Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Microbiol Spectr ; 12(4): e0401723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488280

RESUMEN

Haemophilus and Aggregatibacter are two of the most common bacterial genera in the human oral cavity, encompassing both commensals and pathogens of substantial ecological and medical significance. In this study, we conducted a metapangenomic analysis of oral Haemophilus and Aggregatibacter species to uncover genomic diversity, phylogenetic relationships, and habitat specialization within the human oral cavity. Using three metrics-pangenomic gene content, phylogenomics, and average nucleotide identity (ANI)-we first identified distinct species and sub-species groups among these genera. Mapping of metagenomic reads then revealed clear patterns of habitat specialization, such as Aggregatibacter species predominantly in dental plaque, a distinctive Haemophilus parainfluenzae sub-species group on the tongue dorsum, and H. sp. HMT-036 predominantly in keratinized gingiva and buccal mucosa. In addition, we found that supragingival plaque samples contained predominantly only one out of the three taxa, H. parainfluenzae, Aggregatibacter aphrophilus, and A. sp. HMT-458, suggesting independent niches or a competitive relationship. Functional analyses revealed the presence of key metabolic genes, such as oxaloacetate decarboxylase, correlated with habitat specialization, suggesting metabolic versatility as a driving force. Additionally, heme synthesis distinguishes H. sp. HMT-036 from closely related Haemophilus haemolyticus, suggesting that the availability of micronutrients, particularly iron, was important in the evolutionary ecology of these species. Overall, our study exemplifies the power of metapangenomics to identify factors that may affect ecological interactions within microbial communities, including genomic diversity, habitat specialization, and metabolic versatility. IMPORTANCE: Understanding the microbial ecology of the mouth is essential for comprehending human physiology. This study employs metapangenomics to reveal that various Haemophilus and Aggregatibacter species exhibit distinct ecological preferences within the oral cavity of healthy individuals, thereby supporting the site-specialist hypothesis. Additionally, it was observed that the gene pool of different Haemophilus species correlates with their ecological niches. These findings shed light on the significance of key metabolic functions in shaping microbial distribution patterns and interspecies interactions in the oral ecosystem.


Asunto(s)
Ecosistema , Haemophilus , Humanos , Aggregatibacter/fisiología , Filogenia , Haemophilus/genética , Boca
2.
Microbiol Spectr ; 11(4): e0477222, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37382545

RESUMEN

Haemophilus seminalis is a newly proposed species that is phylogenetically related to Haemophilus haemolyticus. The distribution of H. seminalis in the human population, its genomic diversity, and its pathogenic potential are still unclear. This study reports the finding of our comparative genomic analyses of four newly isolated Haemophilus strains (SZY H8, SZY H35, SZY H36, and SZY H68) from human sputum specimens (Guangzhou, China) along with the publicly available genomes of other phylogenetically related Haemophilus species. Based on pairwise comparisons of the 16S rRNA gene sequences, the four isolates showed <98.65% sequence identity to the type strains of all known Haemophilus species but were identified as belonging to H. seminalis, based on comparable phenotypic and genotypic features. Additionally, the four isolates showed high genome-genome relatedness indices (>95% ANI values) with 17 strains that were previously identified as either "Haemophilus intermedius" or hemin (X-factor)-independent H. haemolyticus and therefore required a more detailed classification study. Phylogenetically, these isolates, along with the two previously described H. seminalis isolates (a total of 23 isolates), shared a highly homologous lineage that is distinct from the clades of the main H. haemolyticus and Haemophilus influenzae strains. These isolates present an open pangenome with multiple virulence genes. Notably, all 23 isolates have a functional heme biosynthesis pathway that is similar to that of Haemophilus parainfluenzae. The phenotype of hemin (X-factor) independence and the analysis of the ispD, pepG, and moeA genes can be used to distinguish these isolates from H. haemolyticus and H. influenzae. Based on the above findings, we propose a reclassification for all "H. intermedius" and two H. haemolyticus isolates belonging to H. seminalis with an emended description of H. seminalis. This study provides a more accurate identification of Haemophilus isolates for use in the clinical laboratory and a better understanding of the clinical significance and genetic diversity in human environments. IMPORTANCE As a versatile opportunistic pathogen, the accurate identification of Haemophilus species is a challenge in clinical practice. In this study, we characterized the phenotypic and genotypic features of four H. seminalis strains that were isolated from human sputum specimens and propose the "H. intermedius" and hemin (X-factor)-independent H. haemolyticus isolates as belonging to H. seminalis. The prediction of virulence-related genes indicates that H. seminalis isolates carry several virulence genes that are likely to play an important role in its pathogenicity. In addition, we depict that the genes ispD, pepG, and moeA can be used as biomarkers for distinguishing H. seminalis from H. haemolyticus and H. influenzae. Our findings provide some insights into the identification, epidemiology, genetic diversity, pathogenic potential, and antimicrobial resistance of the newly proposed H. seminalis.


Asunto(s)
Haemophilus , Hemina , Humanos , ARN Ribosómico 16S/genética , Haemophilus/genética , Haemophilus influenzae , Genómica , Filogenia , Variación Genética
3.
Microbiol Spectr ; 11(1): e0386022, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475849

RESUMEN

Patients with chronic obstructive pulmonary disease (COPD) benefit from the immunomodulatory effect of azithromycin, but long-term administration may alter colonizing bacteria. Our goal was to identify changes in Haemophilus influenzae and Haemophilus parainfluenzae during azithromycin treatment. Fifteen patients were followed while receiving prolonged azithromycin treatment (Hospital Universitari de Bellvitge, Spain). Four patients (P02, P08, P11, and P13) were persistently colonized by H. influenzae for at least 3 months and two (P04 and P11) by H. parainfluenzae. Isolates from these patients (53 H. influenzae and 18 H. parainfluenzae) were included to identify, by whole-genome sequencing, antimicrobial resistance changes and genetic variation accumulated during persistent colonization. All persistent lineages isolated before treatment were azithromycin-susceptible but developed resistance within the first months, apart from those belonging to P02, who discontinued the treatment. H. influenzae isolates from P08-ST107 acquired mutations in 23S rRNA, and those from P11-ST2480 and P13-ST165 had changes in L4 and L22. In H. parainfluenzae, P04 persistent isolates acquired changes in rlmC, and P11 carried genes encoding MefE/MsrD efflux pumps in an integrative conjugative element, which was also identified in H. influenzae P11-ST147. Other genetic variation occurred in genes associated with cell wall and inorganic ion metabolism. Persistent H. influenzae strains all showed changes in licA and hgpB genes. Other genes (lex1, lic3A, hgpC, and fadL) had variation in multiple lineages. Furthermore, persistent strains showed loss, acquisition, or genetic changes in prophage-associated regions. Long-term azithromycin therapy results in macrolide resistance, as well as genetic changes that likely favor bacterial adaptation during persistent respiratory colonization. IMPORTANCE The immunomodulatory properties of azithromycin reduce the frequency of exacerbations and improve the quality of life of COPD patients. However, long-term administration may alter the respiratory microbiota, such as Haemophilus influenzae, an opportunistic respiratory colonizing bacteria that play an important role in exacerbations. This study contributes to a better understanding of COPD progression by characterizing the clinical evolution of H. influenzae in a cohort of patients with prolonged azithromycin treatment. The emergence of macrolide resistance during the first months, combined with the role of Haemophilus parainfluenzae as a reservoir and source of resistance dissemination, is a cause for concern that may lead to therapeutic failure. Furthermore, genetic variations in cell wall and inorganic ion metabolism coding genes likely favor bacterial adaptation to host selective pressures. Therefore, the bacterial pathoadaptive evolution in these severe COPD patients raise our awareness of the possible spread of macrolide resistance and selection of host-adapted clones.


Asunto(s)
Infecciones por Haemophilus , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Azitromicina/uso terapéutico , Azitromicina/farmacología , Haemophilus/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Calidad de Vida , Infecciones por Haemophilus/tratamiento farmacológico , Infecciones por Haemophilus/microbiología , Macrólidos/farmacología , Macrólidos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Sistema Respiratorio , Haemophilus influenzae
4.
Genome Med ; 14(1): 13, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139905

RESUMEN

BACKGROUND: Bacteria belonging to the genus Haemophilus cause a wide range of diseases in humans. Recently, H. influenzae was classified by the WHO as priority pathogen due to the wide spread of ampicillin resistant strains. However, other Haemophilus spp. are often misclassified as H. influenzae. Therefore, we established an accurate and rapid whole genome sequencing (WGS) based classification and serotyping algorithm and combined it with the detection of resistance genes. METHODS: A gene presence/absence-based classification algorithm was developed, which employs the open-source gene-detection tool SRST2 and a new classification database comprising 36 genes, including capsule loci for serotyping. These genes were identified using a comparative genome analysis of 215 strains belonging to ten human-related Haemophilus (sub)species (training dataset). The algorithm was evaluated on 1329 public short read datasets (evaluation dataset) and used to reclassify 262 clinical Haemophilus spp. isolates from 250 patients (German cohort). In addition, the presence of antibiotic resistance genes within the German dataset was evaluated with SRST2 and correlated with results of traditional phenotyping assays. RESULTS: The newly developed algorithm can differentiate between clinically relevant Haemophilus species including, but not limited to, H. influenzae, H. haemolyticus, and H. parainfluenzae. It can also identify putative haemin-independent H. haemolyticus strains and determine the serotype of typeable Haemophilus strains. The algorithm performed excellently in the evaluation dataset (99.6% concordance with reported species classification and 99.5% with reported serotype) and revealed several misclassifications. Additionally, 83 out of 262 (31.7%) suspected H. influenzae strains from the German cohort were in fact H. haemolyticus strains, some of which associated with mouth abscesses and lower respiratory tract infections. Resistance genes were detected in 16 out of 262 datasets from the German cohort. Prediction of ampicillin resistance, associated with blaTEM-1D, and tetracycline resistance, associated with tetB, correlated well with available phenotypic data. CONCLUSIONS: Our new classification database and algorithm have the potential to improve diagnosis and surveillance of Haemophilus spp. and can easily be coupled with other public genotyping and antimicrobial resistance databases. Our data also point towards a possible pathogenic role of H. haemolyticus strains, which needs to be further investigated.


Asunto(s)
Antibacterianos , Infecciones por Haemophilus , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Haemophilus/genética , Infecciones por Haemophilus/epidemiología , Infecciones por Haemophilus/microbiología , Humanos , Secuenciación Completa del Genoma
5.
Emerg Infect Dis ; 28(1): 104-110, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34932443

RESUMEN

The prevalence of antimicrobial resistance among Haemophilus spp. is a critical concern, but high-level quinolone-resistant strains had not been isolated from children. We isolated high-level quinolone-resistant H. haemolyticus from the suction sputum of a 9-year-old patient. The patient had received home medical care with mechanical ventilation for 2 years and had not been exposed to any quinolones for >3 years. The H. haemolyticus strain we isolated, 2019-19, shared biochemical features with H. influenzae. However, whole-genome analysis found this strain was closer to H. haemolyticus. Phylogenetic and mass spectrometry analyses indicated that strain 2019-19 was in the same cluster as H. haemolyticus. Comparison of quinolone resistance-determining regions showed strain 2019-19 possessed various amino acid substitutions, including those associated with quinolone resistance. This report highlights the existence of high-level quinolone-resistant Haemophilus species that have been isolated from both adults and children.


Asunto(s)
Infecciones por Haemophilus , Quinolonas , Adulto , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Niño , Haemophilus/genética , Infecciones por Haemophilus/tratamiento farmacológico , Haemophilus influenzae , Humanos , Filogenia , Quinolonas/farmacología
6.
Nucleic Acids Res ; 49(19): e113, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417598

RESUMEN

DNA methylation is widespread amongst eukaryotes and prokaryotes to modulate gene expression and confer viral resistance. 5-Methylcytosine (m5C) methylation has been described in genomes of a large fraction of bacterial species as part of restriction-modification systems, each composed of a methyltransferase and cognate restriction enzyme. Methylases are site-specific and target sequences vary across organisms. High-throughput methods, such as bisulfite-sequencing can identify m5C at base resolution but require specialized library preparations and single molecule, real-time (SMRT) sequencing usually misses m5C. Here, we present a new method called RIMS-seq (rapid identification of methylase specificity) to simultaneously sequence bacterial genomes and determine m5C methylase specificities using a simple experimental protocol that closely resembles the DNA-seq protocol for Illumina. Importantly, the resulting sequencing quality is identical to DNA-seq, enabling RIMS-seq to substitute standard sequencing of bacterial genomes. Applied to bacteria and synthetic mixed communities, RIMS-seq reveals new methylase specificities, supporting routine study of m5C methylation while sequencing new genomes.


Asunto(s)
5-Metilcitosina/metabolismo , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Escherichia coli K12/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Aeromonas hydrophila/enzimología , Aeromonas hydrophila/genética , Bacillus amyloliquefaciens/enzimología , Bacillus amyloliquefaciens/genética , Secuencia de Bases , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas de Restricción del ADN/genética , Escherichia coli K12/enzimología , Regulación Bacteriana de la Expresión Génica , Haemophilus/enzimología , Haemophilus/genética , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Humanos , Microbiota/genética , Análisis de Secuencia de ADN , Piel/microbiología
7.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34148877

RESUMEN

Diagnosis and treatment of various diseases in Ayurveda, the Indian system of medicine, relies on 'prakriti' phenotyping of individuals into predominantly three constitutions, kapha, pitta and vata. Recent studies propose that microbiome play an integral role in precision medicine. A study of the relationship between prakriti - the basis of personalized medicine in Ayurveda and that of gut microbiome, and possible biomarker of an individual's health, would vastly improve precision therapy. Towards this, we analyzed bacterial metagenomes from buccal (oral microbiome) and fecal (gut microbiome) samples of 272 healthy individuals of various predominant prakritis. Major bacterial genera from gut microbiome included Prevotella, Bacteroides and Dialister while oral microbiome included Streptococcus, Neisseria, Veilonella, Haemophilus, Porphyromonas and Prevotella. Though the core microbiome was shared across all individuals, we found prakriti specific signatures such as preferential presence of Paraprevotella and Christensenellaceae in vata individuals. A comparison of core gut microbiome of each prakriti with a database of 'healthy' microbes identified microbes unique to each prakriti with functional roles similar to the physiological characteristics of various prakritis as described in Ayurveda. Our findings provide evidence to Ayurvedic interventions based on prakriti phenotyping and possible microbial biomarkers that can stratify the heterogenous population and aid in precision therapy.


Asunto(s)
Medicina Ayurvédica/métodos , Metagenoma , Medicina de Precisión/métodos , Simbiosis/fisiología , Adulto , Técnicas de Tipificación Bacteriana , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , ADN Bacteriano/genética , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Haemophilus/clasificación , Haemophilus/genética , Haemophilus/aislamiento & purificación , Voluntarios Sanos , Humanos , Masculino , Boca/microbiología , Neisseria/clasificación , Neisseria/genética , Neisseria/aislamiento & purificación , Filogenia , Porphyromonas/clasificación , Porphyromonas/genética , Porphyromonas/aislamiento & purificación , Prevotella/clasificación , Prevotella/genética , Prevotella/aislamiento & purificación , Streptococcus/clasificación , Streptococcus/genética , Streptococcus/aislamiento & purificación , Veillonella/clasificación , Veillonella/genética , Veillonella/aislamiento & purificación , Veillonellaceae/clasificación , Veillonellaceae/genética , Veillonellaceae/aislamiento & purificación
8.
J Microbiol Immunol Infect ; 54(6): 1130-1138, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33390332

RESUMEN

BACKGROUND/PURPOSE: This study aimed to investigate the clinical characteristics and outcomes of bacteremia caused by Haemophilus and Aggregatibacter species in patients who were treated at a medical center between 2006 and 2018. METHODS: Haemophilus and Aggregatibacter isolates were identified up to the species level using Bruker Biotyper MALDI-TOF analysis and ancillary 16S rRNA gene sequencing analysis (in case of ambiguity). Clinical characteristics and outcomes of patients with bacteremia caused by these organisms were evaluated. RESULTS: Sixty-five Haemophilus and Aggregatibacter species isolates causing bacteremia were identified from nonduplicated patients, including 51 (78.5%) Haemophilus influenzae, 6 (9.2%) Haemophilus parainfluenzae, 1 (1.5%) Haemophilus haemolyticus, 3 (4.6%) A. aphrophilus, and 4 (6.2%) A. segnis. Hospital mortality was observed in 18 (28.1%) of 64 patients with bacteremia caused by Haemophilus (n = 57) and Aggregatibacter species (n = 7). The majority of patients with bacteremia had community-acquired disease with low severity. The average Sequential Organ Failure Assessment (SOFA) score was low (4.4 ± 4.7). But, a higher SOFA score (adjusted odds ratio 2.5, 95% confidence interval 1.22-5.12; P = 0.01) was an independent factor predicting poor 7-day clinical outcomes in patients with community-acquired H. influenzae bacteremia (n = 39). CONCLUSIONS: The overall hospital mortality of 28.1% was observed among patients with bacteremia due to Haemophilus and Aggregatibacter species. A higher SOFA score was and independent predictor of poor 7-day clinical outcomes in patients with community-acquired H. influenzae bacteremia.


Asunto(s)
Aggregatibacter/efectos de los fármacos , Antibacterianos/farmacología , Bacteriemia/microbiología , Haemophilus/efectos de los fármacos , Adulto , Anciano , Aggregatibacter/clasificación , Aggregatibacter/genética , Bacteriemia/diagnóstico , Femenino , Haemophilus/clasificación , Haemophilus/genética , Mortalidad Hospitalaria , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , ARN Ribosómico 16S/genética
9.
Rev Int Androl ; 19(3): 160-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32563585

RESUMEN

INTRODUCTION AND OBJECTIVES: Pathogens such as Haemophilus spp. have been associated with non-gonococcal urethritis, but their role is unproven. To describe the clinical characteristics and therapeutic outcomes in male patients diagnosed with Haemophilus spp. urethritis. METHODS: We carried out a retrospective study of all patients who presented to our hospital (in either the emergency department or the outpatient clinic) between July 2016 and April 2018 in whom Haemophilus spp. was isolated in the urethral samples. We enrolled 30 men with Haemophilus spp.-positive urethritis, including coinfections with Neisseria gonorrhoeae and Chlamydia trachomatis. Clinical, laboratory, demographic, and behavioral data were obtained by reviewing medical histories. RESULTS: The mean age of the patients was 36.6 years (range 21-87). Seventeen patients (63%) reported being exclusively heterosexual. Three patients (10%) were HIV infected, all of them with an undetectable viral load. The most common clinical presentation was mucopurulent urethral discharge, in 13 patients (43%). The antibiotic treatment achieved a complete clinical resolution in 73%. CONCLUSIONS: Haemophilus urethritis affected men regardless of their sexual orientation or HIV status. Unprotected oral sex may play a role in its transmission. The limitations of the study preclude verification of the pathogenic role of Haemophilus spp. in acute urethritis, but clinical response after antibiotic treatment suggests that Haemophilus spp. can play such a role.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones por Haemophilus/tratamiento farmacológico , Haemophilus/aislamiento & purificación , Uretra/microbiología , Uretritis/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Haemophilus/genética , Infecciones por Haemophilus/diagnóstico , Infecciones por Haemophilus/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Estudios Retrospectivos , Uretritis/diagnóstico , Uretritis/epidemiología , Uretritis/microbiología , Adulto Joven
10.
Mol Genet Genomics ; 296(1): 21-31, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32944788

RESUMEN

The lungs possess an effective antimicrobial system and a strong ability to eliminate microorganisms in healthy organisms, and were once considered sterile. With the development of culture-independent sequencing technology, the richness and diversity of porcine lung microbiota have been gaining attention. In order to study the relationship between lung microbiota and porcine respiratory disease complex (PRDC), the lung microbiota in healthy and diseased swine bronchoalveolar lavage fluids were analyzed and compared using the Illumina MiSeq sequencing platform. The predominant microbial communities of healthy and diseased swine were similar at the phylum level, mainly composed of Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes. However, the bacterial taxonomic communities of healthy and diseased swine differed at the genus level. The higher relative abundances of Lactococcus, Enterococcus, Staphylococcus, and Lactobacillus genera in healthy swine might provide more benefits for lung health, while the enhanced richness of Streptococcus, Haemophilus, Pasteurella, and Bordetella genera in diseased swine might be closely related to pathogen invasion and the occurrence of respiratory disease. In conclusion, the observed differences in the richness and diversity of lung microbiota can provide novel insights into their relationship with PRDC. Analyses of swine lung microbiota communities might produce an effective strategy for the control and prevention of respiratory tract infections.


Asunto(s)
ADN Bacteriano/genética , Pulmón/microbiología , Microbiota/genética , Infecciones del Sistema Respiratorio/microbiología , Porcinos/microbiología , Animales , Bordetella/clasificación , Bordetella/genética , Bordetella/aislamiento & purificación , Bordetella/patogenicidad , Líquido del Lavado Bronquioalveolar/microbiología , Enterococcus/clasificación , Enterococcus/genética , Enterococcus/aislamiento & purificación , Haemophilus/clasificación , Haemophilus/genética , Haemophilus/aislamiento & purificación , Haemophilus/patogenicidad , Secuenciación de Nucleótidos de Alto Rendimiento , Lactobacillus/clasificación , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Lactococcus/clasificación , Lactococcus/genética , Lactococcus/aislamiento & purificación , Pasteurella/clasificación , Pasteurella/genética , Pasteurella/aislamiento & purificación , Pasteurella/patogenicidad , Filogenia , ARN Ribosómico 16S/genética , Staphylococcus/clasificación , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Streptococcus/clasificación , Streptococcus/genética , Streptococcus/aislamiento & purificación , Streptococcus/patogenicidad
11.
Allergy ; 75(4): 808-817, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31556120

RESUMEN

BACKGROUND: Airway ecology is altered in asthma and chronic obstructive pulmonary disease (COPD). Anti-microbial interventions might have benefit in subgroups of airway disease. Differences in sputum microbial profiles at acute exacerbation of airways disease are reflected by the γProteobacteria:Firmicutes (γP:F) ratio. We hypothesized that sputum microbiomic clusters exist in stable airways disease, which can be differentiated by the sputum γP:F ratio. METHODS: Sputum samples were collected from 63 subjects with severe asthma and 78 subjects with moderate-to-severe COPD in a prospective single centre trial. Microbial profiles were obtained through 16S rRNA gene sequencing. Topological data analysis was used to visualize the data set and cluster analysis performed at genus level. Clinical characteristics and sputum inflammatory mediators were compared across the clusters. RESULTS: Two ecological clusters were identified across the combined airways disease population. The smaller cluster was predominantly COPD and was characterized by dominance of Haemophilus at genus level (n = 20), high γP:F ratio, increased H influenzae, low diversity measures and increased pro-inflammatory mediators when compared to the larger Haemophilus-low cluster (n = 121), in which Streptococcus demonstrated the highest relative abundance at the genus level. Similar clusters were identified within disease groups individually and the γP:F ratio consistently differentiated between clusters. CONCLUSION: Cluster analysis by airway ecology of asthma and COPD in stable state identified two subgroups differentiated according to dominance of Haemophilus. The γP:F ratio was able to distinguish the Haemophilus-high versus Haemophilus-low subgroups, whether the Haemophilus-high group might benefit from treatment strategies to modulate the airway ecology warrants further investigation.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Asma/diagnóstico , Asma/epidemiología , Análisis por Conglomerados , Femenino , Haemophilus/genética , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , ARN Ribosómico 16S/genética , Esputo
12.
Microb Genom ; 6(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31860436

RESUMEN

The heterogeneous and highly recombinogenic genus Haemophilus comprises several species, some of which are pathogenic to humans. All share an absolute requirement for blood-derived factors during growth. Certain species, such as the pathogen Haemophilus influenzae and the commensal Haemophilus haemolyticus, are thought to require both haemin (X-factor) and nicotinamide adenine dinucleotide (NAD, V-factor), whereas others, such as the informally classified 'Haemophilus intermedius subsp. intermedius', and Haemophilus parainfluenzae, only require V-factor. These differing growth requirements are commonly used for species differentiation, although a number of studies are now revealing issues with this approach. Here, we perform large-scale phylogenomics of 240 Haemophilus spp. genomes, including five 'H. intermedius' genomes generated in the current study, to reveal that strains of the 'H. intermedius' group are in fact haemin-independent H. haemolyticus (hiHh). Closer examination of these hiHh strains revealed that they encode an intact haemin biosynthesis pathway, unlike haemin-dependent H. haemolyticus and H. influenzae, which lack most haemin biosynthesis genes. Our results suggest that the common ancestor of modern-day H. haemolyticus and H. influenzae lost key haemin biosynthesis loci, likely as a consequence of specialized adaptation to otorhinolaryngeal and respiratory niches during their divergence from H. parainfluenzae. Genetic similarity analysis demonstrated that the haemin biosynthesis loci acquired in the hiHh lineage were likely laterally transferred from a H. parainfluenzae ancestor, and that this event probably occurred only once in hiHh. This study further challenges the validity of phenotypic methods for differentiating among Haemophilus species, and highlights the need for whole-genome sequencing for accurate characterization of species within this taxonomically challenging genus.


Asunto(s)
Genoma Bacteriano , Haemophilus/genética , Hemina , Filogenia
13.
PLoS One ; 14(11): e0225636, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31770392

RESUMEN

OBJECTIVE: To investigate age-associated changes in airway microbiome composition and their relationships with lung function and arterial stiffness among genetically matched young and elderly pairs. METHODS: Twenty-four genetically linked family pairs comprised of younger (≤40 years) and older (≥60 years) healthy participants were recruited (Total n = 48). Lung function and arterial stiffness (carotid-femoral pulse wave velocity (PWV) and augmentation index (AIx)) were assessed. Sputum samples were collected for targeted 16S rRNA gene amplicon sequencing and correlations between microbiome composition, lung function and arterial stiffness were investigated. RESULTS: Elderly participants exhibited reductions in lung function (FEV1 (p<0.001), FVC (p<0.001) and percentage FEV1/FVC (p = 0.003)) and a 1.3-3.9-fold increase in arterial stiffness (p<0.001) relative to genetically related younger adults. Elderly adults had a higher relative abundance of Firmicutes (p = 0.035) and lower relative abundance of Proteobacteria (p = 0.014), including specific genera Haemophilus (p = 0.024) and Lautropia (p = 0.020) which were enriched in the younger adults. Alpha diversity was comparable between young and elderly pairs (p>0.05) but was inversely associated with lung function (FEV1%Predicted and FVC %Predicted) in the young (p = 0.006 and p = 0.003) though not the elderly (p = 0.481 and p = 0.696). Conversely, alpha diversity was negatively associated with PWV in the elderly (p = 0.01) but not the young (p = 0.569). Specifically, phylum Firmicutes including the genus Gemella were correlated with lung function (FVC %Predicted) in the young group (p = 0.047 and p = 0.040), while Fusobacteria and Leptotrichia were associated with arterial stiffness (PWV) in the elderly (both p = 0.004). CONCLUSION: Ageing is associated with increased Firmicutes and decreased Proteobacteria representation in the airway microbiome among a healthy Asian cohort. The diversity and composition of the airway microbiome is independently associated with lung function and arterial stiffness in the young and elderly groups respectively. This suggests differential microbial associations with these phenotypes at specific stages of life with potential prognostic implications.


Asunto(s)
Pulmón/fisiología , Microbiota , Rigidez Vascular/fisiología , Adulto , Factores de Edad , Anciano , Familia , Firmicutes/genética , Firmicutes/aislamiento & purificación , Haemophilus/genética , Haemophilus/aislamiento & purificación , Voluntarios Sanos , Humanos , Leptotrichia/genética , Leptotrichia/aislamiento & purificación , Persona de Mediana Edad , Análisis de la Onda del Pulso , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Pruebas de Función Respiratoria , Esputo/microbiología , Adulto Joven
14.
J Clin Microbiol ; 57(12)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31578259

RESUMEN

Haemophilus influenzae is a well-established human pathogen capable of causing a range of respiratory and invasive diseases. Since the 1970s, it has been observed that a nontypeable cryptic genospecies of H. influenzae, most often biotype IV, has been associated with the genitourinary tracts of females and with invasive neonatal infections. This distinct genospecies has been provisionally named "Haemophilus quentini" Here, we report seven cases of invasive H. quentini disease in patients from Ontario, Canada, over a 2-year period. Significantly, while most reports of invasive disease with H. quentini to date have been in neonates, we observed five cases in adults (three in women of childbearing age and two in seniors) as well as two in neonates. Identification of H. quentini is challenging and was not possible for frontline laboratories, requiring work at the reference laboratory level. We describe in detail the biochemical results, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-Tof MS) results, and PCR results with several targets, including the 16S rRNA gene and multilocus sequence typing (MLST) genes, for the seven Ontario H. quentini isolates and several controls. Our data, combined with those of other publications, support the fact that H. quentini is distinct from H. influenzae and Haemophilus haemolyticus This organism is recognized as a pathogen of neonates, but we hypothesize that it may be underrecognized as an important pathogen in adults as well, particularly pregnant women. By sharing the detailed descriptions of these isolates, we hope to enable other laboratories to better identify H. quentini so that the true prevalence of this organism and disease can be explored.


Asunto(s)
Bacteriemia/microbiología , Técnicas Bacteriológicas/métodos , Infecciones por Haemophilus/microbiología , Haemophilus/aislamiento & purificación , Tipificación de Secuencias Multilocus/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adulto , Anciano , Anciano de 80 o más Años , Bacteriemia/diagnóstico , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Haemophilus/clasificación , Haemophilus/genética , Infecciones por Haemophilus/diagnóstico , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Ontario , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Eur Respir Rev ; 28(153)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31484665

RESUMEN

Bronchiectasis is increasing in prevalence worldwide, yet current treatments available are limited to those alleviating symptoms and reducing exacerbations. The pathogenesis of the disease and the inflammatory, infective and molecular drivers of disease progression are not fully understood, making the development of novel treatments challenging. Understanding the role bacteria play in disease progression has been enhanced by the use of next-generation sequencing techniques such as 16S rRNA sequencing. The microbiome has not been extensively studied in bronchiectasis, but existing data show lung bacterial communities dominated by Pseudomonas, Haemophilus and Streptococcus, while exhibiting intraindividual stability and large interindividual variability. Pseudomonas- and Haemophilus-dominated microbiomes have been shown to be linked to severe disease and frequent exacerbations. Studies completed to date are limited in size and do not fully represent all clinically observed disease subtypes. Further research is required to understand the microbiomes role in bronchiectasis disease progression. This review discusses recent developments and future perspectives on the lung microbiome in bronchiectasis.


Asunto(s)
Bronquiectasia/microbiología , Haemophilus/patogenicidad , Pulmón/microbiología , Microbiota , Pseudomonas/patogenicidad , Streptococcus/patogenicidad , Animales , Antibacterianos/uso terapéutico , Bronquiectasia/diagnóstico , Bronquiectasia/tratamiento farmacológico , Bronquiectasia/epidemiología , Progresión de la Enfermedad , Haemophilus/efectos de los fármacos , Haemophilus/genética , Interacciones Huésped-Patógeno , Humanos , Pulmón/efectos de los fármacos , Pseudomonas/efectos de los fármacos , Pseudomonas/genética , Factores de Riesgo , Streptococcus/efectos de los fármacos , Streptococcus/genética
16.
Sci Rep ; 9(1): 10923, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358825

RESUMEN

The dysbiosis of human gut microbiota is strongly associated with the development of colorectal cancer (CRC). The dysbiotic features of the transition from advanced polyp to early-stage CRC are largely unknown. We performed a 16S rRNA gene sequencing and enterotype-based gut microbiota analysis study. In addition to Bacteroides- and Prevotella-dominated enterotypes, we identified an Escherichia-dominated enterotype. We found that the dysbiotic features of CRC were dissimilar in overall samples and especially Escherichia-dominated enterotype. Besides a higher abundance of Fusobacterium, Enterococcus, and Aeromonas in all CRC faecal microbiota, we found that the most notable characteristic of CRC faecal microbiota was a decreased abundance of potential beneficial butyrate-producing bacteria. Notably, Oscillospira was depleted in the transition from advanced adenoma to stage 0 CRC, whereas Haemophilus was depleted in the transition from stage 0 to early-stage CRC. We further identified 7 different CAGs by analysing bacterial clusters. The abundance of microbiota in cluster 3 significantly increased in the CRC group, whereas that of cluster 5 decreased. The abundance of both cluster 5 and cluster 7 decreased in the Escherichia-dominated enterotype of the CRC group. We present the first enterotype-based faecal microbiota analysis. The gut microbiota of colorectal neoplasms can be influenced by its enterotype.


Asunto(s)
Adenoma/microbiología , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal , Adenoma/patología , Aeromonas/genética , Aeromonas/patogenicidad , Anciano , Bacteroidaceae/genética , Bacteroidaceae/patogenicidad , Neoplasias Colorrectales/patología , Enterococcus/genética , Enterococcus/patogenicidad , Escherichia/genética , Escherichia/patogenicidad , Femenino , Fusobacterium/genética , Fusobacterium/patogenicidad , Haemophilus/genética , Haemophilus/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética
17.
PLoS One ; 14(6): e0218319, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31211815

RESUMEN

OBJECTIVES: Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by reduced lacrimal and salivary secretion. Sicca symptoms together with fatigue and musculoskeletal pain can significantly reduce the patients' quality of life. Furthermore, low salivary secretion may disrupt the oral microbial homeostasis. The aim of this study was to compare the salivary microbiota from pSS patients with patients with sicca symptoms not fulfilling the classification criteria for pSS (non-SS), and with healthy controls without sicca complaints. METHODS: Pellets from centrifuged chewing-stimulated whole saliva from pSS patients (n = 15), non-SS sicca patients (n = 15) and healthy controls (n = 15) were prepared. DNA was extracted and analyzed by 16S rRNA gene sequencing. The acquired sequencing data were performed using the human oral microbiome database (HOMD). RESULTS: We detected 42, 45, and 34 bacterial genera in saliva samples from pSS patients, non-SS sicca patients, and healthy controls, respectively. The most abundant genera in all samples were Prevotella, Veillonella, Streptococcus, and Haemophilus. At species level Streptococcus intermedius, Prevotella intermedia, Fusobacterium nucleatum subsp. vincentii, Porphyromonas endodontalis, Prevotella nancensis, Tannerella spp., and Treponema spp. were detected in the samples from pSS and non-SS only, while Porphyromonas pasteri was mostly found among the healthy controls. CONCLUSION: Our study indicated dysbiosis in the salivary microbiota from pSS and non-SS patients compared to healthy controls. Additionally, the results showed that the salivary microbiome in the pSS group differed significantly from the non-SS group.


Asunto(s)
Disbiosis/microbiología , Microbiota/genética , Dolor Musculoesquelético/microbiología , Síndrome de Sjögren/microbiología , Bacterias/clasificación , Bacterias/genética , Disbiosis/metabolismo , Disbiosis/patología , Femenino , Haemophilus/genética , Haemophilus/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Boca/microbiología , Dolor Musculoesquelético/complicaciones , Dolor Musculoesquelético/genética , Dolor Musculoesquelético/fisiopatología , Prevotella/genética , Prevotella/aislamiento & purificación , Calidad de Vida , ARN Ribosómico 16S/genética , Saliva/microbiología , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/genética , Síndrome de Sjögren/fisiopatología , Streptococcus/genética , Streptococcus/aislamiento & purificación , Veillonella/genética , Veillonella/aislamiento & purificación
18.
Respir Res ; 20(1): 114, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174538

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) frequent exacerbators (FE) suffer increased morbidity and mortality compared to infrequent exacerbators (IE). The association between the oral and sputum microbiota and exacerbation phenotype is not well defined. The objective of this study was to determine key features that differentiate the oral and sputum microbiota of FEs from the microbiota of IEs during periods of clinical stability. METHODS: We recruited 11 FE and 11 IE who had not used antibiotics or systemic corticosteroids in the last 1 month. Subjects provided oral wash and sputum samples, which underwent 16S V4 MiSeq sequencing and qPCR of 16S rRNA. Data were analyzed using Dada2 and R. RESULTS: FE and IE were similar in terms of age, FEV1 percent predicted (FEV1pp), pack-years of tobacco exposure, and St. George's Respiratory Questionnaire score. 16S copy numbers were significantly greater in sputum vs. oral wash (p = 0.01), but phenotype was not associated with copy number. Shannon diversity was significantly greater in oral samples compared to sputum (p = 0.001), and IE samples were more diverse than FE samples (p < 0.001). Sputum samples from FE had more Haemophilus and Moraxella compared to IE sputum samples, due to dominance of these COPD-associated taxa in three FE sputum samples. Amplicon sequencing variant (ASV)-level analysis of sputum samples revealed one ASV (Actinomyces) was significantly more abundant in IE vs. FE sputum (padj = 0.048, Wilcoxon rank-sum test), and this persisted after controlling for FEV1pp. Principal coordinate analysis using Bray-Curtis distance with PERMANOVA analyses demonstrated clustering by anatomic site, phenotype, inhaled corticosteroid use, current tobacco use, COPD severity, and last professional dental cleaning. CONCLUSIONS: FE have less diverse oral and sputum microbiota than IE. Actinomyces was significantly more abundant in IE sputum than FE sputum. The oral and sputum microbiota of COPD subjects cluster based on multiple clinical factors, including exacerbation phenotype. Even during periods of clinical stability, the frequent exacerbator phenotype is associated with decreased alpha diversity, beta-diversity clustering, and changes in taxonomic abundance.


Asunto(s)
Pulmón/microbiología , Pulmón/fisiología , Microbiota/fisiología , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Anciano , Estudios de Casos y Controles , Femenino , Haemophilus/genética , Humanos , Masculino , Persona de Mediana Edad , Moraxella/genética , Estudios Prospectivos , Esputo/microbiología , Esputo/fisiología
19.
Int J Pediatr Otorhinolaryngol ; 118: 103-109, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30599284

RESUMEN

INTRODUCTION: Adenotonsillar and middle ear diseases result in some of the most frequently performed operations in the pediatric population worldwide. The pathogen reservoir hypothesis (PRH) suggests that the adenoids act as a reservoir of bacteria which play a potential pathogenic role in otitis media. Evidence supporting this hypothesis is limited. This study sought to comprehensively determine and compare associations between the adenotonsillar and middle ear bacterial microbiota within individual patients via next-generation sequencing and microbial network analyses. METHODS: Bacterial 16S rRNA gene-targeted amplicon sequencing was used to determine the bacterial composition of ten pediatric patients undergoing adenotonsillectomy and ventilation tube insertion for otitis media with effusion. At the time of surgery, swabs were taken from the adenoid surface, tonsil crypts and middle ear clefts (through the myringotomy incision). RESULTS: The most abundant sequences within the bacterial community at genus level across all anatomical sites were Fusobacterium, Haemophilus, Neisseria, and Porphyromonas. There was an observable difference in the relative abundance of bacterial communities, with a higher proportion of Haemophilus and Moraxella in the adenoid when compared with the middle ear. Furthermore, only one module (consisting of 4 bacterial OTUs) from one patient was identified through microbial network analyses to be significantly associated between middle ear and adenoid. In addition, microbial network analysis revealed that the adenoid and tonsil microbiota share greater similarity than do the adenoid and middle ear. CONCLUSION: The results of this study suggest that the adenoid microenvironment does not correlate to the middle ear microenvironment. A future study at the species level, and over time, is required to further investigate whether the differing relationship between the microbiota of the adenoid and middle ear rejects the pathogen reservoir hypothesis.


Asunto(s)
Tonsila Faríngea/microbiología , Bacterias/aislamiento & purificación , Oído Medio/microbiología , Microbiota , Otitis Media con Derrame/microbiología , Tonsila Palatina/microbiología , Adenoidectomía , Bacterias/genética , Niño , Preescolar , Reservorios de Enfermedades/microbiología , Femenino , Fusobacterium/genética , Fusobacterium/aislamiento & purificación , Haemophilus/genética , Haemophilus/aislamiento & purificación , Humanos , Masculino , Ventilación del Oído Medio , Moraxella/genética , Moraxella/aislamiento & purificación , Neisseria/genética , Neisseria/aislamiento & purificación , Otitis Media con Derrame/cirugía , Porphyromonas/genética , Porphyromonas/aislamiento & purificación , ARN Ribosómico 16S/análisis , Tonsilectomía
20.
Microbiome ; 6(1): 179, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30286807

RESUMEN

BACKGROUND: Pediatric asthma is the most common chronic childhood disease in the USA, currently affecting ~ 7 million children. This heterogeneous syndrome is thought to encompass various disease phenotypes of clinically observable characteristics, which can be statistically identified by applying clustering approaches to patient clinical information. Extensive evidence has shown that the airway microbiome impacts both clinical heterogeneity and pathogenesis in pediatric asthma. Yet, so far, airway microbiotas have been consistently neglected in the study of asthma phenotypes. Here, we couple extensive clinical information with 16S rRNA high-throughput sequencing to characterize the microbiota of the nasal cavity in 163 children and adolescents clustered into different asthma phenotypes. RESULTS: Our clustering analyses identified three statistically distinct phenotypes of pediatric asthma. Four core OTUs of the pathogenic genera Moraxella, Staphylococcus, Streptococcus, and Haemophilus were present in at least 95% of the studied nasal microbiotas. Phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) and genera (Moraxella, Corynebacterium, Dolosigranulum, and Prevotella) abundances, community composition, and structure varied significantly (0.05 < P ≤ 0.0001) across asthma phenotypes and one of the clinical variables (preterm birth). Similarly, microbial networks of co-occurrence of bacterial genera revealed different bacterial associations across asthma phenotypes. CONCLUSIONS: This study shows that children and adolescents with different clinical characteristics of asthma also show different nasal bacterial profiles, which is indicative of different phenotypes of the disease. Our work also shows how clinical and microbial information could be integrated to validate and refine asthma classification systems and develop biomarkers of disease.


Asunto(s)
Asma/microbiología , Haemophilus/aislamiento & purificación , Moraxella/aislamiento & purificación , Nasofaringe/microbiología , Nariz/microbiología , Staphylococcus/aislamiento & purificación , Streptococcus/aislamiento & purificación , Adolescente , Niño , Femenino , Haemophilus/clasificación , Haemophilus/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Microbiota/genética , Moraxella/clasificación , Moraxella/genética , ARN Ribosómico 16S/genética , Staphylococcus/clasificación , Staphylococcus/genética , Streptococcus/clasificación , Streptococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...