Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.291
Filtrar
1.
Curr Biol ; 34(9): R348-R351, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714162

RESUMEN

A recent study has used scalp-recorded electroencephalography to obtain evidence of semantic processing of human speech and objects by domesticated dogs. The results suggest that dogs do comprehend the meaning of familiar spoken words, in that a word can evoke the mental representation of the object to which it refers.


Asunto(s)
Cognición , Semántica , Animales , Perros/psicología , Cognición/fisiología , Humanos , Electroencefalografía , Habla/fisiología , Percepción del Habla/fisiología , Comprensión/fisiología
2.
Cogn Res Princ Implic ; 9(1): 29, 2024 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735013

RESUMEN

Auditory stimuli that are relevant to a listener have the potential to capture focal attention even when unattended, the listener's own name being a particularly effective stimulus. We report two experiments to test the attention-capturing potential of the listener's own name in normal speech and time-compressed speech. In Experiment 1, 39 participants were tested with a visual word categorization task with uncompressed spoken names as background auditory distractors. Participants' word categorization performance was slower when hearing their own name rather than other names, and in a final test, they were faster at detecting their own name than other names. Experiment 2 used the same task paradigm, but the auditory distractors were time-compressed names. Three compression levels were tested with 25 participants in each condition. Participants' word categorization performance was again slower when hearing their own name than when hearing other names; the slowing was strongest with slight compression and weakest with intense compression. Personally relevant time-compressed speech has the potential to capture attention, but the degree of capture depends on the level of compression. Attention capture by time-compressed speech has practical significance and provides partial evidence for the duplex-mechanism account of auditory distraction.


Asunto(s)
Atención , Nombres , Percepción del Habla , Humanos , Atención/fisiología , Femenino , Masculino , Percepción del Habla/fisiología , Adulto , Adulto Joven , Habla/fisiología , Tiempo de Reacción/fisiología , Estimulación Acústica
3.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715409

RESUMEN

Behavioral and brain-related changes in word production have been claimed to predominantly occur after 70 years of age. Most studies investigating age-related changes in adulthood only compared young to older adults, failing to determine whether neural processes underlying word production change at an earlier age than observed in behavior. This study aims to fill this gap by investigating whether changes in neurophysiological processes underlying word production are aligned with behavioral changes. Behavior and the electrophysiological event-related potential patterns of word production were assessed during a picture naming task in 95 participants across five adult lifespan age groups (ranging from 16 to 80 years old). While behavioral performance decreased starting from 70 years of age, significant neurophysiological changes were present at the age of 40 years old, in a time window (between 150 and 220 ms) likely associated with lexical-semantic processes underlying referential word production. These results show that neurophysiological modifications precede the behavioral changes in language production; they can be interpreted in line with the suggestion that the lexical-semantic reorganization in mid-adulthood influences the maintenance of language skills longer than for other cognitive functions.


Asunto(s)
Envejecimiento , Electroencefalografía , Potenciales Evocados , Humanos , Adulto , Anciano , Masculino , Persona de Mediana Edad , Femenino , Adulto Joven , Adolescente , Anciano de 80 o más Años , Envejecimiento/fisiología , Potenciales Evocados/fisiología , Encéfalo/fisiología , Habla/fisiología , Semántica
4.
Nat Commun ; 15(1): 3692, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693186

RESUMEN

Over the last decades, cognitive neuroscience has identified a distributed set of brain regions that are critical for attention. Strong anatomical overlap with brain regions critical for oculomotor processes suggests a joint network for attention and eye movements. However, the role of this shared network in complex, naturalistic environments remains understudied. Here, we investigated eye movements in relation to (un)attended sentences of natural speech. Combining simultaneously recorded eye tracking and magnetoencephalographic data with temporal response functions, we show that gaze tracks attended speech, a phenomenon we termed ocular speech tracking. Ocular speech tracking even differentiates a target from a distractor in a multi-speaker context and is further related to intelligibility. Moreover, we provide evidence for its contribution to neural differences in speech processing, emphasizing the necessity to consider oculomotor activity in future research and in the interpretation of neural differences in auditory cognition.


Asunto(s)
Atención , Movimientos Oculares , Magnetoencefalografía , Percepción del Habla , Habla , Humanos , Atención/fisiología , Movimientos Oculares/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Percepción del Habla/fisiología , Habla/fisiología , Estimulación Acústica , Encéfalo/fisiología , Tecnología de Seguimiento Ocular
5.
J Acoust Soc Am ; 155(5): 3206-3212, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738937

RESUMEN

Modern humans and chimpanzees share a common ancestor on the phylogenetic tree, yet chimpanzees do not spontaneously produce speech or speech sounds. The lab exercise presented in this paper was developed for undergraduate students in a course entitled "What's Special About Human Speech?" The exercise is based on acoustic analyses of the words "cup" and "papa" as spoken by Viki, a home-raised, speech-trained chimpanzee, as well as the words spoken by a human. The analyses allow students to relate differences in articulation and vocal abilities between Viki and humans to the known anatomical differences in their vocal systems. Anatomical and articulation differences between humans and Viki include (1) potential tongue movements, (2) presence or absence of laryngeal air sacs, (3) presence or absence of vocal membranes, and (4) exhalation vs inhalation during production.


Asunto(s)
Pan troglodytes , Acústica del Lenguaje , Habla , Humanos , Animales , Pan troglodytes/fisiología , Habla/fisiología , Lengua/fisiología , Lengua/anatomía & histología , Vocalización Animal/fisiología , Especificidad de la Especie , Medición de la Producción del Habla , Laringe/fisiología , Laringe/anatomía & histología , Fonética
6.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38741267

RESUMEN

The role of the left temporoparietal cortex in speech production has been extensively studied during native language processing, proving crucial in controlled lexico-semantic retrieval under varying cognitive demands. Yet, its role in bilinguals, fluent in both native and second languages, remains poorly understood. Here, we employed continuous theta burst stimulation to disrupt neural activity in the left posterior middle-temporal gyrus (pMTG) and angular gyrus (AG) while Italian-Friulian bilinguals performed a cued picture-naming task. The task involved between-language (naming objects in Italian or Friulian) and within-language blocks (naming objects ["knife"] or associated actions ["cut"] in a single language) in which participants could either maintain (non-switch) or change (switch) instructions based on cues. During within-language blocks, cTBS over the pMTG entailed faster naming for high-demanding switch trials, while cTBS to the AG elicited slower latencies in low-demanding non-switch trials. No cTBS effects were observed in the between-language block. Our findings suggest a causal involvement of the left pMTG and AG in lexico-semantic processing across languages, with distinct contributions to controlled vs. "automatic" retrieval, respectively. However, they do not support the existence of shared control mechanisms within and between language(s) production. Altogether, these results inform neurobiological models of semantic control in bilinguals.


Asunto(s)
Multilingüismo , Lóbulo Parietal , Habla , Lóbulo Temporal , Estimulación Magnética Transcraneal , Humanos , Masculino , Lóbulo Temporal/fisiología , Femenino , Adulto Joven , Adulto , Lóbulo Parietal/fisiología , Habla/fisiología , Señales (Psicología)
7.
PLoS One ; 19(5): e0302739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728329

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE: We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS: A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS: The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION: This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.


Asunto(s)
Estimulación Encefálica Profunda , Lenguaje , Enfermedad de Parkinson , Habla , Voz , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Habla/fisiología , Voz/fisiología , Temblor Esencial/terapia , Temblor Esencial/fisiopatología
8.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658138

RESUMEN

More and more patients worldwide are diagnosed with dementia, which emphasizes the urgent need for early detection markers. In this study, we built on the auditory hypersensitivity theory of a previous study-which postulated that responses to auditory input in the subcortex as well as cortex are enhanced in cognitive decline-and examined auditory encoding of natural continuous speech at both neural levels for its indicative potential for cognitive decline. We recruited study participants aged 60 years and older, who were divided into two groups based on the Montreal Cognitive Assessment, one group with low scores (n = 19, participants with signs of cognitive decline) and a control group (n = 25). Participants completed an audiometric assessment and then we recorded their electroencephalography while they listened to an audiobook and click sounds. We derived temporal response functions and evoked potentials from the data and examined response amplitudes for their potential to predict cognitive decline, controlling for hearing ability and age. Contrary to our expectations, no evidence of auditory hypersensitivity was observed in participants with signs of cognitive decline; response amplitudes were comparable in both cognitive groups. Moreover, the combination of response amplitudes showed no predictive value for cognitive decline. These results challenge the proposed hypothesis and emphasize the need for further research to identify reliable auditory markers for the early detection of cognitive decline.


Asunto(s)
Disfunción Cognitiva , Electroencefalografía , Potenciales Evocados Auditivos , Humanos , Femenino , Masculino , Anciano , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico , Persona de Mediana Edad , Potenciales Evocados Auditivos/fisiología , Percepción del Habla/fisiología , Anciano de 80 o más Años , Corteza Cerebral/fisiología , Corteza Cerebral/fisiopatología , Estimulación Acústica , Habla/fisiología
9.
J Neural Eng ; 21(3)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38648782

RESUMEN

Objective.Brain-computer interfaces (BCIs) have the potential to reinstate lost communication faculties. Results from speech decoding studies indicate that a usable speech BCI based on activity in the sensorimotor cortex (SMC) can be achieved using subdurally implanted electrodes. However, the optimal characteristics for a successful speech implant are largely unknown. We address this topic in a high field blood oxygenation level dependent functional magnetic resonance imaging (fMRI) study, by assessing the decodability of spoken words as a function of hemisphere, gyrus, sulcal depth, and position along the ventral/dorsal-axis.Approach.Twelve subjects conducted a 7T fMRI experiment in which they pronounced 6 different pseudo-words over 6 runs. We divided the SMC by hemisphere, gyrus, sulcal depth, and position along the ventral/dorsal axis. Classification was performed on in these SMC areas using multiclass support vector machine (SVM).Main results.Significant classification was possible from the SMC, but no preference for the left or right hemisphere, nor for the precentral or postcentral gyrus for optimal word classification was detected. Classification while using information from the cortical surface was slightly better than when using information from deep in the central sulcus and was highest within the ventral 50% of SMC. Confusion matrices where highly similar across the entire SMC. An SVM-searchlight analysis revealed significant classification in the superior temporal gyrus and left planum temporale in addition to the SMC.Significance.The current results support a unilateral implant using surface electrodes, covering the ventral 50% of the SMC. The added value of depth electrodes is unclear. We did not observe evidence for variations in the qualitative nature of information across SMC. The current results need to be confirmed in paralyzed patients performing attempted speech.


Asunto(s)
Interfaces Cerebro-Computador , Imagen por Resonancia Magnética , Habla , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto , Femenino , Habla/fisiología , Adulto Joven , Electrodos Implantados , Mapeo Encefálico/métodos
10.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38676191

RESUMEN

This paper addresses a joint training approach applied to a pipeline comprising speech enhancement (SE) and automatic speech recognition (ASR) models, where an acoustic tokenizer is included in the pipeline to leverage the linguistic information from the ASR model to the SE model. The acoustic tokenizer takes the outputs of the ASR encoder and provides a pseudo-label through K-means clustering. To transfer the linguistic information, represented by pseudo-labels, from the acoustic tokenizer to the SE model, a cluster-based pairwise contrastive (CBPC) loss function is proposed, which is a self-supervised contrastive loss function, and combined with an information noise contrastive estimation (infoNCE) loss function. This combined loss function prevents the SE model from overfitting to outlier samples and represents the pronunciation variability in samples with the same pseudo-label. The effectiveness of the proposed CBPC loss function is evaluated on a noisy LibriSpeech dataset by measuring both the speech quality scores and the word error rate (WER). The experimental results reveal that the proposed joint training approach using the described CBPC loss function achieves a lower WER than the conventional joint training approaches. In addition, it is demonstrated that the speech quality scores of the SE model trained using the proposed training approach are higher than those of the standalone-SE model and SE models trained using conventional joint training approaches. An ablation study is also conducted to investigate the effects of different combinations of loss functions on the speech quality scores and WER. Here, it is revealed that the proposed CBPC loss function combined with infoNCE contributes to a reduced WER and an increase in most of the speech quality scores.


Asunto(s)
Ruido , Software de Reconocimiento del Habla , Humanos , Análisis por Conglomerados , Algoritmos , Habla/fisiología
11.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38676246

RESUMEN

Stuttering, affecting approximately 1% of the global population, is a complex speech disorder significantly impacting individuals' quality of life. Prior studies using electromyography (EMG) to examine orofacial muscle activity in stuttering have presented mixed results, highlighting the variability in neuromuscular responses during stuttering episodes. Fifty-five participants with stuttering and 30 individuals without stuttering, aged between 18 and 40, participated in the study. EMG signals from five facial and cervical muscles were recorded during speech tasks and analyzed for mean amplitude and frequency activity in the 5-15 Hz range to identify significant differences. Upon analysis of the 5-15 Hz frequency range, a higher average amplitude was observed in the zygomaticus major muscle for participants while stuttering (p < 0.05). Additionally, when assessing the overall EMG signal amplitude, a higher average amplitude was observed in samples obtained from disfluencies in participants who did not stutter, particularly in the depressor anguli oris muscle (p < 0.05). Significant differences in muscle activity were observed between the two groups, particularly in the depressor anguli oris and zygomaticus major muscles. These results suggest that the underlying neuromuscular mechanisms of stuttering might involve subtle aspects of timing and coordination in muscle activation. Therefore, these findings may contribute to the field of biosensors by providing valuable perspectives on neuromuscular mechanisms and the relevance of electromyography in stuttering research. Further research in this area has the potential to advance the development of biosensor technology for language-related applications and therapeutic interventions in stuttering.


Asunto(s)
Electromiografía , Músculos Faciales , Habla , Tartamudeo , Humanos , Electromiografía/métodos , Masculino , Adulto , Femenino , Tartamudeo/fisiopatología , Habla/fisiología , Músculos Faciales/fisiología , Músculos Faciales/fisiopatología , Fenómenos Biomecánicos/fisiología , Adulto Joven , Adolescente , Contracción Muscular/fisiología
12.
Alzheimers Dement ; 20(5): 3416-3428, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572850

RESUMEN

INTRODUCTION: Screening for Alzheimer's disease neuropathologic change (ADNC) in individuals with atypical presentations is challenging but essential for clinical management. We trained automatic speech-based classifiers to distinguish frontotemporal dementia (FTD) patients with ADNC from those with frontotemporal lobar degeneration (FTLD). METHODS: We trained automatic classifiers with 99 speech features from 1 minute speech samples of 179 participants (ADNC = 36, FTLD = 60, healthy controls [HC] = 89). Patients' pathology was assigned based on autopsy or cerebrospinal fluid analytes. Structural network-based magnetic resonance imaging analyses identified anatomical correlates of distinct speech features. RESULTS: Our classifier showed 0.88 ± $ \pm $ 0.03 area under the curve (AUC) for ADNC versus FTLD and 0.93 ± $ \pm $ 0.04 AUC for patients versus HC. Noun frequency and pause rate correlated with gray matter volume loss in the limbic and salience networks, respectively. DISCUSSION: Brief naturalistic speech samples can be used for screening FTD patients for underlying ADNC in vivo. This work supports the future development of digital assessment tools for FTD. HIGHLIGHTS: We trained machine learning classifiers for frontotemporal dementia patients using natural speech. We grouped participants by neuropathological diagnosis (autopsy) or cerebrospinal fluid biomarkers. Classifiers well distinguished underlying pathology (Alzheimer's disease vs. frontotemporal lobar degeneration) in patients. We identified important features through an explainable artificial intelligence approach. This work lays the groundwork for a speech-based neuropathology screening tool.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Imagen por Resonancia Magnética , Habla , Humanos , Femenino , Enfermedad de Alzheimer/patología , Masculino , Anciano , Demencia Frontotemporal/patología , Habla/fisiología , Persona de Mediana Edad , Fenotipo , Degeneración Lobar Frontotemporal/patología , Aprendizaje Automático
13.
J Neural Eng ; 21(2)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626760

RESUMEN

Objective. In recent years, electroencephalogram (EEG)-based brain-computer interfaces (BCIs) applied to inner speech classification have gathered attention for their potential to provide a communication channel for individuals with speech disabilities. However, existing methodologies for this task fall short in achieving acceptable accuracy for real-life implementation. This paper concentrated on exploring the possibility of using inter-trial coherence (ITC) as a feature extraction technique to enhance inner speech classification accuracy in EEG-based BCIs.Approach. To address the objective, this work presents a novel methodology that employs ITC for feature extraction within a complex Morlet time-frequency representation. The study involves a dataset comprising EEG recordings of four different words for ten subjects, with three recording sessions per subject. The extracted features are then classified using k-nearest-neighbors (kNNs) and support vector machine (SVM).Main results. The average classification accuracy achieved using the proposed methodology is 56.08% for kNN and 59.55% for SVM. These results demonstrate comparable or superior performance in comparison to previous works. The exploration of inter-trial phase coherence as a feature extraction technique proves promising for enhancing accuracy in inner speech classification within EEG-based BCIs.Significance. This study contributes to the advancement of EEG-based BCIs for inner speech classification by introducing a feature extraction methodology using ITC. The obtained results, on par or superior to previous works, highlight the potential significance of this approach in improving the accuracy of BCI systems. The exploration of this technique lays the groundwork for further research toward inner speech decoding.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Habla , Humanos , Electroencefalografía/métodos , Electroencefalografía/clasificación , Masculino , Habla/fisiología , Femenino , Adulto , Máquina de Vectores de Soporte , Adulto Joven , Reproducibilidad de los Resultados , Algoritmos
14.
PLoS One ; 19(4): e0302394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669233

RESUMEN

Digital speech recognition is a challenging problem that requires the ability to learn complex signal characteristics such as frequency, pitch, intensity, timbre, and melody, which traditional methods often face issues in recognizing. This article introduces three solutions based on convolutional neural networks (CNN) to solve the problem: 1D-CNN is designed to learn directly from digital data; 2DS-CNN and 2DM-CNN have a more complex architecture, transferring raw waveform into transformed images using Fourier transform to learn essential features. Experimental results on four large data sets, containing 30,000 samples for each, show that the three proposed models achieve superior performance compared to well-known models such as GoogLeNet and AlexNet, with the best accuracy of 95.87%, 99.65%, and 99.76%, respectively. With 5-10% higher performance than other models, the proposed solution has demonstrated the ability to effectively learn features, improve recognition accuracy and speed, and open up the potential for broad applications in virtual assistants, medical recording, and voice commands.


Asunto(s)
Redes Neurales de la Computación , Software de Reconocimiento del Habla , Humanos , Habla/fisiología , Algoritmos
15.
PLoS One ; 19(4): e0301514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564597

RESUMEN

Evoked potential studies have shown that speech planning modulates auditory cortical responses. The phenomenon's functional relevance is unknown. We tested whether, during this time window of cortical auditory modulation, there is an effect on speakers' perceptual sensitivity for vowel formant discrimination. Participants made same/different judgments for pairs of stimuli consisting of a pre-recorded, self-produced vowel and a formant-shifted version of the same production. Stimuli were presented prior to a "go" signal for speaking, prior to passive listening, and during silent reading. The formant discrimination stimulus /uh/ was tested with a congruent productions list (words with /uh/) and an incongruent productions list (words without /uh/). Logistic curves were fitted to participants' responses, and the just-noticeable difference (JND) served as a measure of discrimination sensitivity. We found a statistically significant effect of condition (worst discrimination before speaking) without congruency effect. Post-hoc pairwise comparisons revealed that JND was significantly greater before speaking than during silent reading. Thus, formant discrimination sensitivity was reduced during speech planning regardless of the congruence between discrimination stimulus and predicted acoustic consequences of the planned speech movements. This finding may inform ongoing efforts to determine the functional relevance of the previously reported modulation of auditory processing during speech planning.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Habla/fisiología , Percepción del Habla/fisiología , Acústica , Movimiento , Fonética , Acústica del Lenguaje
16.
Sci Rep ; 14(1): 9431, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658576

RESUMEN

This work presents data from 148 German native speakers (20-55 years of age), who completed several speaking tasks, ranging from formal tests such as word production tests to more ecologically valid spontaneous tasks that were designed to mimic natural speech. This speech data is supplemented by performance measures on several standardised, computer-based executive functioning (EF) tests covering domains of working-memory, cognitive flexibility, inhibition, and attention. The speech and EF data are further complemented by a rich collection of demographic data that documents education level, family status, and physical and psychological well-being. Additionally, the dataset includes information of the participants' hormone levels (cortisol, progesterone, oestradiol, and testosterone) at the time of testing. This dataset is thus a carefully curated, expansive collection of data that spans over different EF domains and includes both formal speaking tests as well as spontaneous speaking tasks, supplemented by valuable phenotypical information. This will thus provide the unique opportunity to perform a variety of analyses in the context of speech, EF, and inter-individual differences, and to our knowledge is the first of its kind in the German language. We refer to this dataset as SpEx since it combines speech and executive functioning data. Researchers interested in conducting exploratory or hypothesis-driven analyses in the field of individual differences in language and executive functioning, are encouraged to request access to this resource. Applicants will then be provided with an encrypted version of the data which can be downloaded.


Asunto(s)
Función Ejecutiva , Habla , Humanos , Función Ejecutiva/fisiología , Adulto , Persona de Mediana Edad , Femenino , Masculino , Habla/fisiología , Alemania , Adulto Joven , Lenguaje , Memoria a Corto Plazo/fisiología , Pruebas Neuropsicológicas
17.
J Neural Eng ; 21(3)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38648783

RESUMEN

Objective. Our goal is to decode firing patterns of single neurons in the left ventralis intermediate nucleus (Vim) of the thalamus, related to speech production, perception, and imagery. For realistic speech brain-machine interfaces (BMIs), we aim to characterize the amount of thalamic neurons necessary for high accuracy decoding.Approach. We intraoperatively recorded single neuron activity in the left Vim of eight neurosurgical patients undergoing implantation of deep brain stimulator or RF lesioning during production, perception and imagery of the five monophthongal vowel sounds. We utilized the Spade decoder, a machine learning algorithm that dynamically learns specific features of firing patterns and is based on sparse decomposition of the high dimensional feature space.Main results. Spade outperformed all algorithms compared with, for all three aspects of speech: production, perception and imagery, and obtained accuracies of 100%, 96%, and 92%, respectively (chance level: 20%) based on pooling together neurons across all patients. The accuracy was logarithmic in the amount of neurons for all three aspects of speech. Regardless of the amount of units employed, production gained highest accuracies, whereas perception and imagery equated with each other.Significance. Our research renders single neuron activity in the left Vim a promising source of inputs to BMIs for restoration of speech faculties for locked-in patients or patients with anarthria or dysarthria to allow them to communicate again. Our characterization of how many neurons are necessary to achieve a certain decoding accuracy is of utmost importance for planning BMI implantation.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Automático , Neuronas , Habla , Tálamo , Humanos , Neuronas/fisiología , Masculino , Femenino , Persona de Mediana Edad , Habla/fisiología , Adulto , Tálamo/fisiología , Estimulación Encefálica Profunda/métodos , Anciano , Percepción del Habla/fisiología
18.
J Speech Lang Hear Res ; 67(5): 1400-1412, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38573836

RESUMEN

PURPOSE: We compare two signal smoothing and differentiation approaches: a frequently used approach in the speech community of digital filtering with approximation of derivatives by finite differences and a spline smoothing approach widely used in other fields of human movement science. METHOD: In particular, we compare the values of a classic set of kinematic parameters estimated by the two smoothing approaches and assess, via regressions, how well these reconstructed values conform to known laws about relations between the parameters. RESULTS: Substantially smaller regression errors were observed for the spline smoothing than for the filtering approach. CONCLUSION: This result is in broad agreement with reports from other fields of movement science and underpins the superiority of splines also in the domain of speech.


Asunto(s)
Habla , Humanos , Fenómenos Biomecánicos , Habla/fisiología , Análisis de Regresión , Procesamiento de Señales Asistido por Computador
19.
J Speech Lang Hear Res ; 67(5): 1424-1460, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38593006

RESUMEN

PURPOSE: The oral structures such as the tongue and lips have remarkable somatosensory capacities, but understanding the roles of somatosensation in speech production requires a more comprehensive knowledge of somatosensation in the speech production system in its entirety, including the respiratory, laryngeal, and supralaryngeal subsystems. This review was conducted to summarize the system-wide somatosensory information available for speech production. METHOD: The search was conducted with PubMed/Medline and Google Scholar for articles published until November 2023. Numerous search terms were used in conducting the review, which covered the topics of psychophysics, basic and clinical behavioral research, neuroanatomy, and neuroscience. RESULTS AND CONCLUSIONS: The current understanding of speech somatosensation rests primarily on the two pillars of psychophysics and neuroscience. The confluence of polymodal afferent streams supports the development, maintenance, and refinement of speech production. Receptors are both canonical and noncanonical, with the latter occurring especially in the muscles innervated by the facial nerve. Somatosensory representation in the cortex is disproportionately large and provides for sensory interactions. Speech somatosensory function is robust over the lifespan, with possible declines in advanced aging. The understanding of somatosensation in speech disorders is largely disconnected from research and theory on speech production. A speech somatoscape is proposed as the generalized, system-wide sensation of speech production, with implications for speech development, speech motor control, and speech disorders.


Asunto(s)
Habla , Humanos , Habla/fisiología , Labio/fisiología , Lengua/fisiología
20.
J Speech Lang Hear Res ; 67(5): 1370-1384, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38619435

RESUMEN

OBJECTIVES: The study aimed to investigate the predictive potential of language environment and vocal development status measures obtained through integrated analysis of Language ENvironment Analysis (LENA) recordings during the prelinguistic stage for subsequent speech and language development in Korean-acquiring children. Specifically, this study explored whether measures from both LENA-automated analysis and human coding at 6-8 months and 12-14 months of age predict vocabulary and phonological development at 18-20 months. METHOD: One-day home recordings from 20 children were collected using a LENA recorder at 6-8 months, 12-14 months, and 18-20 months. Both LENA-automated measures and measures from human coding were obtained from recordings at 6-8 months and 12-14 months. The number of different words, consonant inventory, and utterance structure inventory were identified from recordings of 18-20 months. Correlation and multiple regression analyses were performed to investigate whether measures related to early language environment and child vocalization at 6-8 months and 12-14 months were predictive of vocabulary and phonological measures at 18-20 months. RESULTS: The results showed that the two main LENA-automated measures, conversational turn count (CTC) and child vocalization count, were positively correlated with all vocabulary and phonological measures at 18-20 months. Multiple regression analysis revealed that CTC during the prelinguistic stages was the most significant predictor of a number of different words, consonant inventory, and utterance structure inventory at 18-20 months. Also, adult word count in LENA-automated measures, child-directed speech ratio, and canonical babbling ratio measured by human coding significantly predicted some vocabulary and phonological measures at 18-20 months. CONCLUSION: This study highlights the multifaceted nature of language acquisition and collectively emphasizes the value of considering both quantitative and qualitative aspects of language input to understand early language development in children.


Asunto(s)
Lenguaje Infantil , Desarrollo del Lenguaje , Habla , Vocabulario , Humanos , Masculino , Femenino , Lactante , Habla/fisiología , Fonética , Medición de la Producción del Habla/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...