Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 288(19): 5723-5736, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33783128

RESUMEN

Several archaea harbor genes that code for fructosyltransferase (FTF) enzymes. These enzymes have not been characterized yet at structure-function level, but are of extreme interest in view of their potential role in the synthesis of novel compounds for food, nutrition, and pharmaceutical applications. In this study, 3D structure of an inulin-type fructan producing enzyme, inulosucrase (InuHj), from the archaeon Halalkalicoccus jeotgali was resolved in its apo form and with bound substrate (sucrose) molecule and first transglycosylation product (1-kestose). This is the first crystal structure of an FTF from halophilic archaea. Its overall five-bladed ß-propeller fold is conserved with previously reported FTFs, but also shows some unique features. The InuHj structure is closer to those of Gram-negative bacteria, with exceptions such as residue E266, which is conserved in FTFs of Gram-positive bacteria and has possible role in fructan polymer synthesis in these bacteria as compared to fructooligosaccharide (FOS) production by FTFs of Gram-negative bacteria. Highly negative electrostatic surface potential of InuHj, due to a large amount of acidic residues, likely contributes to its halophilicity. The complex of InuHj with 1-kestose indicates that the residues D287 in the 4B-4C loop, Y330 in 4D-5A, and D361 in the unique α2 helix may interact with longer FOSs and facilitate the binding of longer FOS chains during synthesis. The outcome of this work will provide targets for future structure-function studies of FTF enzymes, particularly those from archaea.


Asunto(s)
Apoenzimas/ultraestructura , Halobacteriaceae/ultraestructura , Hexosiltransferasas/ultraestructura , Conformación Proteica , Apoenzimas/química , Archaea/enzimología , Archaea/ultraestructura , Cristalografía por Rayos X , Halobacteriaceae/enzimología , Hexosiltransferasas/química , Pliegue de Proteína , Sacarosa/química , Trisacáridos/química
2.
Microbiologyopen ; 9(11): e1124, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33306280

RESUMEN

Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well-characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archaea. Analysis of archaeal genomes revealed that highly conserved bNOS homologs were restricted to members of the Halobacteria. Of these, Natronomonas pharaonis NOS (npNOS) was chosen for further characterization. NO production was confirmed in heterologously expressed His-tagged npNOS by coupling nitrite production from N-hydroxy-L-arginine in an H2O2-supported reaction. Additionally, the nos gene was successfully targeted and disrupted to create a Nmn. pharaonis nos mutant by adapting an established Natrialba magadii transformation protocol. Genome re-sequencing of this mutant revealed an additional frameshift in a putative cation-acetate symporter gene, which could contribute to altered acetate metabolism in the nos mutant. Inactivation of Nmn. pharaonis nos was also associated with several phenotypes congruent with bacterial nos mutants (altered growth, increased oxygen consumption, increased pigment, increased UV susceptibility), suggesting that NOS function may be conserved between bacteria and archaea. These studies are the first to describe genetic inactivation and characterization of a Nmn. pharaonis gene and provides enhanced tools for probing its physiology.


Asunto(s)
Genoma Arqueal/genética , Halobacteriaceae/enzimología , Halobacteriaceae/genética , Óxido Nítrico Sintasa/genética , Óxido Nítrico/biosíntesis , Acetatos/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/análisis , Oxidación-Reducción , Consumo de Oxígeno/fisiología
3.
Extremophiles ; 24(5): 759-772, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32761262

RESUMEN

The degradation of the pentoses D-xylose, L-arabinose and D-ribose in the domain of archaea, in Haloferax volcanii and in Haloarcula and Sulfolobus species, has been shown to proceed via oxidative pathways to generate α-ketoglutarate. Here, we report that the haloarchaeal Halorhabdus species utilize the bacterial-type non-oxidative degradation pathways for pentoses generating xylulose-5-phosphate. The genes of these pathways are each clustered and were constitutively expressed. Selected enzymes involved in D-xylose degradation, xylose isomerase and xylulokinase, and those involved in L-arabinose degradation, arabinose isomerase and ribulokinase, were characterized. Further, D-ribose degradation in Halorhabdus species involves ribokinase, ribose-5-phosphate isomerase and D-ribulose-5-phosphate-3-epimerase. Ribokinase of Halorhabdus tiamatea and ribose-5-phosphate isomerase of Halorhabdus utahensis were characterized. This is the first report of pentose degradation via the bacterial-type pathways in archaea, in Halorhabdus species that likely acquired these pathways from bacteria. The utilization of bacterial-type pathways of pentose degradation rather than the archaeal oxidative pathways generating α-ketoglutarate might be explained by an incomplete gluconeogenesis in Halorhabdus species preventing the utilization of α-ketoglutarate in the anabolism.


Asunto(s)
Arabinosa , Halobacteriaceae , Xilosa , Arabinosa/metabolismo , Bacterias , Halobacteriaceae/enzimología , Pentosas , Ribosa , Xilosa/metabolismo
4.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 937-946, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31588925

RESUMEN

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Halorrodopsinas/química , Lípidos/química , Proteínas de la Membrana/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rodopsinas Sensoriales/química , Proteínas Bacterianas/química , Cristalización/métodos , Cristalografía por Rayos X/métodos , Halobacteriaceae/enzimología , Hyphomicrobiaceae/enzimología , Thermus thermophilus/enzimología
5.
Mol Biotechnol ; 60(6): 420-426, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29654471

RESUMEN

This study presents the first example of an alcohol dehydrogenase (ADH) from the halophilic archaeum Haloquadratum walsbyi (HwADH). A hexahistidine-tagged recombinant HwADH was heterologously overexpressed in Haloferax volcanii. HwADH was purified in one step and was found to be thermophilic with optimal activity at 65 °C. HwADH was active in the presence of 10% (v/v) organic solvent. The enzyme displayed dual cofactor specificity and a broad substrate scope, and maximum activity was detected with benzyl alcohol and 2-phenyl-1-propanol. HwADH accepted aromatic ketones, acetophenone and phenylacetone as substrates. The enzyme also accepted cyclohexanol and aromatic secondary alcohols, 1-phenylethanol and 4-phenyl-2-butanol. H. walsbyi may offer an excellent alternative to other archaeal sources to expand the toolbox of halophilic biocatalysts.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Alcoholes/metabolismo , Proteínas Arqueales/metabolismo , Halobacteriaceae/enzimología , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/aislamiento & purificación , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Alcohol Bencilo/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Genes Arqueales , Haloferax volcanii/genética , Calor , Cinética , NAD/metabolismo , NADP/metabolismo , Propanoles/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
6.
Int J Biol Macromol ; 113: 1134-1141, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29524492

RESUMEN

Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon Natrialba magadii. Many extracellular proteases have been characterized from archaea to bacteria as adapted to hypersaline environments retaining function and stability until 4.0M NaCl. As observed in other secreted halolysins, this stability can be related to the presence of a C-terminal extension (CTE) sequence. In the present work, we compared the biochemical properties of recombinant Nep protease with the truncated form at the 134 amino acids CTE (Nep∆CTE), that was more active in 4M NaCl than the non-truncated wild type enzyme. Comparable to the wild type, Nep∆CTE protease is irreversibly inactivated at low salt solutions. The substrate specificity of the truncated Nep∆CTE was similar to that of wild type form as demonstrated by a combinatorial library of FRET substrates. The enzyme stability, the effect of different salts and the thermodynamics assays using different lengths of substrates demonstrated similarities between the two forms. Altogether, these data provide further information on the stability and structural determinants of halolysins under different salinities, especially concerning the enzymatic behavior.


Asunto(s)
Espacio Extracelular/enzimología , Halobacteriaceae/citología , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Sales (Química)/farmacología , Relación Dosis-Respuesta a Droga , Halobacteriaceae/enzimología , Cinética , Solventes/química , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Microbiol Res ; 207: 289-298, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29458865

RESUMEN

The diversity of haloarchaea associated with different dry salt lakes in northeastern Algeria was investigated together with their potential of hydrolytic enzyme production. A total of 68 aerobic halophilic archaea were isolated from saline sediments. Based on the 16S rRNA gene sequencing, the isolates were assigned to seven phylotypes within the class Halobacteria, namely Haloarcula, Halococcus, Haloferax, Halogeometricum, Haloterrigena, Natrialba, and Natrinema. The results showed that Haloferax group was found to be dominant in all samples (30 isolates) (44%) with high diversity, followed by Halococcus spp. (13%) (9 isolates). All phylotypes are extreme halophiles and thermotolerant with the ability to grow at temperatures up to 48 °C. In addition, the screening for extracellular halophilic enzymes showed that 89.7% of the isolates were able to produce at least two types of the screened enzymes. The strains producing esterase, gelatinase, inulinase, cellulase and protease activities were the most diverse functional group. These data showed an abundant and diverse haloarchaeal community, detected in Algerian wetland ecosystems, presenting a promising source of molecules with important biotechnological applications.


Asunto(s)
Esterasas/genética , Halobacteriaceae/clasificación , Halobacteriaceae/enzimología , Péptido Hidrolasas/genética , Argelia , Biodiversidad , Halobacteriaceae/genética , Halobacteriaceae/aislamiento & purificación , Lagos/química , ARN Ribosómico 16S/genética , Salinidad , Cloruro de Sodio/análisis , Humedales
8.
Environ Microbiol Rep ; 9(6): 788-796, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28925557

RESUMEN

Microorganisms, including Bacteria and Archaea, play a key role in denitrification, which is the major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. While the enzymology of denitrification is well understood in Bacteria, the details of the last two reactions in this pathway, which catalyse the reduction of nitric oxide (NO) via nitrous oxide (N2 O) to nitrogen (N2 ), are little studied in Archaea, and hardly at all in haloarchaea. This work describes an extensive interspecies analysis of both complete and draft haloarchaeal genomes aimed at identifying the genes that encode respiratory nitric oxide reductases (Nors). The study revealed that the only nor gene found in haloarchaea is one that encodes a single subunit quinone dependent Nor homologous to the qNor found in bacteria. This surprising discovery is considered in terms of our emerging understanding of haloarchaeal bioenergetics and NO management.


Asunto(s)
Proteínas Arqueales/metabolismo , Genoma Arqueal/genética , Halobacteriaceae/enzimología , Halobacteriaceae/genética , Óxido Nitroso/metabolismo , Oxidorreductasas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Benzoquinonas/química , Benzoquinonas/metabolismo , Sitios de Unión , Ambiente , Oxidorreductasas/química , Oxidorreductasas/genética , Conformación Proteica , Salinidad , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína
9.
Extremophiles ; 19(6): 1121-32, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26369647

RESUMEN

Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.


Asunto(s)
Proteínas Arqueales/metabolismo , Esterasas/metabolismo , Fermentación , Halobacteriaceae/enzimología , Microbiología Industrial/métodos , Lipasa/metabolismo , Proteínas Arqueales/genética , Biomasa , Esterasas/genética , Halobacteriaceae/crecimiento & desarrollo , Halobacteriaceae/metabolismo , Lipasa/genética
10.
Can J Microbiol ; 60(11): 717-27, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372346

RESUMEN

Haloalkaliphiles are microorganisms requiring Na(+) concentrations of at least 0.5 mol·L(-1) and an alkaline pH of 9 for optimal growth. Their unique features enable them to make significant contributions to a wide array of biotechnological applications. Organic compatible solutes produced by haloalkaliphiles, such as ectoine and glycine betaine, are correlated with osmoadaptation and may serve as stabilizers of intracellular proteins, salt antagonists, osmoprotectants, and dermatological moisturizers. Haloalkaliphiles are an important source of secondary metabolites like rhodopsin, polyhydroxyalkanoates, and exopolysaccharides that play essential roles in biogeocycling organic compounds. These microorganisms also can secrete unique exoenzymes, including proteases, amylases, and cellulases, that are highly active and stable in extreme haloalkaline conditions and can be used for the production of laundry detergent. Furthermore, the unique metabolic pathways of haloalkaliphiles can be applied in the biodegradation and (or) biotransformation of a broad range of toxic industrial pollutants and heavy metals, in wastewater treatment, and in the biofuel industry.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biotecnología , Halobacteriaceae/fisiología , Tolerancia a la Sal , Bacterias/enzimología , Betaína/metabolismo , Biodegradación Ambiental , Biocombustibles , Transporte Biológico , Biotransformación , Halobacteriaceae/enzimología , Redes y Vías Metabólicas , Metabolismo Secundario , Cloruro de Sodio
11.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 942-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005094

RESUMEN

Histamine dehydrogenase (HADH) catalyzes the oxidative deamination of histamine, resulting in the production of imidazole acetaldehyde and an ammonium ion. The enzyme isolated from the newly identified halophilic archaeon Natrinema gari BCC 24369 is significantly different from the previously described protein from Nocardioides simplex. This newly identified HADH comprises three subunits with molecular weights of 49.0, 24.7 and 23.9 kDa, respectively, and is optimally active under high-salt conditions (3.5-5 M NaCl). As a step in the exploration of the unique properties of the protein, the HADH heterotrimer was purified and crystallized. Crystals were obtained using the sitting-drop vapor-diffusion method from a solution composed of 0.2 M calcium chloride dihydrate, 0.1 M HEPES pH 7.5, 28% PEG 400. Diffraction data were collected at -173°C to a resolution limit of 2.4 Šon the Southeast Regional Collaborative Access Team (SER-CAT) beamline 22-ID at the Advanced Photon Source, Argonne National Laboratory. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a=211.9, b=58.6, c=135.4 Å, ß=103.0°. The estimated Matthews coefficient is 3.21 Å3 Da(-1), corresponding to 61.7% solvent content.


Asunto(s)
Proteínas Arqueales/química , Halobacteriaceae/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Subunidades de Proteína/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Cristalización , Cristalografía por Rayos X , Expresión Génica , Halobacteriaceae/enzimología , Halobacteriaceae/genética , Peso Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/aislamiento & purificación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo
12.
Appl Environ Microbiol ; 80(18): 5698-708, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25002433

RESUMEN

The haloarchaeon Natrinema sp. strain J7-2 has the ability to degrade chitin, and its genome harbors a chitin metabolism-related gene cluster that contains a halolysin gene, sptC. The sptC gene encodes a precursor composed of a signal peptide, an N-terminal propeptide consisting of a core domain (N*) and a linker peptide, a subtilisin-like catalytic domain, a polycystic kidney disease domain (PkdD), and a chitin-binding domain (ChBD). Here we report that the autocatalytic maturation of SptC is initiated by cis-processing of N* to yield an autoprocessed complex (N*-I(WT)), followed by trans-processing/degradation of the linker peptide, the ChBD, and N*. The resulting mature form (M(WT)) containing the catalytic domain and the PkdD showed optimum azocaseinolytic activity at 3 to 3.5 M NaCl, demonstrating salt-dependent stability. Deletion analysis revealed that the PkdD did not confer extra stability on the enzyme but did contribute to enzymatic activity. The ChBD exhibited salt-dependent chitin-binding capacity and mediated the binding of N*-I(WT) to chitin. ChBD-mediated chitin binding enhances SptC maturation by promoting activation of the autoprocessed complex. Our results also demonstrate that SptC is capable of removing proteins from shrimp shell powder (SSP) at high salt concentrations. Interestingly, N*-I(WT) released soluble peptides from SSP faster than did M(WT). Most likely, ChBD-mediated binding of the autoprocessed complex to chitin in SSP not only accelerates enzyme activation but also facilitates the deproteinization process by increasing the local protease concentration around the substrate. By virtue of these properties, SptC is highly attractive for use in preparation of chitin from chitin-containing biomass.


Asunto(s)
Quitina/metabolismo , Regulación Enzimológica de la Expresión Génica , Halobacteriaceae/enzimología , Halobacteriaceae/metabolismo , Serina Proteasas/metabolismo , Caseínas/metabolismo , Estabilidad de Enzimas , Unión Proteica , Procesamiento Proteico-Postraduccional , Serina Proteasas/genética , Cloruro de Sodio/metabolismo
13.
Nucleic Acids Res ; 42(8): 5109-24, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24500203

RESUMEN

Leucyl-tRNA (transfer RNA) synthetase (LeuRS) is a multi-domain enzyme, which is divided into bacterial and archaeal/eukaryotic types. In general, one specific LeuRS, the domains of which are of the same type, exists in a single cell compartment. However, some species, such as the haloalkaliphile Natrialba magadii, encode two cytoplasmic LeuRSs, NmLeuRS1 and NmLeuRS2, which are the first examples of naturally occurring chimeric enzymes with different domains of bacterial and archaeal types. Furthermore, N. magadii encodes typical archaeal tRNA(Leu)s. The tRNA recognition mode, aminoacylation and translational quality control activities of these two LeuRSs are interesting questions to be addressed. Herein, active NmLeuRS1 and NmLeuRS2 were successfully purified after gene expression in Escherichia coli. Under the optimized aminoacylation conditions, we discovered that they distinguished cognate NmtRNA(Leu) in the archaeal mode, whereas the N-terminal region was of the bacterial type. However, NmLeuRS1 exhibited much higher aminoacylation and editing activity than NmLeuRS2, suggesting that NmLeuRS1 is more likely to generate Leu-tRNA(Leu) for protein biosynthesis. Moreover, using NmLeuRS1 as a model, we demonstrated misactivation of several non-cognate amino acids, and accuracy of protein synthesis was maintained mainly via post-transfer editing. This comprehensive study of the NmLeuRS/tRNA(Leu) system provides a detailed understanding of the coevolution of aminoacyl-tRNA synthetases and tRNA.


Asunto(s)
Halobacteriaceae/enzimología , Leucina-ARNt Ligasa/metabolismo , ARN de Transferencia de Leucina/metabolismo , Aminoacilación de ARN de Transferencia , Aminoácidos/metabolismo , Bacterias/enzimología , Halobacteriaceae/genética , Concentración de Iones de Hidrógeno , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/clasificación , Cloruro de Potasio , Estructura Terciaria de Proteína
14.
Environ Microbiol ; 16(8): 2525-37, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24428220

RESUMEN

Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2(T) from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4B(T) from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.


Asunto(s)
Genoma Arqueal , Halobacteriaceae/genética , Metagenómica , Polisacáridos/metabolismo , Tolerancia a la Sal/genética , Microbiología del Agua , Adaptación Fisiológica , Anaerobiosis/fisiología , Evolución Biológica , Ecosistema , Pruebas de Enzimas , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Halobacteriaceae/clasificación , Halobacteriaceae/enzimología , Océano Índico , Lagos/microbiología , Oxígeno/metabolismo , Oxígeno/farmacología , Filogenia , Cloruro de Sodio , Utah
15.
Ying Yong Sheng Tai Xue Bao ; 23(11): 3103-8, 2012 Nov.
Artículo en Chino | MEDLINE | ID: mdl-23431797

RESUMEN

Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.


Asunto(s)
Biodiversidad , Halobacteriaceae/enzimología , Halobacteriaceae/genética , Cloruro de Sodio/metabolismo , Amilasas/metabolismo , China , Técnicas de Cultivo , Haloarcula/enzimología , Haloarcula/genética , Haloarcula/aislamiento & purificación , Halobacteriaceae/clasificación , Halobacteriaceae/aislamiento & purificación , Lipasa/metabolismo , Péptido Hidrolasas/metabolismo
16.
Biochimie ; 94(3): 798-805, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22177966

RESUMEN

Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon N. magadii that exhibits optimal activity and stability in salt-saturated solutions. In this work, the effect of salt on the function and structure of Nep was investigated. In absence of salt, Nep became unfolded and aggregated, leading to the loss of activity. The enzyme did not recover its structural and functional properties even after restoring the ideal conditions for catalysis. At salt concentrations higher than 1 M (NaCl), Nep behaved as monomers in solution and its enzymatic activity displayed a nonlinear concave-up dependence with salt concentration resulting in a 20-fold activation at 4 M NaCl. Although transition from a high to a low-saline environment (3-1 M NaCl) did not affect its secondary structure contents, it diminished the enzyme stability and provoked large structural rearrangements, changing from an elongated shape at 3 M NaCl to a compact conformational state at 1 M NaCl. The thermodynamic analysis of peptide hydrolysis by Nep suggests a significant enzyme reorganization depending on the environmental salinity, which supports in solution SAXS and DLS studies. Moreover, solvent kinetic isotopic effect (SKIE) data indicates the general acid-base mechanism as the rate-limiting step for Nep catalysis, like classical serine-peptidases. All these data correlate the Nep conformational states with the enzymatic behavior providing a further understanding on the stability and structural determinants for the functioning of halolysins under different salinities.


Asunto(s)
Halobacteriaceae/enzimología , Subtilisinas/química , Subtilisinas/metabolismo , Catálisis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Estructura Terciaria de Proteína , Temperatura
17.
Microbiol Res ; 166(4): 304-13, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20869220

RESUMEN

The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.


Asunto(s)
Proteínas Arqueales/metabolismo , Membrana Celular/enzimología , ADN de Archaea/metabolismo , Halobacteriaceae/enzimología , Péptido Hidrolasas/genética , Proteasa La/metabolismo , Transcripción Genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Membrana Celular/química , Membrana Celular/genética , ADN de Archaea/genética , Halobacteriaceae/química , Halobacteriaceae/genética , Datos de Secuencia Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Proteasa La/química , Proteasa La/genética , Unión Proteica , Estructura Terciaria de Proteína
18.
Biochemistry ; 50(4): 574-80, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21162553

RESUMEN

Archaea are able to sense light via the complexes of sensory rhodopsins I and II and their corresponding chemoreceptor-like transducers HtrI and HtrII. Though generation of the signal has been studied in detail, the mechanism of its propagation to the cytoplasm remains obscured. The cytoplasmic part of the transducer consists of adaptation and kinase activity modulating regions, connected to transmembrane helices via two HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, phosphatases) domains. The inter-HAMP region of Natronomonas pharaonis HtrII (NpHtrII) was found to be α-helical [Hayashi, K., et al. (2007) Biochemistry 46, 14380-14390]. We studied the inter-HAMP regions of NpHtrII and other phototactic signal transducers by means of molecular dynamics. Their structure is found to be a bistable asymmetric coiled coil, in which the protomers are longitudinally shifted by ~1.3 Å. The free energy penalty for the symmetric structure is estimated to be 1.2-1.5 kcal/mol depending on the molarity of the solvent. Both flanking HAMP domains are mechanistically coupled to the inter-HAMP region and are asymmetric. The longitudinal shift in the inter-HAMP region is coupled with the in-plane displacement of the cytoplasmic part by 8.6 Å relative to the transmembrane part. The established properties suggest that (1) the signal may be transduced through the inter-HAMP domain switching and (2) the inter-HAMP region may allow cytoplasmic parts of the transducers to come sufficiently close to each other to form oligomers.


Asunto(s)
Adenilil Ciclasas/química , Proteínas Arqueales/química , Proteínas Bacterianas/química , Halobacteriaceae/metabolismo , Fototransducción/fisiología , Proteínas de la Membrana/química , Monoéster Fosfórico Hidrolasas/química , Proteínas Quinasas/química , Rodopsinas Sensoriales/química , Adenilil Ciclasas/fisiología , Proteínas Arqueales/fisiología , Proteínas Bacterianas/fisiología , Citoplasma/enzimología , Citoplasma/metabolismo , Citoplasma/fisiología , Halobacteriaceae/enzimología , Histidina Quinasa , Proteínas de la Membrana/fisiología , Proteínas Quimiotácticas Aceptoras de Metilo , Monoéster Fosfórico Hidrolasas/fisiología , Proteínas Quinasas/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Rodopsinas Sensoriales/fisiología
19.
J Biol Chem ; 286(8): 5967-76, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21135094

RESUMEN

Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.


Asunto(s)
Proteínas Arqueales/genética , Evolución Molecular , Halobacteriaceae/fisiología , Rodopsinas Microbianas/genética , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Halobacteriaceae/química , Halobacteriaceae/enzimología , Halobacteriaceae/metabolismo , Enlace de Hidrógeno , Mutación , Estructura Secundaria de Proteína , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo
20.
Lett Appl Microbiol ; 51(6): 691-6, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21039670

RESUMEN

AIMS: Haloarchaeal proteases function optimally in high salt (low water activity); thus, they offer an advantage over the nonhalophilic counterparts as biocatalysts for protease-catalysed peptide synthesis. The haloalkaliphilic archaeon Natrialba magadii secretes a solvent-tolerant protease, Nep (Natrialba magadii extracellular protease). In this work, the ability of Nep to catalyse peptide synthesis was examined. METHODS AND RESULTS: The tripeptide Ac-Phe-Gly-Phe-NH(2) was synthesized using Ac-Phe-OEt and Gly-Phe-NH(2) substrates as building blocks in the presence of Nep, 30% (v/v) dimethyl sulfoxide (DMSO) and 1.5 or 0.5 mol l(-1) NaCl. Purification and identification of the peptide product was achieved by RP-HPLC and ESI-MS, respectively. The native as well as the recombinant enzyme produced in Haloferax volcanii (HvNep) was similarly effective as catalysts for the synthesis of this model tripeptide with yields of up to 60% and without secondary hydrolysis of the product. HvNep catalysed the synthesis of various tripeptides with preference for those having aromatic amino acids in the P1 site. CONCLUSION: Nep is able to catalyse peptide synthesis under different salt concentrations in the presence of DMSO. SIGNIFICANCE AND IMPACT OF STUDY: The catalytic property of Nep in peptide synthesis combined with overproduction of this protease in Hfx. volcanii anticipates the potential applicability of this haloarchaeal protease in biotechnology.


Asunto(s)
Halobacteriaceae/enzimología , Microbiología Industrial/métodos , Oligopéptidos/biosíntesis , Serina Proteasas/metabolismo , Biotecnología/métodos , Cromatografía Líquida de Alta Presión , Dimetilsulfóxido , Oligopéptidos/aislamiento & purificación , Cloruro de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...