Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(28): 19118-19127, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950551

RESUMEN

The ability to track minute changes of a single amino acid residue in a cellular environment is causing a paradigm shift in the attempt to fully understand the responses of biomolecules that are highly sensitive to their environment. Detecting early protein dynamics in living cells is crucial to understanding their mechanisms, such as those of photosynthetic proteins. Here, we elucidate the light response of the microbial chloride pump NmHR from the marine bacterium Nonlabens marinus, located in the membrane of living Escherichia coli cells, using nanosecond time-resolved UV/vis and IR absorption spectroscopy over the time range from nanoseconds to seconds. Transient structural changes of the retinal cofactor and the surrounding apoprotein are recorded using light-induced time-resolved UV/vis and IR difference spectroscopy. Of particular note, we have resolved the kinetics of the transient deprotonation of a single cysteine residue during the photocycle of NmHR out of the manifold of molecular vibrations of the cells. These findings are of high general relevance, given the successful development of optogenetic tools from photoreceptors to interfere with enzymatic and neuronal pathways in living organisms using light pulses as a noninvasive trigger.


Asunto(s)
Escherichia coli , Halorrodopsinas , Escherichia coli/química , Escherichia coli/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Espectrofotometría Infrarroja/métodos , Luz , Halobacteriaceae/química , Halobacteriaceae/metabolismo , Cinética
2.
J Phys Chem B ; 127(46): 9873-9886, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37940604

RESUMEN

Photoisomerization of an all-trans-retinal chromophore triggers ion transport in microbial ion-pumping rhodopsins. Understanding chromophore structures in the electronically excited (S1) state provides insights into the structural evolution on the potential energy surface of the photoexcited state. In this study, we examined the structure of the S1-state chromophore in Natronomonas pharaonis halorhodopsin (NpHR), a chloride ion-pumping rhodopsin, using time-resolved resonance Raman spectroscopy. The spectral patterns of the S1-state chromophore were completely different from those of the ground-state chromophore, resulting from unique vibrational characteristics and the structure of the S1 state. Mode assignments were based on a combination of deuteration shifts of the Raman bands and hybrid quantum mechanics-molecular mechanics calculations. The present observations suggest a weakened bond alternation in the π conjugation system. A strong hydrogen-out-of-plane bending band was observed in the Raman spectra of the S1-state chromophore in NpHR, indicating a twisted polyene structure. Similar frequency shifts for the C═N/C═C and C-C stretching modes of the S1-state chromophore in NpHR were observed in the Raman spectra of sodium ion-pumping and proton-pumping rhodopsins, suggesting that these unique features are common to the S1 states of ion-pumping rhodopsins.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Rodopsina/química , Retinaldehído/química , Halorrodopsinas/química
3.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37532685

RESUMEN

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Asunto(s)
Proteínas Arqueales , Halobacteriaceae , Rodopsinas Sensoriales , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transducción de Señal , Proteínas Arqueales/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1863(8): 183637, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930372

RESUMEN

We report a simple and direct fluorimetric vesicle-based method for measuring the transport rate of the light-driven ions pumps as specifically applied to the chloride pump, halorhodopsin, from Natronomonas pharaonis (pHR). Previous measurements were cell-based and methods to determine average single channel permeability challenging. We used a water-in-oil emulsion method for directional pHR reconstitution into two different types of vesicles: lipid vesicles and asymmetric lipid-block copolymer vesicles. We then used stopped-flow experiments combined with fluorescence correlation spectroscopy to determine per protein Cl- transport rates. We obtained a Cl- transport rate of 442 (±17.7) Cl-/protein/s in egg phosphatidyl choline (PC) lipid vesicles and 413 (±26) Cl-/protein/s in hybrid block copolymer/lipid (BCP/PC) vesicles with polybutadine-polyethylene oxide (PB12PEO8) on the outer leaflet and PC in the inner leaflet at a photon flux of 1450 photons/protein/s. Normalizing to a per photon basis, this corresponds to 0.30 (±0.07) Cl-/photon and 0.28 (±0.04) Cl-/photon for pure PC and BCP/PC hybrid vesicles respectively, both of which are in agreement with recently reported turnover of ~500 Cl-/protein/s from flash photolysis experiments and with voltage-clamp measurements of 0.35 (±0.16) Cl-/photon in pHR-expressing oocytes as well as with a pHR quantum efficiency of ~30%.


Asunto(s)
Cloruros/metabolismo , Halorrodopsinas/química , Transporte Iónico/genética , Liposomas/química , Cloruros/química , Cloruros/efectos de la radiación , Halobacteriaceae/química , Halobacteriaceae/genética , Halorrodopsinas/genética , Cinética , Luz , Liposomas/metabolismo , Liposomas/efectos de la radiación
5.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806280

RESUMEN

Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein-protein interaction and oligomerization in a constraining environment.


Asunto(s)
Halorrodopsinas/química , Membrana Dobles de Lípidos/química , Rodopsinas Sensoriales/química , Alquenos/química , Fenómenos Biofísicos , Dimiristoilfosfatidilcolina/química , Espectroscopía de Resonancia por Spin del Electrón , Halobacteriaceae/química , Halobacteriaceae/efectos de la radiación , Halorrodopsinas/efectos de la radiación , Maleatos/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Simulación de Dinámica Molecular , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Procesos Fotoquímicos , Rodopsinas Sensoriales/efectos de la radiación , Marcadores de Spin
6.
J Mol Biol ; 432(19): 5273-5286, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32721401

RESUMEN

Understanding the structure and functional mechanisms of cyanobacterial halorhodopsin has become increasingly important, given the report that Synechocystis halorhodopsin (SyHR), a homolog of the cyanobacterial halorhodopsin from Mastigocladopsis repens (MrHR), can take up divalent ions, such as SO42-, as well as chloride ions. Here, the crystal structure of MrHR, containing a unique "TSD" chloride ion conduction motif, was determined as a homotrimer at a resolution of 1.9 Å. The detailed structure of MrHR revealed a unique trimeric topology of the light-driven chloride pump, with peculiar coordination of two water molecules and hydrogen-mediated bonds near the TSD motif, as well as a short B-C loop. Structural and functional analyses of MrHR revealed key residues responsible for the anion selectivity of cyanobacterial halorhodopsin and the involvement of two chloride ion-binding sites in the ion conduction pathway. Alanine mutant of Asn63, Pro118, and Glu182 locating in the anion inlet induce multifunctional uptake of chloride, nitrate, and sulfate ions. Moreover, the structure of N63A/P118A provides information on how SyHR promotes divalent ion transport. Our findings significantly advance the structural understanding of microbial rhodopsins with different motifs. They also provide insight into the general structural framework underlying the molecular mechanisms of the cyanobacterial chloride pump containing SyHR, the only molecule known to transport both sulfate and chloride ions.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas Bacterianas/química , Cianobacterias/química , Proteínas de Transporte de Anión/metabolismo , Aniones/metabolismo , Proteínas Bacterianas/metabolismo , Cloruros/metabolismo , Cristalografía por Rayos X , Cianobacterias/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Transporte Iónico , Modelos Moleculares , Conformación Proteica
7.
Biomed Phys Eng Express ; 6(4): 045011, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33444272

RESUMEN

A detailed theoretical analysis of low-power, high-frequency and temporally precise optogenetic inhibition of neuronal spiking, with red-shifted opsins namely, NpHR, eNpHR3.0 and Jaws, has been presented. An accurate model for inhibition of spiking in these opsins expressed hippocampal neurons that includes the important rebound activity of chloride ions across the membrane has been formulated. The effect of various parameters including irradiance, pulse width, frequency, opsin-expression density and chloride concentration has been studied in detail. Theoretical simulations are in very good agreement with reported experimental results. The chloride concentration gradient directly affects the photocurrent and inhibition capacity in all three variants. eNpHR3.0 shows smallest inhibitory post-synaptic potential plateau at higher frequencies. The time delay between light stimulus and target spike is crucial to minimize irradiance and expression density thresholds for suppressing individual spike. Good practical values of photostimulation parameters have been obtained empirically for peak photocurrent, time delay and 100% spiking inhibition, at continuous and pulsed illumination. Under continuous illumination, complete inhibition of neural activity in Jaws-expressing neurons takes place at minimum irradiance of 0.2 mW mm-2 and expression density of 0.2 mS cm-2, whereas for pulsed stimulation, it is at minimum irradiance of 0.6 mW mm-2 and 5 ms pulse width, at 10 Hz. It is shown that Jaws and eNpHR3.0 are able to invoke single spike precise inhibition up to 160 and 200 Hz, respectively. The study is useful in designing new experiments, understanding temporal spike coding and bidirectional control, and curing neurological disorders.


Asunto(s)
Halorrodopsinas/química , Neuronas/fisiología , Optogenética , Potenciales de Acción/fisiología , Animales , Cloruros/química , Haloarcula , Humanos , Iones , Cinética , Luz , Modelos Teóricos , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/metabolismo , Opsinas/metabolismo , Estimulación Luminosa , Fotoquímica , Temperatura
8.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 937-946, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31588925

RESUMEN

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Halorrodopsinas/química , Lípidos/química , Proteínas de la Membrana/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rodopsinas Sensoriales/química , Proteínas Bacterianas/química , Cristalización/métodos , Cristalografía por Rayos X/métodos , Halobacteriaceae/enzimología , Hyphomicrobiaceae/enzimología , Thermus thermophilus/enzimología
9.
Biochemistry ; 58(40): 4159-4167, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31538771

RESUMEN

From the low-temperature absorption and Raman measurements of halorhodopsin from Natronomonas pharaonis (pHR), we observed that the two photoproducts were generated after exciting pHR at 80 K by green light. One photoproduct was the red-shifted K intermediate (pHRK) as the primary photointermediate for Cl- pumping, and the other was the blue-shifted one (pHRhypso), which was not involved in the Cl- pumping and thermally relaxed to the original unphotolyzed state by increasing temperature. The formation of these two kinds of photoproducts was previously reported for halorhodopsin from Halobacterium sarinarum [ Zimanyi et al. Biochemistry 1989 , 28 , 1656 ]. We found that the same took place in pHR, and we revealed the chromophore structures of the two photointermediates from their Raman spectra for the first time. pHRhypso had the distorted all-trans chromophore, while pHRK contained the distorted 13-cis form. The present results revealed that the structural analyses of pHRK carried out so far at ∼80 K potentially included a significant contribution from pHRhypso. pHRhypso was efficiently formed via the photoexcitation of pHRK, indicating that pHRhypso was likely a side product after photoexcitation of pHRK. The formation of pHRhypso suggested that the active site became tight in pHRK due to the slight movement of Cl-, and the back photoisomerization then produced the distorted all-trans chromophore in pHRhypso.


Asunto(s)
Halobacteriaceae/química , Halorrodopsinas/química , Halorrodopsinas/efectos de la radiación , Dominio Catalítico/efectos de la radiación , Frío , Enlace de Hidrógeno , Luz , Conformación Molecular , Retinaldehído/química , Bases de Schiff/química , Espectrometría Raman
10.
J Phys Chem B ; 123(23): 4850-4857, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31149826

RESUMEN

Bacteriorhodopsin (bR) and halorhodopsin (hR) are both membrane proteins that transport ions across the cell membrane in halobacteria. Their ion transport function is triggered by photoactivated isomerization of the retinal protonated Schiff base (RPSB) chromophore. In spite of their similar structures, bR and hR exhibit widely differing RPSB isomerization rates and quantum yields (with bR being both faster and more efficient than hR). Previous simulations of photoisomerization in bR and hR using ab initio multiple spawning (AIMS) with QM/MM have successfully reproduced the experimentally observed ordering of quantum yields and isomerization rates, but the origin of these differences remains elusive. Here we investigate the role of electrostatic interactions in the protein pocket surrounding RPSB. We probe the influence of protein electrostatics by modifying the charge of the complex counterion in bR/hR to be more/less negative than the native state. We find that such modifications lead to bR-like behavior in hR and vice versa. This demonstrates the crucial role of electrostatic interactions in controlling the outcome of RPSB photoisomerization.


Asunto(s)
Bacteriorodopsinas/química , Halorrodopsinas/química , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Conformación Proteica , Teoría Cuántica , Electricidad Estática , Estereoisomerismo , Termodinámica
11.
Biochemistry ; 57(41): 6013-6026, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30211543

RESUMEN

The anion pumping cycle of halorhodopsin from Natronomonas pharaonis ( pHR) is initiated when the all- trans/15- anti isomer of retinal is photoisomerized into the 13- cis/15- anti configuration. A recent crystallographic study suggested that a reaction state with 13- cis/15- syn retinal occurred during the anion release process, i.e., after the N state with the 13- cis/15- anti retinal and before the O state with all- trans/15- anti retinal. In this study, we investigated the retinal isomeric composition in a long-living reaction state at various bromide ion concentrations. It was found that the 13- cis isomer (csHR'), in which the absorption spectrum was blue-shifted by ∼8 nm compared with that of the trans isomer (taHR), accumulated significantly when a cold suspension of pHR-rich claret membranes in 4 M NaBr was illuminated with continuous light. Analysis of flash-induced absorption changes suggested that the branching of the trans photocycle into the 13- cis isomer (csHR') occurs during the decay of an O-like state (O') with 13- cis/15- syn retinal; i.e., O' can decay to either csHR' or O with all- trans/15- anti retinal. The efficiency of the branching reaction was found to be dependent on the bromide ion concentration. At a very high bromide ion concentration, the anion pumping cycle is described by the scheme taHR -( hν) → K → L1a ↔ L1b ↔ N ↔ N' ↔ O' ↔ csHR' ↔ taHR. At a low bromide ion concentration, on the other hand, O' decays into taHR via O.


Asunto(s)
Halobacteriaceae/química , Halorrodopsinas/química , Retinaldehído/química , Estereoisomerismo
12.
Biochem Biophys Res Commun ; 503(4): 2326-2332, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29964009

RESUMEN

Optogenetic technologies have often been used as tools for neuronal activation or silencing by light. Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven chloride ion pump. Upon light absorption, a chloride ion passes through the cell membrane, which is accompanied by the temporary binding of a chloride ion with Thr126 at binding site-1 (BS1) near the protonated Schiff base in NpHR. However, the mechanism of stabilization of the binding state between a chloride ion and BS1 has not been investigated. Therefore, to identify a key component of the chloride ion transport pathway as well as to acquire dynamic information about the chloride ion-BS1 binding state, we performed a rough analysis of the chloride ion pathway shape followed by molecular dynamics (MD) simulations for both wild-type and mutant NpHR structures. The MD simulations showed that the hydrogen bond between Thr126 and the chloride ion was retained in the wild-type protein, while the chloride ion could not be retained at and tended to leave BS1 in the S81A mutant. We found that the direction of the Thr126 side chain was fixed by a hydroxyl group of Ser81 through a hydrogen bond and that Thr126 bound to a chloride ion in the wild-type protein, while this interaction was lost in the S81A mutant, resulting in rotation of the Thr126 side chain and reduction in the interaction between Thr126 and a chloride ion. To confirm the role of S81, patch clamp recordings were performed using cells expressing NpHR S81A mutant protein. Considered together with the results that the NpHR S81A-expressing cells did not undergo hyperpolarization under light stimulation, our results indicate that Ser81 plays a key role in chloride migration. Our findings might be relevant to ongoing clinical trials using optogenetic gene therapy in blind patients.


Asunto(s)
Cloruros/química , Halobacteriaceae/química , Halorrodopsinas/química , Bases de Schiff/química , Proteínas Bacterianas/química , Sitios de Unión , Halorrodopsinas/metabolismo , Unión Proteica , Serina/fisiología
13.
Biophys J ; 115(1): 72-83, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972813

RESUMEN

Pharanois phoborhodopsin (ppR) from Natronomonas pharaonis is a transmembrane photoreceptor protein involved in negative phototaxis. Structural changes in ppR triggered by photoisomerization of the retinal chromophore are transmitted to its cognate transducer protein (pHtrII) through a cyclic photoreaction pathway involving several photointermediates. This pathway is called the photocycle. It is important to understand the detailed configurational changes of retinal during the photocycle. We previously observed one of the photointermediates (M-intermediates) by in situ photoirradiation solid-state NMR experiments. In this study, we further observed the 13C cross-polarization magic-angle-spinning NMR signals of late photointermediates such as O- and N'-intermediates by illumination with green light (520 nm). Under blue-light (365 nm) irradiation of the M-intermediates, 13C cross-polarization magic-angle-spinning NMR signals of 14- and 20-13C-labeled retinal in the O-intermediate appeared at 115.4 and 16.4 ppm and were assigned to the 13-trans, 15-syn configuration. The signals caused by the N'-intermediate appeared at 115.4 and 23.9 ppm and were assigned to the 13-cis configuration, and they were in an equilibrium state with the O-intermediate during thermal decay of the M-intermediates at -60°C. Thus, photoirradiation NMR studies revealed the photoreaction pathways from the M- to O-intermediates and the equilibrium state between the N'- and O-intermediate. Further, we evaluated the detailed retinal configurations in the O- and N'-intermediates by performing a density functional theory chemical shift calculation. The results showed that the N'-intermediate has a 63° twisted retinal state due to the 13-cis configuration. The retinal configurations of the O- and N'-intermediates were determined to be 13-trans, 15-syn, and 13-cis, respectively, based on the chemical shift values of [20-13C] and [14-13C] retinal obtained by photoirradiation solid-state NMR and density functional theory calculation.


Asunto(s)
Teoría Funcional de la Densidad , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Luz , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/metabolismo , Halobacteriaceae
14.
Chem Rev ; 118(21): 10629-10645, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29882660

RESUMEN

Early research on the four microbial rhodopsins discovered in the archaeal Halobacterium salinarum revealed a structural template that served as a scaffold for two different functions: light-driven ion transport and phototaxis. Bacteriorhodopsin and halorhodopsin are proton and chloride pumps, respectively, while sensory rhodopsin I and II are responsible for phototactic behavior of the archaea. Halorhodopsins have been identified in various other species. Besides this group of archaeal halorhodopsins distinct chloride transporting rhodopsins groups have recently been identified in other organism like Flavobacteria or Cyanobacteria. Halorhodopsin from Natronomonas pharaonis is the best-studied homologue because of its facile expression and purification and its advantageous properties, which was the reason to introduce this protein as neural silencer into the new field of optogenetics. Two other major families of genetically encoded silencing proteins, proton pumps and anion channels, extended the repertoire of optogenetic tools. Here, we describe the functional and structural characteristics of halorhodopsins. We will discuss the data in light of common principles underlying the mechanism of ion pumps and sensors and will review biophysical and biochemical aspects of neuronal silencers.


Asunto(s)
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Animales , Bacteriorodopsinas/genética , Sitios de Unión , Transporte Biológico , Halorrodopsinas/genética , Humanos , Modelos Moleculares , Optogenética , Procesos Fotoquímicos , Conformación Proteica
15.
Photochem Photobiol ; 94(4): 705-714, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29512821

RESUMEN

Aspartic acid 103 (D103) of sensory rhodopsin II from Halobacterium salinarum (HsSRII, or also called phoborhodopsin) corresponds to D115 of bacteriorhodopsin (BR). This amino acid residue is functionally important in BR. This work reveals that a substitution of D103 with asparagine (D103N) or glutamic acid (D103E) can cause large changes in HsSRII photocycle. These changes include (1) shortened lifetime of the M intermediate in the following order: the wild-type > D103N > D103E; (2) altered decay pathway of a 13-cis O-like species. The 13-cis O-like species, tentatively named Px, was detected in HsSRII photocycle. Px appeared to undergo branched reactions at 0°C, leading to a recovery of the unphotolyzed state and formation of a metastable intermediate, named P370, that slowly decayed to the unphotolyzed state at room temperature. In wild-type HsSRII at 0°C, Px mainly decayed to the unphotolyzed state, and the decay reaction toward P370 was negligible. In mutant D103E at 0°C, Px decayed to P370, while the recovery of the unphotolyzed state became unobservable. In mutant D103N, the two reactions proceeded at comparable rates. Thus, D103 of HsSRII may play an important role in regulation of the photocycle of HsSRII.


Asunto(s)
Asparagina/química , Ácido Aspártico/química , Ácido Glutámico/química , Halobacterium salinarum/química , Halorrodopsinas/química , Mutación , Procesos Fotoquímicos , Rodopsinas Sensoriales/química , Sustitución de Aminoácidos , Frío , Enlace de Hidrógeno , Luz , Fotólisis , Espectroscopía Infrarroja por Transformada de Fourier
16.
J Phys Chem A ; 122(9): 2411-2423, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29460629

RESUMEN

We revealed the chloride ion pumping mechanism in halorhodopsin from Natronobacterium pharaonis ( pHR) by exploring sequential structural changes in the retinal chromophore during its photocycle using time-resolved resonance Raman (RR) spectroscopy on the nanosecond to millisecond time scales. A series of RR spectra of the retinal chromophore in the unphotolyzed state and of the three intermediates of pHR were obtained. Using singular value decomposition analysis of the C═C and C-C stretch bands in the time-resolved RR spectra, we identified the spectra of the K, L, and N intermediates. We focused on structural markers of the RR bands to explore the structure of the retinal chromophore. In the unphotolyzed state, the retinal chromophore is in the planar all- trans, 15- anti geometry. The bound ion affects the polyene chain but does not interact with the protonated Schiff base. In the observed intermediates, the chromophore is in the 13- cis configuration. The chromophore in the K intermediate is distorted due to the photoisomerization of retinal. The hydrogen bond is weak in the unphotolyzed state and in the K intermediate, resulting in exchange of the hydrogen-bond acceptor to a water molecule in the K-to-L transition, relaxation of the polyene chain distortion, and generation of an alternative distortion near the Schiff base. The bound halide ion interacts with the protonated Schiff base through the water molecule bound to the protonated Schiff base. In the L-to-N transition, the hydrogen acceptor of the protonated Schiff base switches from the water molecule to another species, although the strong hydrogen bond of the protonated Schiff base remains. This paper reports the first observation of sequential changes in the RR spectra in the pHR photocycle, provides information on the structural evolution of the retinal chromophore, and proposes a model for chloride ion translocation in pHR.


Asunto(s)
Halorrodopsinas/química , Luz , Natronobacterium/química , Retinaldehído/química , Deuterio/química , Halógenos/química , Halorrodopsinas/metabolismo , Modelos Moleculares , Conformación Molecular , Natronobacterium/metabolismo , Natronobacterium/efectos de la radiación , Espectrometría Raman , Temperatura
17.
J Phys Chem B ; 121(10): 2319-2325, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28230358

RESUMEN

Ultrafast photochemistry of pharaonis halorhodopsin (p-HR) in the intact membrane of Natronomonas pharaonis has been studied by photoselective femtosecond pump-hyperspectral probe spectroscopy with high time resolution. Two variants of this sample were studied, one with wild-type retinal prosthetic groups and another after shifting the retinal absorption deep into the blue range by reducing the Schiff base linkage, and the results were compared to a previous study on detergent-solubilized p-HR. This comparison shows that retinal photoisomerization dynamics is identical in the membrane and in the solubilized sample. Selective photoexcitation of bacterioruberin, which is associated with the protein in the native membrane, in wild-type and reduced samples, demonstrates conclusively that unlike the carotenoids associated with some bacterial retinal proteins the carrotenoid in p-HR does not act as a light-harvesting antenna.


Asunto(s)
Carotenoides/efectos de la radiación , Halorrodopsinas/efectos de la radiación , Carotenoides/química , Membrana Celular/química , Halobacteriaceae , Halorrodopsinas/química , Luz , Fotoquímica , Retinaldehído/química , Retinaldehído/efectos de la radiación
18.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 692-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599860

RESUMEN

The transmembrane pump halorhodopsin in halophilic archaea translocates chloride ions from the extracellular to the cytoplasmic side upon illumination. In the ground state a tightly bound chloride ion occupies the primary chloride-binding site (CBS I) close to the protonated Schiff base that links the retinal chromophore to the protein. The light-triggered trans-cis isomerization of retinal causes structural changes in the protein associated with movement of the chloride ion. In reverse, chemical depletion of CBS I in Natronomonas pharaonis halorhodopsin (NpHR) through deprotonation of the Schiff base results in conformational changes of the protein: a state thought to mimic late stages of the photocycle. Here, crystals of Halobacterium salinarum halorhodopsin (HsHR) were soaked at high pH to provoke deprotonation of the Schiff base and loss of chloride. The crystals changed colour from purple to yellow and the occupancy of CBS I was reduced from 1 to about 0.5. In contrast to NpHR, this chloride depletion did not cause substantial conformational changes in the protein. Nevertheless, two observations indicate that chloride depletion could eventually result in structural changes similar to those found in NpHR. Firstly, the partially chloride-depleted form of HsHR has increased normalized B factors in the region of helix C that is close to CBS I and changes its conformation in NpHR. Secondly, prolonged soaking of HsHR crystals at high pH resulted in loss of diffraction. In conclusion, the conformation of the chloride-free protein may not be compatible with this crystal form of HsHR despite a packing arrangement that hardly restrains helices E and F that presumably move during ion transport.


Asunto(s)
Proteínas Arqueales/química , Cloruros/química , Halobacteriales/química , Halobacterium salinarum/química , Halorrodopsinas/química , Protones , Secuencias de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Cloruros/metabolismo , Cristalización , Cristalografía por Rayos X , Expresión Génica , Halobacteriales/genética , Halobacteriales/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Concentración de Iones de Hidrógeno , Luz , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bases de Schiff/química , Bases de Schiff/metabolismo , Difracción de Rayos X
19.
J Biol Chem ; 291(34): 17488-17495, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27365396

RESUMEN

The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities.


Asunto(s)
Proteínas Bacterianas/química , Canales de Cloruro/química , Flavobacteriaceae/química , Halorrodopsinas/química , Luz , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cristalografía por Rayos X , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
20.
Nat Struct Mol Biol ; 23(6): 468-74, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273629

RESUMEN

Membrane-protein NMR occupies a unique niche for determining structures, assessing dynamics, examining folding, and studying the binding of lipids, ligands and drugs to membrane proteins. However, NMR analyses of membrane proteins also face special challenges that are not encountered with soluble proteins, including sample preparation, size limitation, spectral crowding and sparse data accumulation. This Perspective provides a snapshot of current achievements, future opportunities and possible limitations in this rapidly developing field.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas de la Membrana Bacteriana Externa/química , Halorrodopsinas/química , Membrana Dobles de Lípidos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Receptores de GABA/química , Rodopsinas Sensoriales/química , Adhesinas Bacterianas/fisiología , Animales , Archaea/química , Bacterias/química , Proteínas de la Membrana Bacteriana Externa/fisiología , Halorrodopsinas/fisiología , Ligandos , Lípidos/química , Ratones , Micelas , Modelos Moleculares , Medicamentos bajo Prescripción/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Receptores de GABA/fisiología , Rodopsinas Sensoriales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA