Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.713
Filtrar
1.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930984

RESUMEN

Halogenated boroxine K2[B3O3F4OH] (HB), an inorganic derivative of cyclic anhydride of boronic acid, is patented as a boron-containing compound with potential for the treatment of both benign and malignant skin changes. HB has effectively inhibited the growth of several carcinoma cell lines. Because of the growing interest in autophagy induction as a therapeutic approach in bladder carcinoma (BC), we aimed to assess the effects of HB on metabolic phenotype and autophagy levels in 5637 human bladder carcinoma cells (BC). Cytotoxicity was evaluated using the alamar blue assay, and the degree of autophagy was determined microscopically. Mitochondrial respiration and glycolysis were measured simultaneously. The relative expression of autophagy-related genes BECN1, P62, BCL-2, and DRAM1 was determined by real-time PCR. HB affected cell growth, while starvation significantly increased the level of autophagy in the positive control compared to the basal level of autophagy in the untreated negative control. In HB-treated cultures, the degree of autophagy was higher compared to the basal level, and metabolic phenotypes were altered; both glycolysis and oxidative phosphorylation (OXPHOS) were decreased by HB at 0.2 and 0.4 mg/mL. Gene expression was deregulated towards autophagy induction and expansion. In conclusion, HB disrupted the bioenergetic metabolism and reduced the intracellular survival potential of BC cells. Further molecular studies are needed to confirm these findings and investigate their applicative potential.


Asunto(s)
Autofagia , Neoplasias de la Vejiga Urinaria , Humanos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Proliferación Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Fenotipo , Fosforilación Oxidativa/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Halogenación
2.
J Nat Prod ; 87(6): 1548-1555, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38888620

RESUMEN

Antimicrobial peptides (AMPs) have raised significant interest, forming a potential new class of antibiotics in the fight against multi-drug-resistant bacteria. Various AMPs are ribosomally synthesized and post-translationally modified peptides (RiPPs). One post-translational modification found in AMPs is the halogenation of Trp residues. This modification has, for example, been shown to be critical for the activity of the potent AMP NAI-107 from Actinoallomurus. Due to the importance of organohalogens, establishing methods for facile and selective halogen atom installation into AMPs is highly desirable. In this study, we introduce an expression system utilizing the food-grade strain Lactococcus lactis, facilitating the efficient incorporation of bromo-Trp (BrTrp) into (modified) peptides, exemplified by the lantibiotic nisin with a single Trp residue or analogue incorporated at position 1. This provides an alternative to the challenges posed by halogenase enzymes, such as poor substrate selectivity. Our method yields expression levels comparable to that of wild-type nisin, while BrTrp incorporation does not interfere with the post-translational modifications of nisin (dehydration and cyclization). One brominated nisin variant exhibits a 2-fold improvement in antimicrobial activity against two tested pathogens, including a WHO priority pathogen, while maintaining the same lipid II binding and bactericidal activity as wild-type nisin. The work presented here demonstrates the potential of this methodology for peptide halogenation, offering a new avenue for the development of diverse antimicrobial products labeled with BrTrp.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Halogenación , Pruebas de Sensibilidad Microbiana , Nisina , Nisina/farmacología , Nisina/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/química , Triptófano/química , Lactococcus lactis , Estructura Molecular
3.
J Hazard Mater ; 475: 134825, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876014

RESUMEN

The coupling of thermal remediation with microbial reductive dechlorination (MRD) has shown promising potential for the cleanup of chlorinated solvent contaminated sites. In this study, thermal treatment and bioaugmentation were applied in series, where prior higher thermal remediation temperature led to improved TCE dechlorination performance with both better organohalide-respiring bacteria (OHRB) colonization and electron donor availability. The 60 °C was found to be a key temperature point where the promotion effect became obvious. Amplicon sequencing and co-occurrence network analysis demonstrated that temperature was a more dominating factor than bioaugmentation that impacted microbial community structure. Higher temperature of prior thermal treatment resulted in the decrease of richness, diversity of indigenous microbial communities, and simplified the network structure, which benefited the build-up of newcoming microorganisms during bioaugmentation. Thus, the abundance of Desulfitobacterium increased from 0.11 % (25 °C) to 3.10 % (90 °C). Meanwhile, released volatile fatty acids (VFAs) during thermal remediation functioned as electron donors and boosted MRD. Our results provided temperature-specific information on synergistic effect of sequential thermal remediation and bioaugmentation, which contributed to better implementation of the coupled technologies in chloroethene-impacted sites.


Asunto(s)
Biodegradación Ambiental , Halogenación , Tricloroetileno , Tricloroetileno/metabolismo , Tricloroetileno/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Calor , Ácidos Grasos Volátiles/metabolismo , Oxidación-Reducción , Desulfitobacterium/metabolismo , Temperatura , Bacterias/metabolismo , Bacterias/genética , Microbiota , Restauración y Remediación Ambiental/métodos , Cloro/química , Cloro/metabolismo
4.
J Mater Chem B ; 12(25): 6128-6136, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38836578

RESUMEN

Boron neutron capture therapy (BNCT) is an emerging approach for treating malignant tumors with binary targeting. However, its clinical application has been hampered by insufficient 10B accumulation in tumors and low 10B concentration ratios of tumor-to-blood (T/B) and tumor-to-normal tissue (T/N). Herein, we developed fluorinated BPA derivatives with different fluorine groups as boron delivery agents for enabling sufficient 10B accumulation in tumors and enhancing T/B and T/N ratios. Our findings demonstrated that fluorinated BPA derivatives had good biological safety. Furthermore, fluorinated BPA derivatives showed improved 10B accumulation in tumors and enhanced T/B and T/N ratios compared to the clinical boron drug fructose-BPA (f-BPA). In particular, in B16-F10 tumor-bearing mice, fluorinated BPA derivatives met the requirements for clinical BNCT even at half of the clinical dose. Thus, fluorinated BPA derivatives are potentially effective boron delivery agents for clinical BNCT in melanoma.


Asunto(s)
Compuestos de Bencidrilo , Terapia por Captura de Neutrón de Boro , Halogenación , Animales , Ratones , Terapia por Captura de Neutrón de Boro/métodos , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Fenoles/química , Fenoles/farmacología , Humanos , Ratones Endogámicos C57BL , Compuestos de Boro/química , Compuestos de Boro/farmacología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Estructura Molecular
5.
J Phys Chem B ; 128(25): 5925-5934, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38886167

RESUMEN

Fluorine is an element renowned for its unique properties. Its powerful capability to modulate molecular properties makes it an attractive substituent for protein binding ligands; however, the rational design of fluorination can be challenging with effects on interactions and binding energies being difficult to predict. In this Perspective, we highlight how computational methods help us to understand the role of fluorine in protein-ligand binding with a focus on molecular simulation. We underline the importance of an accurate force field, present fluoride channels as a showcase for biomolecular interactions with fluorine, and discuss fluorine specific interactions like the ability to form hydrogen bonds and interactions with aryl groups. We put special emphasis on the disruption of water networks and entropic effects.


Asunto(s)
Halogenación , Enlace de Hidrógeno , Proteínas , Ligandos , Proteínas/química , Proteínas/metabolismo , Flúor/química , Unión Proteica , Simulación de Dinámica Molecular , Agua/química
6.
Arch Microbiol ; 206(7): 295, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856934

RESUMEN

Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.


Asunto(s)
Bacterias , Biopelículas , Cloro , Agua Potable , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Cloro/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Agua Potable/microbiología , Cobre/farmacología , Microbiología del Agua , Acero Inoxidable , Polipropilenos , Abastecimiento de Agua , Halogenación , Corrosión , Desinfectantes/farmacología
7.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891953

RESUMEN

This work unfolds functionalized ABSs composed of FILs ([C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]), mere fluoro-containing ILs ([C2C1Im][CF3SO3] and [C4C1Im][CF3SO3]), known globular protein stabilizers (sucrose and [N1112(OH)][C4F9SO3]), low-molecular-weight carbohydrate (glucose), and even high-charge density salt (K3PO4). The ternary phase diagrams were determined, stressing that FILs highly increased the ability for ABS formation. The functionalized ABSs (FILs vs. mere fluoro-containing ILs) were used to extract lysozyme (Lys). The ABSs' biphasic regions were screened in terms of protein biocompatibility, analyzing the impact of ABS phase-forming components in Lys by UV-VIS spectrophotometry, CD spectroscopy, fluorescence spectroscopy, DSC, and enzyme assay. Lys partition behavior was characterized in terms of extraction efficiency (% EE). The structure, stability, and function of Lys were maintained or improved throughout the extraction step, as evaluated by CD spectroscopy, DSC, enzyme assay, and SDS-PAGE. Overall, FIL-based ABSs are more versatile and amenable to being tuned by the adequate choice of the phase-forming components and selecting the enriched phase. Binding studies between Lys and ABS phase-forming components were attained by MST, demonstrating the strong interaction between Lys and FILs aggregates. Two of the FIL-based ABSs (30 %wt [C2C1Im][C4F9SO3] + 2 %wt K3PO4 and 30 %wt [C2C1Im][C4F9SO3] + 25 %wt sucrose) allowed the simultaneous purification of Lys and BSA in a single ABS extraction step with high yield (extraction efficiency up to 100%) for both proteins. The purity of both recovered proteins was validated by SDS-PAGE analysis. Even with a high-charge density salt, the FIL-based ABSs developed in this work seem more amenable to be tuned. Lys and BSA were purified through selective partition to opposite phases in a single FIL-based ABS extraction step. FIL-based ABSs are proposed as an improved extraction step for proteins, based on their biocompatibility, customizable properties, and selectivity.


Asunto(s)
Líquidos Iónicos , Muramidasa , Líquidos Iónicos/química , Muramidasa/química , Muramidasa/aislamiento & purificación , Muramidasa/metabolismo , Halogenación , Agua/química , Proteínas/química , Proteínas/aislamiento & purificación , Animales
8.
Pol J Microbiol ; 73(2): 207-215, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905281

RESUMEN

Chikungunya virus (CHIKV) causes a debilitating fever and joint pain, with no specific antiviral treatment available. Halogenated secondary metabolites from plants are a promising new class of drug candidates against chikungunya, with unique properties that make them effective against the virus. Plants produce these compounds to defend themselves against pests and pathogens, and they are effective against a wide range of viruses, including chikungunya. This study investigated the interactions of halogenated secondary metabolites with nsP2pro, a therapeutic target for CHIKV. A library of sixty-six halogenated plant metabolites screened previously for ADME properties was used. Metabolites without violation of Lipinski's rule were docked with nsP2pro using AutoDock Vina. To find the stability of the pipoxide chlorohydrin-nsP2pro complex, the GROMACS suite was used for MD simulation. The binding free energy of the ligand-protein complex was computed using MMPBSA. Molecular docking studies revealed that halogenated metabolites interact with nsP2pro, suggesting they are possible inhibitors. Pipoxide chlorohydrin showed the greatest affinity to the target. This was further confirmed by the MD simulations, surface accessible area, and MMPBSA studies. Pipoxide chlorohydrin, a halogenated metabolite, was the most potent against nsP2pro in the survey.


Asunto(s)
Antivirales , Virus Chikungunya , Simulación del Acoplamiento Molecular , Virus Chikungunya/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Fiebre Chikungunya/virología , Fiebre Chikungunya/tratamiento farmacológico , Metabolismo Secundario , Simulación de Dinámica Molecular , Halogenación , Plantas/química , Simulación por Computador , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química
9.
Water Res ; 259: 121876, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852391

RESUMEN

This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO3-) concentrations, and sodium hypochlorite (NaClO) oxidant concentrations. Results showed that if the molar ratio of NaClO: As(III) was >1, the oxidation of As(III) could be achieved within a minute with an extremely high oxidation rate of 99.7 %. In the binary system, the removal of As(III) prevailed over Mn(II). The As(III) oxidation efficiency increased from 59.8 ± 0.6 % to 70.8 ± 1.9 % when pH rose from 5.7 to 8.0. The oxidation reaction between As(III) and NaClO releases H+ ions, decreasing the pH from 6.77 to 6.19 and reducing the removal efficiency of Mn(II). The presence of HCO3- reduced the oxidation rate of Mn(II) from 63.2 % to 13.9 % within four hours. Instead, the final oxidation rate of Mn(II) increased from 68.1 % to 87.7 %. This increase can be attributed to HCO3- ions competing with the free Mn(II) for the adsorption sites on the sediments, inhibiting the formation of H+. Moreover, kinetic studies revealed that the oxidation reaction between Mn(II) and NaClO followed first-order kinetics based on their R2 values. The significant factors affecting the Mn(II) oxidation efficiency were the initial concentration of NaClO and pH. Applying an artificial neural network (ANN) model for data analysis proved to be an effective tool for predicting Mn(II) oxidation rates under different experimental conditions. The actual Mn(II) oxidation data and the predicted values obtained from the ANN model showed significant consistency. The training and validation data sets yielded R2 values of 0.995 and 0.992, respectively. Moreover, the ANN model highlights the importance of pH and NaClO concentrations in influencing the oxidation rate of Mn(II).


Asunto(s)
Arsenitos , Manganeso , Redes Neurales de la Computación , Oxidación-Reducción , Manganeso/química , Arsenitos/química , Cinética , Halogenación , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Purificación del Agua , Bicarbonatos/química
10.
Nat Commun ; 15(1): 5254, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898020

RESUMEN

C2'-halogenation has been recognized as an essential modification to enhance the drug-like properties of nucleotide analogs. The direct C2'-halogenation of the nucleotide 2'-deoxyadenosine-5'-monophosphate (dAMP) has recently been achieved using the Fe(II)/α-ketoglutarate-dependent nucleotide halogenase AdaV. However, the limited substrate scope of this enzyme hampers its broader applications. In this study, we report two halogenases capable of halogenating 2'-deoxyguanosine monophosphate (dGMP), thereby expanding the family of nucleotide halogenases. Computational studies reveal that nucleotide specificity is regulated by the binding pose of the phosphate group. Based on these findings, we successfully engineered the substrate specificity of these halogenases by mutating second-sphere residues. This work expands the toolbox of nucleotide halogenases and provides insights into the regulation mechanism of nucleotide specificity.


Asunto(s)
Ingeniería de Proteínas , Especificidad por Sustrato , Halogenación , Nucleótidos/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Nucleótidos de Desoxiguanina/química , Escherichia coli/genética , Escherichia coli/metabolismo
11.
Nat Commun ; 15(1): 5238, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898098

RESUMEN

While sanguinarine has gained recognition for antimicrobial and antineoplastic activities, its complex conjugated structure and low abundance in plants impede broad applications. Here, we demonstrate the complete biosynthesis of sanguinarine and halogenated derivatives using highly engineered yeast strains. To overcome sanguinarine cytotoxicity, we establish a splicing intein-mediated temperature-responsive gene expression system (SIMTeGES), a simple strategy that decouples cell growth from product synthesis without sacrificing protein activity. To debottleneck sanguinarine biosynthesis, we identify two reticuline oxidases and facilitated functional expression of flavoproteins and cytochrome P450 enzymes via protein molecular engineering. After comprehensive metabolic engineering, we report the production of sanguinarine at a titer of 448.64 mg L-1. Additionally, our engineered strain enables the biosynthesis of fluorinated sanguinarine, showcasing the biotransformation of halogenated derivatives through more than 15 biocatalytic steps. This work serves as a blueprint for utilizing yeast as a scalable platform for biomanufacturing diverse benzylisoquinoline alkaloids and derivatives.


Asunto(s)
Benzofenantridinas , Isoquinolinas , Ingeniería Metabólica , Saccharomyces cerevisiae , Temperatura , Isoquinolinas/metabolismo , Isoquinolinas/química , Benzofenantridinas/metabolismo , Benzofenantridinas/biosíntesis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ingeniería Metabólica/métodos , Halogenación , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética
12.
J Hazard Mater ; 474: 134766, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38833955

RESUMEN

Under the condition that the residual chlorine is guaranteed, the biofilm still thrives in drinking water distribution systems through secreting a large number of extracellular polymeric substances (EPS), in which protein components are the primary precursor of disinfection byproducts (DBPs), mostly in the form of combined amino acids. The aim of this study is to investigate the action of CuO on the formation of halates (XO3-, ClO3- and BrO3-) and DBPs (trihalomethanes, THMs; haloacetonitriles, HANs) with aspartic acid tetrapeptide (TAsp) as protein surrogate. The presence of CuO promoted the self-decay rather than TAsp-induced decay of oxidants, resulting in an increase in XO3- yield and a decrease in DBPs yield. It was CuO-induced weaker production of cyanoacetic acid and 3-oxopropanoic acid that induced the decreased yields of HANs and THMs, respectively. The FTIR and Raman spectra indicate a weak complexation between CuO and TAsp. Given this, the CuO-HOX/OX- complexes were inferred to be reactive to HOX/OX- but less reactive to TAsp. The study helps to better understand the formation of XO3- and DBPs during the chlorination of EPS, and propose precise control strategies when biofilm boosts in water pipes.


Asunto(s)
Ácido Aspártico , Cobre , Desinfectantes , Desinfección , Halogenación , Purificación del Agua , Cobre/química , Ácido Aspártico/química , Desinfectantes/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Trihalometanos/química , Péptidos/química , Péptidos/metabolismo
13.
Dalton Trans ; 53(25): 10571-10591, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38855858

RESUMEN

In order to investigate the structural features and antiproliferative activity of Pd(II) complexes containing halogenated ligands with different flexibility, several Schiff base and reduced Schiff base Pd(II) complexes, namely X1X2PicPd, X1X2PyPd, X1X2Pic(R)Pd, and X1X2Py(R)Pd (where X1 = X2 = Cl, Br and I; Pic: 2-picolylamine; Py = 2-(2-pyridyl)ethylamine), were synthesized and characterized by spectroscopic methods and, in the case of Br2PyPd, Cl2Py(R)Pd and ClBrPy(R)Pd, also by X-ray crystallography. The results of the X-ray crystallography showed that in both series of complexes the Pd(II) ion has a distorted square-planar geometry, although the coordination modes of the two ligands are different. In the Schiff base-type complexes the ligand acts as a tridentate chelate with NN'O donor atoms, whereas in the reduced Schiff base-type complexes the ligand acts as a bidentate chelate with NN' donor atoms. In both series of complexes, the chloride ions occupy the residual coordination sites of the Pd(II) ion. TD-DFT calculations were performed for a better understanding of the UV-Vis spectra. From these calculations it was found that the signal appearing at ∼400 nm in the complexes with reduced Schiff base ligands (X1X2Pic(R)Pd and X1X2Py(R)Pd) is mainly due to a HOMO → LUMO transition, while for the Schiff base complex ClBrPyPd the signal is due to a HOMO → LUMO+1 transition. For the complex I2PicPd, combinations of HOMO-4 → LUMO and HOMO-2 → LUMO transitions were found to be responsible for that signal. In regard to the biological activity profile, all complexes were first investigated as proteasome inhibitors by fluorometric methods. From these enzymatic assays, it emerged that they are good inhibitors with IC50 values in the low-micromolar range and that their inhibitory activity is strictly related to the presence of the metal ion. Subsequently they were also subjected to cell-based assays (the resazurin method) to assess their antiproliferative properties by using two leukemic cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000. In this test they displayed IC50 values in the sub-micromolar and low-micromolar range determined for a selected metal complex (Br2Pic(R)Pd) and ligand (Cl2Pic(R)), respectively. Moreover, docking studies were performed on the two expected molecular targets, i.e. proteasome and DNA, to shed light on the mechanisms of action of these types of Pd(II) complexes.


Asunto(s)
Antineoplásicos , Proliferación Celular , Complejos de Coordinación , Paladio , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/farmacología , Humanos , Paladio/química , Paladio/farmacología , Proliferación Celular/efectos de los fármacos , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Línea Celular Tumoral , Halogenación , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Modelos Moleculares
14.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38859757

RESUMEN

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Asunto(s)
Hierro , Hierro/química , Contaminantes Químicos del Agua/química , Halogenación , Agua Subterránea/química
15.
J Am Chem Soc ; 146(25): 17517-17529, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869959

RESUMEN

Despite the widespread use of hydrophilic building blocks to incorporate 18F and improve tracer pharmacokinetics, achieving effective leaving group-mediated nucleophilic 18F-fluorination in water (excluding 18F/19F-exchange) remains a formidable challenge. Here, we present a water-compatible SN2 leaving group-mediated 18F-fluorination method employing preconjugated "AquaF" (phosphonamidic fluorides) building blocks. Among 19 compact tetracoordinated pentavalent P(V)-F candidates, the "AquaF" building blocks exhibit superior water solubility, sufficient capacity for 18F-fluorination in water, and excellent in vivo metabolic properties. Two nitropyridinol leaving groups, identified from a pool of leaving group candidates that further enhance the precursor water solubility, enable 18F-fluorination in water with a 10-2 M-1 s-1 level reaction rate constant (surpassing the 18F/19F-exchange) at room temperature. With the exergonic concerted SN2 18F-fluorination mechanism confirmed, this 18F-fluorination method achieves ∼90% radiochemical conversions and reaches a molar activity of 175 ± 40 GBq/µmol (using 12.2 GBq initial activity) in saline for 12 "AquaF"-modified proof-of-concept functional substrates and small-molecule 18F-tracers. [18F]AquaF-Flurpiridaz demonstrates significantly improved radiochemical yield and molar activity compared to 18F-Flurpiridaz, alongside enhanced cardiac uptake and heart/liver ratio in targeted myocardial perfusion imaging, providing a comprehensive illustration of "AquaF" building blocks-assisted water-compatible SN2 18F-fluorination of small-molecule radiotracers.


Asunto(s)
Radioisótopos de Flúor , Halogenación , Agua , Radioisótopos de Flúor/química , Agua/química , Animales , Radiofármacos/química , Radiofármacos/síntesis química , Ratones , Tomografía de Emisión de Positrones , Solubilidad , Estructura Molecular , Trazadores Radiactivos
16.
J Enzyme Inhib Med Chem ; 39(1): 2367128, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38913598

RESUMEN

Inhibition of α-glucosidase and α-amylase are key tactics for managing blood glucose levels. Currently, stronger, and more accessible inhibitors are needed to treat diabetes. Indeno[1,2-b] quinoxalines-carrying thiazole hybrids 1-17 were created and described using NMR. All analogues were tested for hypoglycaemic effect against STZ-induced diabetes in mice. Compounds 4, 6, 8, and 16 were the most potent among the synthesised analogues. These hybrids were examined for their effects on plasma insulin, urea, creatinine, GSH, MDA, ALT, AST, and total cholesterol. Moreover, these compounds were tested against α-glucosidase and α-amylase enzymes in vitro. The four hybrids 4, 6, 8, and 16 represented moderate to potent activity with IC50 values 0.982 ± 0.04, to 10.19 ± 0.21 for α-glucosidase inhibition and 17.58 ± 0.74 to 121.6 ± 5.14 µM for α-amylase inhibition when compared to the standard medication acarbose with IC50=0.316 ± 0.02 µM for α-glucosidase inhibition and 31.56 ± 1.33 µM for α-amylase inhibition. Docking studies as well as in silico ADMT were done.


Asunto(s)
Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Quinoxalinas , Tiazoles , alfa-Amilasas , alfa-Glucosidasas , Quinoxalinas/farmacología , Quinoxalinas/química , Quinoxalinas/síntesis química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Animales , Ratones , Relación Estructura-Actividad , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Estructura Molecular , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Diabetes Mellitus Experimental/tratamiento farmacológico , Estreptozocina , Halogenación , Masculino , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
17.
Org Lett ; 26(20): 4308-4313, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38728659

RESUMEN

In this study, we introduce a practical methodology for the synthesis of PET probes by seamlessly combining flow chemistry with photoredox radiofluorination. The clinical PET tracer 6-[18F]FDOPA was smoothly prepared in a 24.3% non-decay-corrected yield with over 99.0% radiochemical purity (RCP) and enantiomeric excess (ee), notably by a simple cartridge-based purification. The flow chemistry-enhanced photolabeling method supplies an efficient and versatile solution for the synthesis of 6-[18F]FDOPA and for more PET tracer development.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radioisótopos de Flúor/química , Estructura Molecular , Radiofármacos/química , Radiofármacos/síntesis química , Oxidación-Reducción , Dihidroxifenilalanina/química , Dihidroxifenilalanina/síntesis química , Dihidroxifenilalanina/análogos & derivados , Procesos Fotoquímicos , Halogenación
18.
Chemosphere ; 360: 142392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777195

RESUMEN

Significant challenges remain for the remediation of chlorinated-solvent plumes in groundwater, such as trichloroethene (TCE) and tetrachloroethene (PCE). A novel slow-release permanganate gel (SRP-G) technique may show promise for the in-situ treatment (remediation) of chlorinated contaminant plumes in groundwater. A series of laboratory experiments were conducted to characterize the primary physical factors that influence SRP-G gelation processes to optimize SRP-G performance for plume treatment. Specifically, experiments were conducted to quantify gel zeta potential, particle size distribution, and viscosity to determine SRP-G gelation characteristics and processes. These experiments tested various concentrations of two SRP-G amendment solutions (NaMnO4 and KMnO4) prepared with 30-wt.% and 50-wt.% colloidal silica to determine such influences on zeta potential, particle size distribution, and viscosity. The results of this study show that SRP-G solutions with low zeta potential and relatively high pH favor more rapid SRP-G gelation. The concomitant interaction of the predominantly negatively charged colloidal silica particles and the positively charged dissociated cations (Na+ and K+) in the SRP-G solution had the effect of stabilizing charge imbalance via attraction of particles and thereby inducing a greater influence on the gelation process. Gel particle size distribution and changes in viscosity had a significant influence on SRP-G solution gelation. The addition of permanganate (NaMnO4 or KMnO4) increased the average particle size distribution and the viscosity of the SRP-G solution and decreased the overall gelation time. SRP-G amendments (NaMnO4 or KMnO4) prepared with 50-wt.% colloidal silica showed more effective gelation (and reduced gelation time) compared to SRP-G amendments prepared with 30-wt.% colloidal silica. Under the conditions of these experiments, it was determined that both the 7-wt.% NaMnO4 solution and 90 mg/L KMnO4 solution using 50-wt.% colloidal silica would be the optimal injection SRP-G solution concentrations for this in-situ treatment technique.


Asunto(s)
Geles , Agua Subterránea , Compuestos de Manganeso , Óxidos , Solventes , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Geles/química , Solventes/química , Compuestos de Manganeso/química , Óxidos/química , Restauración y Remediación Ambiental/métodos , Tricloroetileno/química , Halogenación , Viscosidad , Tamaño de la Partícula , Tetracloroetileno/química , Tetracloroetileno/análisis
19.
Environ Pollut ; 355: 124184, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782162

RESUMEN

While sodium hypochlorite (NaClO) has long been used to disinfect drinking water, concerns have risen over its use due to causing potentially hazardous byproducts. Catalytic ozonation with metal-free catalysts has attracted increasing attention to eliminate the risk of secondary pollution of byproducts in water treatment. Here, we compared the disinfection efficiency and microbial community of catalytic ozone with a type of metal-free catalyst fluorinated ceramic honeycomb (FCH) and NaClO disinfectants under laboratory- and pilot-scale conditions. Under laboratory conditions, the disinfection rate of catalytic ozonation was 3∼6-fold that of ozone when the concentration of Escherichia coli was 1 × 106 CFU/ml, and all E. coli were killed within 15 s. However, 0.65 mg/L NaClO retained E. coli after 30 min using the traditional culturable approach. The microorganism inactivation results of raw reservoir water disinfected by catalytic ozonation and ozonation within 15 s were incomparable based on the cultural method. In pilot-scale testing, catalytic ozonation inactivated all environmental bacteria within 4 min, while 0.65 mg/L NaClO could not achieve this success. Both catalytic ozonation and NaClO-disinfected methods significantly reduced the number of microorganisms but did not change the relative abundances of different species, i.e., bacteria, viruses, eukaryotes, and archaea, based on metagenomic analyses. The abundance of virulence factors (VFs) and antimicrobial resistance genes (ARGs) was detected few in catalytic ozonation, as determined by metagenomic sequencing. Some VFs or ARGs, such as virulence gene 'FAS-II' which was hosted by Mycobacterium_tuberculosis, were detected solely by the NaClO-disinfected method. The enriched genes and pathways of cataO3-disinfected methods exhibited an opposite trend, especially in human disease, compared with NaClO disinfection. These results indicated that the disinfection effect of catalytic ozone is superior to NaClO, this finding contributed to the large-scale application of catalytic ozonation with FCH in practical water treatment.


Asunto(s)
Cerámica , Desinfectantes , Desinfección , Agua Potable , Ozono , Hipoclorito de Sodio , Purificación del Agua , Ozono/química , Desinfectantes/farmacología , Agua Potable/microbiología , Agua Potable/química , Desinfección/métodos , Cerámica/química , Purificación del Agua/métodos , Hipoclorito de Sodio/farmacología , Hipoclorito de Sodio/química , Catálisis , Halogenación , Escherichia coli/efectos de los fármacos , Proyectos Piloto , Microbiología del Agua , Bacterias/efectos de los fármacos
20.
J Hazard Mater ; 473: 134613, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788571

RESUMEN

Bacteria are pivotal to drinking water treatment and public health. However, the mechanisms of bacterial assembly and their impact on species coexistence remain largely unexplored. This study explored the assembly and succession of bacterial communities in two full-scale drinking water systems over one year. We observed a decline in bacterial biomass, diversity, and co-occurrence network complexity along the treatment processes, except for the biological activated carbon filtration stage. The conventional plant showed higher bacterial diversity than the advanced plant, despite similar bacterial concentrations and better removal efficiency. The biological activated carbon filter exhibited high phylogenetic diversity, indicating enhanced bacterial metabolic functionality for organic matter removal. Chlorination inactivated most bacteria but favored some chlorination-resistant and potentially pathogenic species, such as Burkholderia, Bosea, Brevundimonas, and Acinetobacter. Moreover, the spatiotemporal dynamics of the bacterial continuum were primarily driven by stochastic processes, explaining more than 78% of the relative importance. The advanced plant's bacterial community was less influenced by dispersal limitation and more by homogeneous selection. The stochastic process regulated bacterial diversity and influenced the complexity of the species co-occurrence network. These findings deepen our understanding of microbial ecological mechanisms and species interactions, offering insights for enhancing hygienic safety in drinking water systems.


Asunto(s)
Bacterias , Agua Potable , Microbiología del Agua , Purificación del Agua , Agua Potable/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Purificación del Agua/métodos , Halogenación , Filtración , Biodiversidad , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...