Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 943
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732185

RESUMEN

Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the ß-carboline (ßC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.


Asunto(s)
Antivirales , Antivirales/farmacología , Antivirales/química , Chlorocebus aethiops , Humanos , Células Vero , Animales , Simplexvirus/efectos de los fármacos , Simplexvirus/fisiología , Herpes Simple/tratamiento farmacológico , Herpes Simple/virología , Carbolinas/farmacología , Carbolinas/química , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Harmina/farmacología , Harmina/química , Harmina/análogos & derivados
2.
Bioorg Med Chem ; 105: 117734, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677112

RESUMEN

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.


Asunto(s)
Antimaláricos , Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Harmina , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Harmina/farmacología , Harmina/química , Harmina/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Plasmodium falciparum/efectos de los fármacos , Estructura Molecular , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Pruebas de Sensibilidad Parasitaria
3.
Sci Rep ; 14(1): 6504, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499622

RESUMEN

This study aimed to investigate the role of autophagy, ferroptosis, and pyroptosis in the antitumour mechanism of harmine (Har) and its crosstalk in ovarian cancer. By transmission electron microscopy, we found that compared with those in the control group, the cytoplasm of human ovarian cancer cells (SKOV3) treated with Har showed increased numbers of autophagic vesicles, decreased intracellular mitochondrial volume, increased bilayer membrane density, and decreased cristae. Western blot, immunofluorescence, and monodasylcadaverine (MDC) staining all suggested that Har promoted autophagy in SKOV3 cells. LY294002 and siFOXO3 rescued the inhibition of the PI3K/AKT/mTOR/FOXO3 signalling pathway and the promotion of autophagy by Har. Additionally, the levels of ferroptosis- and pyroptosis-related proteins and the levels of Fe2+ , glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) suggested that Har promoted ferroptosis and pyroptosis in SKOV3 cells. Interestingly, pretreatment with chloroquine (CQ), erastin, rapamycin (Rap), or ferrostatin-1 (Fer-1) increased or reversed the ferroptosis and pyroptosis promoted by Har, respectively. In vivo, the volume of tumours in the Har group was decreased, and immunohistochemistry revealed decreased levels of Ki-67 and GPX4 and increased levels of ATG5 and NARL3. In conclusion, Har exerts its anti-ovarian cancer effect not only by promoting autophagy by regulating the PI3K/AKT/mTOR/FOXO3 signalling pathway but also by promoting ferroptosis and pyroptosis. Additionally, there is complex crosstalk between autophagy, ferroptosis, and pyroptosis in ovarian cancer.


Asunto(s)
Ferroptosis , Neoplasias Ováricas , Femenino , Humanos , Piroptosis , Harmina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Autofagia
4.
Int Immunopharmacol ; 132: 111954, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38554444

RESUMEN

Diabetic nephropathy (DN) is a serious kidney disorder driven by diabetes and affects people all over the world. One of the mechanisms promoting NF-κB-induced renal inflammation and injury has been theorized to be ATM signaling. On the other hand, AMPK, which can be activated by the naturally occurring alkaloid harmine (HAR), has been proposed to stop that action. As a result, the goal of this study was to evaluate the therapeutic effectiveness of HAR against streptozotocin (STZ)-induced DN in rats through AMPK-mediated inactivation of ATM pathways. Twenty male Wistar rats were grouped into 4 groups, as follow: CONT, DN, HAR (10 mg/kg), DN + HAR, where HAR was daily administered I.P. once for 2 weeks. The renal AMPK and PGC-1α expressions, as well as Sirt1 levels, were assessed. To ascertain the oxidative reactions, renal Nrf2 expression, HO-1, MDA, and TAC concentrations were measured. As parts of ATM pathways, ATM and p53 expressions, in addition to GSK-3ß levels were determined. Renal expression of NEMO, TNF-α, and IL-6 levels were also estimated. Moreover, histopathological and immunohistochemical detection of Bcl-2, Bax, and caspase 3 were reported. Results indicated that HAR intake notably alleviated STZ-induced kidney damage by triggering AMPK and Sirt1, which in turn boosted PGC-1α, improved NRf2/HO-1 axis, and lowered ROS production. As a consequence, HAR blocked the ATM-triggered renal inflammation and minimized caspase-3 expression by repressing the Bax/Bcl2 ratio. Because of its ability to activate AMPK/Nrf2 axis, HAR may represent an emerging avenue for future DN therapy by blocking ATM pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas de la Ataxia Telangiectasia Mutada , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Harmina , Factor 2 Relacionado con NF-E2 , Ratas Wistar , Transducción de Señal , Animales , Masculino , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Harmina/farmacología , Harmina/uso terapéutico , Estreptozocina , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sirtuina 1/metabolismo
5.
Int Immunopharmacol ; 129: 111538, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38306830

RESUMEN

CCl4-induced acute liver injury (ALI) is characterized by heightened autophagy, inflammation, and oxidative damage. Accumulating evidence suggests that harmine exerts beneficial effects in countering CCl4-induced ALI by mitigating inflammation and oxidative stress. However, the impact of autophagy on CCl4-induced ALI and the protective role of harmine remain unclear. This study aimed to investigate the potential protective effects of harmine against CCl4-induced ALI in mice by suppressing autophagy and inflammation. Male Kunming mice were orally administered harmine or bifendate for seven days. Subsequently, one hour after the final administration, the model group and treatment groups were intraperitoneally injected with CCl4 to induce ALI. The findings revealed that harmine significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum, and ameliorated the liver histopathological changes induced by CCl4. Furthermore, harmine diminished the levels of TNF-α and IL-6, restored the levels of glutathione (GSH) and superoxide dismutase (SOD), and suppressed the production of nitric oxide (NO) and malondialdehyde (MDA) in the liver. Mechanistically, harmine down-regulated LC3B II/I, p38 MAPK, TLR4, and NF-κB levels, while upregulating p62, Bcl-2, Beclin1, ULK1, and p-mTOR expression. In conclusion, harmine mitigated CCl4-induced ALI by inhibiting autophagy and inflammation through the p38 MAPK/mTOR autophagy pathway, the Bcl-2/Beclin1 pathway, and the TLR4/NF-κB pathway.


Asunto(s)
Harmina , FN-kappa B , Ratones , Masculino , Animales , FN-kappa B/metabolismo , Harmina/farmacología , Harmina/uso terapéutico , Receptor Toll-Like 4/metabolismo , Beclina-1/metabolismo , Hígado/patología , Inflamación/metabolismo , Glutatión/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Phys Chem Chem Phys ; 26(7): 6068-6079, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38299458

RESUMEN

This work explores the photochemical degradation of cationic species of 7-hydroxy-1-methyl-2H-pyrido[3,4-b]indole or harmol (1C) and the corresponding partially hydrogenated derivative 7-hydroxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-b]indole or harmalol (2C) in aqueous solution. UV-visible absorption and fluorescence emission spectroscopy coupled with multivariate data analysis (MCR-ALS and PARAFAC), HPLC and HRESI-MS techniques were used for both quantitative and qualitative analysis. The formation of hydrogen peroxide reactive oxygen species (ROS) was quantified, and the influence of pH, oxygen partial pressure and photoexcitation source on the photochemical degradation of both compounds was assessed. The potential implications on the biosynthesis of ßCs and their biological role in living systems are discussed.


Asunto(s)
Alcaloides , Harmalina/análogos & derivados , Harmina/análogos & derivados , Agua , Indoles , Concentración de Iones de Hidrógeno
7.
Int J Toxicol ; 43(3): 327-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363085

RESUMEN

The objective of this paper is to conduct a systematic thematic review of adverse events, safety, and toxicity of traditional ayahuasca plant preparations and its main psychoactive alkaloids (dimethyltryptamine [DMT], harmine, harmaline, and tetrahydroharmine), including discussing clinical considerations (within clinical trials or approved settings). A systematic literature search of preclinical, clinical, epidemiological, and pharmacovigilance data (as well as pertinent reviews and case studies) was conducted for articles using the electronic databases of PubMed and Web of Science (to 6 July 2023) and PsycINFO, ClinicalTrials.gov, and Embase (to 21 September 2022) and included articles in English in peer-reviewed journals. Additionally, reference lists were searched. Due to the breadth of the area covered, we presented the relevant data in a thematic format. Our searches revealed 78 relevant articles. Data showed that ayahuasca or DMT is generally safe; however, some adverse human events have been reported. Animal models using higher doses of ayahuasca have shown abortifacient and teratogenic effects. Isolated harmala alkaloid studies have also revealed evidence of potential toxicity at higher doses, which may increase with co-administration with certain medications. Harmaline revealed the most issues in preclinical models. Nevertheless, animal models involving higher-dose synthetic isolates may not necessarily be able to be extrapolated to human use of therapeutic doses of plant-based extracts. Serious adverse effects are rarely reported within healthy populations, indicating an acceptable safety profile for the traditional use of ayahuasca and DMT in controlled settings. Further randomized, controlled trials with judicious blinding, larger samples, and longer duration are needed.


Asunto(s)
Banisteriopsis , N,N-Dimetiltriptamina , Banisteriopsis/química , Humanos , N,N-Dimetiltriptamina/toxicidad , Animales , Extractos Vegetales/toxicidad , Harmina/análogos & derivados , Harmina/toxicidad , Harmalina/toxicidad
8.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256193

RESUMEN

Anaplastic thyroid carcinoma (ATC) is an extremely difficult disease to tackle, with an overall patient survival of only a few months. The currently used therapeutic drugs, such as kinase inhibitors or immune checkpoint inhibitors, can prolong patient survival but fail to eradicate the tumor. In addition, the onset of drug resistance and adverse side-effects over time drastically reduce the chances of treatment. We recently showed that Twist1, a transcription factor involved in the epithelial mesenchymal transition (EMT), was strongly upregulated in ATC, and we wondered whether it might represent a therapeutic target in ATC patients. To investigate this hypothesis, the effects of harmine, a ß-carboline alkaloid shown to induce degradation of the Twist1 protein and to possess antitumoral activity in different cancer types, were evaluated on two ATC-derived cell lines, BHT-101 and CAL-62. The results obtained demonstrated that, in both cell lines, harmine reduced the level of Twist1 protein and reverted the EMT, as suggested by the augmentation of E-cadherin and decrease in fibronectin expression. The drug also inhibited cell proliferation and migration in a dose-dependent manner and significantly reduced the anchorage-independent growth of both ATC cell lines. Harmine was also capable of inducing apoptosis in BHT-101 cells, but not in CAL-62 ones. Finally, the activation of PI3K/Akt signaling, but not that of the MAPK, was drastically reduced in treated cells. Overall, these in vitro data suggest that harmine could represent a new therapeutic option for ATC treatment.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Harmina/farmacología , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Proteína 1 Relacionada con Twist/genética , Fosfatidilinositol 3-Quinasas , Neoplasias de la Tiroides/tratamiento farmacológico
9.
J Ethnopharmacol ; 323: 117710, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184028

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ayahuasca (AYA) is a psychedelic brew used in religious ceremonies. It is broadly used as a sacred medicine for treating several ailments, including pain of various origins. AIM OF THE STUDY: To investigate the antinociceptive effects of AYA and its mechanisms in preclinical models of acute and chronic pain in mice, in particular during experimental neuropathy. MATERIALS AND METHODS: The antinociceptive effects of AYA administered orally were assessed in the following models of pain: formalin test, Complete Freund's Adjuvant (CFA)-induced inflammation, tail flick test, and partial sciatic nerve ligation model of neuropathic pain. Antagonism assays and Fos immunohistochemistry in the brain were performed. AYA-induced toxicity was investigated. AYA was chemically characterized. The antinociceptive effect of harmine, the major component present in AYA, was investigated. RESULTS: AYA (24-3000 µL/kg) dose-dependently reduced formalin-induced pain-like behaviors and CFA-induced mechanical allodynia but did not affect CFA-induced paw edema or tail flick latency. During experimental neuropathy, single treatments with AYA (24-3000 µL/kg) reduced mechanical allodynia; daily treatments once or twice a day for 14 days promoted consistent and sustained antinociception. The antinociceptive effect of AYA (600 µL/kg) was reverted by bicuculline (1 mg/kg) and methysergide (5 mg/kg), but not by naloxone (5 mg/kg), phaclofen (2 mg/kg), and rimonabant (10 mg/kg), suggesting the roles of GABAA and serotonergic receptors. AYA increased Fos expression in the ventrolateral periaqueductal gray and nucleus raphe magnus after 1 h, but not after 6 h or 14 days of daily treatments. AYA (600 µL/kg) twice a day for 14 days did not alter mice's motor function, spontaneous locomotion, body weight, food and water intake, hematological, biochemical, and histopathological parameters. Harmine (3.5 mg/kg) promoted consistent antinociception during experimental neuropathy. CONCLUSIONS: AYA promotes consistent antinociceptive effects in different mouse models of pain without inducing detectable toxic effects. Harmine is at least partially accountable for the antinociceptive properties of AYA.


Asunto(s)
Banisteriopsis , Dolor Crónico , Neuralgia , Ratones , Animales , Dolor Crónico/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Harmina/efectos adversos , Analgésicos/efectos adversos , Neuralgia/tratamiento farmacológico , Modelos Animales de Enfermedad
10.
J Invest Dermatol ; 144(4): 862-873.e4, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37852357

RESUMEN

Cutaneous leishmaniasis affects 1 million people worldwide annually. Although conventional treatments primarily target the parasite, there is growing interest in host immune modulation. In this study, we investigated the impact of synthetic ß-carboline harmine (ACB1801), previously shown to be immunoregulatory in cancer, on the pathology caused by a drug-resistant Leishmania major strain causing persistent cutaneous lesions. Exposure to ACB1801 in vitro had a modest impact on parasite burden within host macrophages. Moreover, it significantly increased major histocompatibility complex II and costimulatory molecule expression on infected dendritic cells, suggesting an enhanced immune response. In vivo, ACB1801 monotherapy led to a substantial reduction in lesion development and parasite burden in infected C57BL/6 mice, comparable with efficacy of amphotericin B. Transcriptomics analysis further supported ACB1801 immunomodulatory effects, revealing an enrichment of TNF-α, IFN-γ, and major histocompatibility complex II antigen presentation signatures in the draining lymph nodes of treated mice. Flow cytometry analysis confirmed an increased frequency (1.5×) of protective CD4+IFN-γ+TNF-α+ T cells and a decreased frequency (2×) in suppressive IL-10+FoxP3- T cells at the site of infection and in draining lymph nodes. In addition, ACB1801 downregulated the aryl hydrocarbon receptor signaling, known to enhance immunosuppressive cytokines. Thus, these results suggest a potential use for ACB1801 alone or in combination therapy for cutaneous leishmaniasis.


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Leishmaniasis , Humanos , Animales , Ratones , Harmina/farmacología , Harmina/uso terapéutico , Factor de Necrosis Tumoral alfa , Ratones Endogámicos C57BL , Inmunidad , Ratones Endogámicos BALB C
11.
Arch Pharm (Weinheim) ; 357(2): e2300404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38010470

RESUMEN

Multitarget-directed ligands (MTDLs) have recently attracted significant interest due to their superior effectiveness in multifactorial Alzheimer's disease (AD). Combined inhibition of two important AD targets, glycogen synthase kinase-3ß (GSK-3ß) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), may be a breakthrough in the treatment of AD. Based on our previous work, we have designed and synthesized a series of novel harmine derivatives, investigated their inhibition of GSK-3ß and DYRK1A, and evaluated a variety of biological activities. The results of the experiments showed that most of these compounds exhibited good activity against GSK-3ß and DYRK1A in vitro. ZLQH-5 was selected as the best compound due to the most potent inhibitory effect against GSK-3ß and DYRK1A. Molecular docking studies demonstrated that ZLQH-5 could form stable interactions with the ATP binding pocket of GSK-3ß and DYRK1A. In addition, ZLQH-5 showed low cytotoxicity against SH-SY5Y and HL-7702, good blood-brain barrier permeability, and favorable pharmacokinetic properties. More importantly, ZLQH-5 also attenuated the tau hyperphosphorylation in the okadaic acid SH-SY5Y cell model. These results indicated that ZLQH-5 could be a promising dual-target drug candidate for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Harmina/farmacología , Harmina/uso terapéutico , Proteínas tau/metabolismo , Proteínas tau/uso terapéutico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Fosforilación
12.
Clin Exp Hypertens ; 46(1): 2297642, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38147409

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling caused by the excessive proliferation and survival of pulmonary artery smooth muscle cells (PASMCs). Dual-specificity tyrosine regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in the regulation of multiple biological functions, including cell proliferation and survival. However, the role and underlying mechanisms of DYRK1A in PAH pathogenesis remain unclear. We found that DYRK1A was upregulated in PASMCs in response to hypoxia, both in vivo and in vitro. Inhibition of DYRK1A by harmine significantly attenuated hypoxia-induced pulmonary hypertension and pulmonary artery remodeling. Mechanistically, we found that DYRK1A promoted pulmonary arterial remodeling by enhancing the proliferation and survival of PASMCs through activating the STAT3/Pim-1/NFAT pathway, because STAT3 gain-of-function via adeno-associated virus serotype 2 (AAV2) carrying the constitutively active form of STAT3 (STAT3C) nearly abolished the protective effect of harmine on PAH. Collectively, our results reveal a significant role for DYRK1A in pulmonary arterial remodeling and suggest it as a drug target with translational potential for the treatment of PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Remodelación Vascular , Harmina/efectos adversos , Harmina/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Arteria Pulmonar , Hipoxia , Miocitos del Músculo Liso/metabolismo , Proliferación Celular , Células Cultivadas , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/farmacología
13.
Eur J Med Chem ; 265: 116061, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154256

RESUMEN

A series of ß-carboline derivatives were designed and synthesized by introducing the chalcone moiety into the harmine. The synthesized derivatives were evaluated their anti-proliferative activities against six human cancer cell lines (MCF-7, MDA-MB-231, HepG2, HT29, A549, and PC-3) and one normal cell line (L02). Among them, compound G11 exhibited the potent anti-proliferative activity against MCF-7 cell line, with an IC50 value of 0.34 µM. Further biological studies revealed that compound G11 inhibited colony formation of MCF-7 cells, suppressed MCF-7 cell migration by downregulating migration-associated protein MMP-2. In addition, it could induce apoptosis of MCF-7 cells by downregulating Bcl-2 and upregulating Cleaved-PARP, Bax, and phosphorylated Bim proteins. Furthermore, compound G11 can act as a Topo I inhibitor, affecting DNA synthesis and transcription, thereby inhibiting cancer cell proliferation. Moreover, compound G11 inhibited tumor growth in 4T1 syngeneic transplant mice with an inhibition rate of 43.19 % at a dose of 10 mg/kg, and 63.87 % at 20 mg/kg, without causing significant toxicity to the mice or their organs, achieving the goal of reduced toxicity and increased efficacy. All these results indicate of G11 has enormous potential as an anti-tumor agent and merits further investigation.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Animales , Ratones , Línea Celular Tumoral , Harmina/farmacología , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Antineoplásicos/farmacología , Células MCF-7 , Proliferación Celular , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
14.
Chem Biodivers ; 21(2): e202301263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108650

RESUMEN

his comprehensive review is designed to evaluate the anticancer properties of ß-carbolines derived from medicinal plants, with the ultimate goal of assessing their suitability and potential in cancer treatment, management, and prevention. An exhaustive literature survey was conducted on a wide array of ß-carbolines including, but not limited to, harmaline, harmine, harmicine, harman, harmol, harmalol, pinoline, tetrahydroharmine, tryptoline, cordysinin C, cordysinin D, norharmane, and perlolyrine. Various analytical techniques were employed to identify and screen these compounds, followed by a detailed analysis of their anticancer mechanisms. Natural ß-carbolines such as harmaline and harmine have shown promising inhibitory effects on the growth of cancer cells, as evidenced by multiple in vitro and in vivo studies. Synthetically derived ß-carbolines also displayed noteworthy anticancer, neuroprotective, and cognitive-enhancing effects. The current body of research emphasizes the potential of ß-carbolines as a unique source of bioactive compounds for cancer treatment. The diverse range of ß-carbolines derived from medicinal plants can offer valuable insights into the development of new therapeutic strategies for cancer management and prevention.


Asunto(s)
Alcaloides , Plantas Medicinales , Harmina/farmacología , Harmalina/farmacología , Carbolinas/farmacología , Alcaloides/farmacología
15.
J Med Chem ; 66(24): 16680-16693, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069814

RESUMEN

Echinococcosis is a global public health issue that generally occurs in areas with developed animal husbandry. In search of safe and effective therapeutic agents against echinococcosis, we designed and synthesized new 1,3-substituted ß-carboline derivatives based on harmine. Among them, compounds 1a, 1c, and 1e displayed potent inhibitory activity against Echinococcus granulosus in vitro, significantly better than albendazole and harmine. The morphological detection revealed that 1a, 1c, and 1e significantly changed the ultrastructure of Echinococcus granulosus protoscolices (PSCs). Furthermore, pharmacokinetic studies suggested that 1a possessed a better metabolic property. Encouragingly, 1a exhibited a highest cyst inhibition rate as 76.8% in vivo and did not display neurotoxicity in mice. Further mechanistic research illustrated that 1a has the potential to induce autophagy in PSCs, which may be responsible for the therapeutic effect of the drugs. Together, 1a could be a promising therapeutic agent against echinococcosis, warranting further study.


Asunto(s)
Equinococosis , Echinococcus granulosus , Ratones , Animales , Harmina/farmacología , Harmina/uso terapéutico , Equinococosis/tratamiento farmacológico , Echinococcus granulosus/ultraestructura , Albendazol/farmacocinética , Albendazol/uso terapéutico
16.
J Enzyme Inhib Med Chem ; 38(1): 2281893, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965884

RESUMEN

In this study, a series of potential ligands for the treatment of AD were synthesised and characterised as novel harmine derivatives modified at position 9 with benzyl piperazinyl. In vitro studies revealed that the majority of the derivatives exhibited moderate to potent inhibition against hAChE and Aß1 - 42 aggregation. Notably, compounds 13 and 17d displayed potent drug - likeness and ADMET properties, demonstrating remarkable inhibitory activities towards AChE (IC50 = 58.76 nM and 89.38 nM, respectively) as well as Aß aggregation (IC50 = 9.31 µM and 13.82 µM, respectively). More importantly, compounds 13 and 17d showed exceptional neuroprotective effects against Aß1 - 42-induced SH - SY5Y damage, while maintaining low toxicity in SH - SY5Y cells. Further exploration of the mechanism through kinetic studies and molecular modelling confirmed that compound 13 could interact with both the CAS and the PAS of AChE. These findings suggested that harmine derivatives hold great potential as dual - targeted candidates for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Acetilcolinesterasa/metabolismo , Harmina/farmacología , Harmina/uso terapéutico , Inhibidores de la Colinesterasa/farmacología , Cinética , Diseño de Fármacos , Relación Estructura-Actividad , Fármacos Neuroprotectores/farmacología
17.
Int Immunopharmacol ; 125(Pt B): 111174, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951194

RESUMEN

BACKGROUND: Generalized vitiligo (GV) is an autoimmune disease characterized by the progressive loss of melanocytes. OBJECTIVES: Current study was undertaken to assess in-vitro therapeutic potential of Harmine and Kaempferol for GV. METHODS: Calcium, calcineurin, NFATC1 levels, cell proliferation were assessed by various kits and ORAI1, PEIZO1, Calcineurin, GSK3B, DYRK1A transcripts and IFN-γ,IL-10,TGF-ß protein levels were assessed by qPCR and ELISA in blood and skin biopsy samples from Tregs of 52 patients and 50 controls. RESULTS: Harmine and Kaempferol treatment enhances Treg suppressive capacity, NFATs and FOXP3 expression in blood and skin Tregs of GV patients (p < 0.05). Furthermore, Harmine and Kaempferol treatment in Tregs increased calcineurin and NFATC1 activity and decreased DYRK1A transcripts in blood and skin Tregs of GV patients(p < 0.05). In-silico analysis revealed that Harmine and Kaempferol might boost Treg suppressive capacity by increasing calcineurin dephosphorylation activity leading to increase NFATs activation and also increase nuclear retention of NFATs by inhibiting DYRK1a phosphorylation activity. Moreover, calcineurin and NFATC1 activity in Tregs were positively correlated with Treg suppressive capacity, NFATC1 and FOXP3 expression (p < 0.05), whereas, DYRK1A transcripts were negatively correlated with Treg suppressive capacity, NFATC1 and FOXP3 expression (p < 0.05). These compounds significantly increased melanocytes' survival and proliferation in Treg:CD4+/CD8+:SK-Mel-28 cell line co-culture system from GV patients (p < 0.0001). CONCLUSIONS: For the first time the study suggests that Harmine and Kaempferol treated Tregs could control the CD8+ and CD4+T-cells' proliferation and IFN-γ production, leading to melanocytes' survival and proliferation. These compounds may serve as novel Treg-based therapeutics for GV; however, in vivo studies are warranted to assess the safety and efficacy of these compounds.


Asunto(s)
Vitíligo , Humanos , Vitíligo/tratamiento farmacológico , Harmina/farmacología , Harmina/uso terapéutico , Linfocitos T Reguladores , Calcineurina , Quempferoles/farmacología , Quempferoles/uso terapéutico , Factores de Transcripción Forkhead/genética , Factores de Transcripción NFATC/genética
18.
Food Funct ; 14(22): 10031-10040, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37927231

RESUMEN

ß-Carbolines norharman and harman, belonging to the class of heterocyclic aromatic amines (HAAs), are typical hazardous substances produced during the thermal processing of food. Compared to other HAAs, there have been limited reports on the toxicity of ß-carbolines. Nevertheless, the current studies are concerned with the neurotoxic effects of norharman and harman at high doses. It is still unknown whether the relatively low dose of ß-carbolines in foods induces neurotoxicity and the mechanism of the toxicity. In this study, C. elegans was exposed to a series of gradients of norharman and harman (0, 0.05, 5, and 10 mg L-1). The survival rate and indicators of ethology (locomotor behaviors, foraging behavior, and chemotaxis ability) were assessed. The antioxidant system and the contents of neurotransmitters, as well as the activity of acetylcholinesterase (AChE), were evaluated. Additionally, the RNA-seq screening of differentially expressed genes (DEGs) revealed the potential molecular mechanisms of norharman- and harman-induced toxic effects. Our results indicated that the risk of long-term exposure to norharman and harman at low doses (food-related doses) should be emphasized. Moreover, ß-carbolines might induce neurotoxicity by causing oxidative damage, regulating the content of neurotransmitters, and interfering with cytochrome P450 metabolism. This study would provide a toxicological basis for the neurotoxicity of ß-carbolines and lay the foundation for the risk assessment of endogenous pollutants in food.


Asunto(s)
Caenorhabditis elegans , Harmina , Animales , Harmina/toxicidad , Harmina/metabolismo , Caenorhabditis elegans/metabolismo , Acetilcolinesterasa , Carbolinas/toxicidad , Sistema Enzimático del Citocromo P-450 , Neurotransmisores
19.
Sci Rep ; 13(1): 19951, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968310

RESUMEN

Harmaline and harmine are naturally occurring closely related ß-carboline alkaloids found in Peganum and Banisteriopsis plants. They have historical significance in traditional practices due to their potential psychoactive and therapeutic properties. Herein, a highly sensitive spectrofluorometric method was developed for the quantifying of harmaline and harmine in diverse matrices, including pure forms, seed samples, and spiked plasma. The procedures lie in addressing the challenge of overlapping fluorescence spectra exhibited by harmaline and harmine through the incorporation of hydroxypropyl-ß-cyclodextrin, altering their chemical properties and fluorescence characteristics. Synchronous fluorescence measurements coupled with first derivative mathematical technique make it possible to distinguish between the harmaline and harmine at 419 and 456 nm, respectively. The method effectiveness is demonstrated through spectral analysis, optimization of the measurement conditions, adopting validation parameters and application to the pure form, seed samples and spiked human plasma. This methodology facilitates accurate determination of these alkaloids over the concentration range of 10─200 ng/mL. Thus, the developed approach provides a robust mean for the precise determination of harmaline and harmine, contributing to analytical chemistry's ongoing efforts to address complex challenges in quantification across diverse matrices.


Asunto(s)
Alcaloides , Peganum , Humanos , Harmina , Harmalina , Alcaloides/análisis , Extractos Vegetales/química , Peganum/química
20.
J Virol ; 97(10): e0039623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37706687

RESUMEN

IMPORTANCE: This study highlights the crucial role RNA processing plays in regulating viral gene expression and replication. By targeting SR kinases, we identified harmine as a potent inhibitor of HIV-1 as well as coronavirus (HCoV-229E and multiple SARS-CoV-2 variants) replication. Harmine inhibits HIV-1 protein expression and reduces accumulation of HIV-1 RNAs in both cell lines and primary CD4+ T cells. Harmine also suppresses coronavirus replication post-viral entry by preferentially reducing coronavirus sub-genomic RNA accumulation. By focusing on host factors rather than viral targets, our study offers a novel approach to combating viral infections that is effective against a range of unrelated viruses. Moreover, at doses required to inhibit virus replication, harmine had limited toxicity and minimal effect on the host transcriptome. These findings support the viability of targeting host cellular processes as a means of developing broad-spectrum anti-virals.


Asunto(s)
Antivirales , Coronavirus , VIH-1 , Harmina , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Coronavirus/efectos de los fármacos , Coronavirus/fisiología , Infecciones por Coronavirus/tratamiento farmacológico , Harmina/farmacología , Harmina/uso terapéutico , VIH-1/efectos de los fármacos , VIH-1/fisiología , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...