) holoenzyme with ppGpp and pppGpp. We find that both nucleotides bind to a site at the interface between ß' and ω subunits.


Asunto(s)
Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Arabinosa/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Guanosina Pentafosfato/biosíntesis , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/biosíntesis , Guanosina Tetrafosfato/química , Hidrolasas/metabolismo , Ligasas/metabolismo , Operón , Regiones Promotoras Genéticas , ARN Bacteriano/biosíntesis , ARN Ribosómico/genética , Factor sigma/química , Factor sigma/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...