Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Intervalo de año de publicación
1.
Ann Bot ; 133(4): 559-572, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38324309

RESUMEN

BACKGROUND AND AIMS: The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS: We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS: The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and ß-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS: Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.


Asunto(s)
Autofagia , Evolución Biológica , Pared Celular , Xilema , Pared Celular/metabolismo , Autofagia/fisiología , Xilema/fisiología , Cycadopsida/fisiología , Floema , Proteínas de Plantas/metabolismo , Magnoliopsida/fisiología , Helechos/fisiología , Helechos/citología
2.
Cells ; 10(6)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199921

RESUMEN

Somatic embryogenesis is the formation of a plant embryo from a cell other than the product of gametic fusion. The need to recognize the determinants of somatic cell fate has prompted investigations on how endogenous factors of donor tissues can determine the pattern of somatic embryo origin. The undertaking of this study was enabled by the newly developed experimental system of somatic embryogenesis of the tree fern Cyathea delgadii Sternb., in which the embryos are produced in hormone-free medium. The contents of 89 endogenous compounds (such as sugars, auxins, cytokinins, gibberellins, stress-related hormones, phenolic acids, polyamines, and amino acids) and cytomorphological features were compared between two types of explants giving rise to somatic embryos of unicellular or multicellular origin. We found that a large content of maltose, 1-kestose, abscisic acid, biologically active gibberellins, and phenolic acids was characteristic for single-cell somatic embryo formation pattern. In contrast, high levels of starch, callose, kinetin riboside, arginine, and ethylene promoted their multicellular origin. Networks for visualization of the relations between studied compounds were constructed based on the data obtained from analyses of a Pearson correlation coefficient heatmap. Our findings present for the first time detailed features of donor tissue that can play an important role in the somatic-to-embryogenic transition and the somatic embryo origin.


Asunto(s)
Citocininas/farmacología , Helechos/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Helechos/citología
3.
Methods Mol Biol ; 2180: 623-637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32797439

RESUMEN

Fern spores and pollen are haploid plant germplasm of microscopic nature that can be used to regenerate full plants through germination (fern spores) or to fertilize seed-bearing plants through breeding programs (pollen). Due to their short life span in conventional storage (i.e., dry at -20 °C), the use of cryopreservation has been indicated for long-term ex situ conservation. While fern spores of most species and pollen from many seeded plants tolerate desiccation and can be stored dry at liquid nitrogen temperatures, some pollen is desiccation sensitive, and cryopreservation protocols require controlled drying and cooling and some level of cryoprotection. In this chapter we describe the cryopreservation process for fern spores used in the Millennium Seed Bank of Royal Botanic Gardens, Kew, including some details of the fern spores harvest and cleaning methods. In addition, two protocols for pollen cryopreservation are described, one generic for desiccation-tolerant pollen that can be used for multiple species and one specific for a desiccation sensitive pollen (Zea mays).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Criopreservación/métodos , Crioprotectores/farmacología , Helechos/citología , Polen/citología , Esporas/citología , Venas Umbilicales/citología , Proliferación Celular , Células Cultivadas , Helechos/efectos de los fármacos , Polen/efectos de los fármacos , Esporas/efectos de los fármacos , Venas Umbilicales/efectos de los fármacos
4.
Trends Cell Biol ; 30(8): 590-593, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32456848

RESUMEN

Centrioles organize the microtubule network and mitotic spindle and, as basal bodies, nucleate cilia and flagella. They undergo a beguiling process in which one appears to give rise to another and at a baffling orthogonal geometry. Nucleic acid-based replication has been pondered during cycles of zeniths and nadirs of plausibility, the latter now the state. Centrioles can also arise de novo, and thus the longstanding focus on centriole 'replication' may have led us astray from ground truth. We are in an era in which the assembly pathways of most intracellular machines are becoming understood in considerable detail. But apart from knowing the structure and parts list, little in our extant knowledge conveys how centrioles arise. Here the matters at hand are summarized, and a siren call is sounded.


Asunto(s)
Centriolos/metabolismo , Animales , Ascaris/citología , Helechos/citología , Humanos , Ácidos Nucleicos/metabolismo
5.
Mol Biol Evol ; 37(9): 2487-2502, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302390

RESUMEN

Hybridization in plants may result in hybrid speciation or introgression and, thus, is now widely understood to be an important mechanism of species diversity on an evolutionary timescale. Hybridization is particularly common in ferns, as is polyploidy, which often results from hybrid crosses. Nevertheless, hybrid speciation as an evolutionary process in fern lineages remains poorly understood. Here, we employ flow cytometry, phylogeny, genomewide single nucleotide polymorphism data sets, and admixture and coalescent modeling to show that the scaly tree fern, Gymnosphaera metteniana is a naturally occurring allotetraploid species derived from hybridization between the diploids, G. denticulata and G. gigantea. Moreover, we detected ongoing gene flow between the hybrid species and its progenitors, and we found that G. gigantea and G. metteniana inhabit distinct niches, whereas climatic niches of G. denticulata and G. metteniana largely overlap. Taken together, these results suggest that either some degree of intrinsic genetic isolation between the hybrid species and its parental progenitors or ecological isolation over short distances may be playing an important role in the evolution of reproductive barriers. Historical climate change may have facilitated the origin of G. metteniana, with the timing of hybridization coinciding with a period of intensification of the East Asian monsoon during the Pliocene and Pleistocene periods in southern China. Our study of allotetraploid G. metteniana represents the first genomic-level documentation of hybrid speciation in scaly tree ferns and, thus, provides a new perspective on evolution in the lineage.


Asunto(s)
Helechos/genética , Flujo Génico , Especiación Genética , Hibridación Genética , Poliploidía , Helechos/citología , Tamaño del Genoma , Filogenia , Filogeografía
6.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861957

RESUMEN

The distribution of highly de-esterified homogalacturonans (HGs) in dividing protodermal cells of the monocotyledon Zea mays, the dicotyledon Vigna sinensis, and the fern Asplenium nidus was investigated in order to examine whether the cell wall region adjoining the preprophase band (PPB) is locally diversified. Application of immunofluorescence revealed that de-esterified HGs were accumulated selectively in the cell wall adjacent to the PPB in: (a) symmetrically dividing cells of stomatal rows of Z. mays, (b) the asymmetrically dividing protodermal cells of Z. mays, (c) the symmetrically dividing guard cell mother cells (GMCs) of Z. mays and V. sinensis, and (d) the symmetrically dividing protodermal cells of A. nidus. A common feature of the above cell types is that the cell division plane is defined by extrinsic cues. The presented data suggest that the PPB cortical zone-plasmalemma and the adjacent cell wall region function in a coordinated fashion in the determination/accomplishment of the cell division plane, behaving as a continuum. The de-esterified HGs, among other possible functions, might be involved in the perception and the transduction of the extrinsic cues determining cell division plane in the examined cells.


Asunto(s)
Pared Celular/metabolismo , Helechos/metabolismo , Pectinas/metabolismo , Vigna/metabolismo , Zea mays/metabolismo , Pared Celular/ultraestructura , Embryophyta/citología , Embryophyta/metabolismo , Embryophyta/ultraestructura , Esterificación , Helechos/citología , Helechos/ultraestructura , Vigna/citología , Vigna/ultraestructura , Zea mays/citología , Zea mays/ultraestructura
7.
J Plant Res ; 132(5): 601-616, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31446516

RESUMEN

The Chinese occurrences of the marattioid fern genus Christensenia have been considered as requiring protection because of its extreme rarity and very small population size. Here, we explored different biological aspects to enable protection of these rare ferns, well known as Mesozoic living fossils. Firstly, we documented the cytology of the Chinese occurrences for the first time. This is the second tetraploid record of Christensenia worth for further studies to confirm its taxonomic status. Secondly, we obtained the first complete plastid genome of this genus, which confirmed the proposed conservatism of the plastid genome structure in marattioid ferns. By comparing the chloroplast genome with other marattioids, we identified several candidate regions to develop highly variable markers to investigate the intra-species diversity of marattioid ferns. Thirdly, phylogenetic analyses of rbcL sequences implied that there are at least two distinct species of Christensenia. Finally, we re-assessed the conservation status of Christensenia in the context of its local and global distribution by assessing specimen information extracted from publications and digitized voucher information. This assessment confirmed the need to obtain more accurate information about the distribution of this genus to assess the status incorporating the disjunct distribution from southern China and India in the North towards the Solomon Islands in the South.


Asunto(s)
Conservación de los Recursos Naturales , Helechos/genética , Genoma del Cloroplasto , Dispersión de las Plantas , China , Helechos/clasificación , Helechos/citología , Filogenia , Ribulosa-Bifosfato Carboxilasa/análisis , Análisis de Secuencia de ADN
8.
New Phytol ; 219(1): 206-215, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29655174

RESUMEN

Recent studies have revealed that some responses of fern stomata to environmental signals differ from those of their relatives in seed plants. However, it is unknown whether the biophysical properties of guard cells differ fundamentally between species of both clades. Intracellular micro-electrodes and the fluorescent Ca2+ reporter FURA2 were used to study voltage-dependent cation channels and Ca2+ signals in guard cells of the ferns Polypodium vulgare and Asplenium scolopendrium. Voltage clamp experiments with fern guard cells revealed similar properties of voltage-dependent K+ channels as found in seed plants. However, fluorescent dyes moved within the fern stomata, from one guard cell to the other, which does not occur in most seed plants. Despite the presence of plasmodesmata, which interconnect fern guard cells, Ca2+ signals could be elicited in each of the cells individually. Based on the common properties of voltage-dependent channels in ferns and seed plants, it is likely that these key transport proteins are conserved in vascular plants. However, the symplastic connections between fern guard cells in mature stomata indicate that the biophysical mechanisms that control stomatal movements differ between ferns and seed plants.


Asunto(s)
Calcio/metabolismo , Helechos/citología , Células Vegetales/metabolismo , Plasmodesmos/metabolismo , Transporte Biológico , Citosol/metabolismo , Helechos/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Polypodium/citología , Polypodium/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo
9.
Ann Bot ; 121(2): 345-358, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29293865

RESUMEN

Background and Aims: A key structural adaptation of vascular plants was the evolution of specialized vascular and mechanical tissues, innovations likely to have generated novel cell wall architectures. While collenchyma is a strengthening tissue typically found in growing organs of angiosperms, a similar tissue occurs in the petiole of the fern Asplenium rutifolium. Methods: The in situ cell wall (ultra)structure and composition of this tissue was investigated and characterized mechanically as well as structurally through nano-indentation and wide-angle X-ray diffraction, respectively. Key Results: Structurally the mechanical tissue resembles sclerenchyma, while its biomechanical properties and molecular composition both share more characteristics with angiosperm collenchyma. Cell wall thickening only occurs late during cell expansion or after cell expansion has ceased. Conclusions: If the term collenchyma is reserved for walls that thicken during expansive growth, the mechanical tissue in A. rutifolium represents sclerenchyma that mimics the properties of collenchyma and has the ability to modify its mechanical properties through sclerification. These results support the view that collenchyma does not occur in ferns and most probably evolved in angiosperms.


Asunto(s)
Pared Celular/fisiología , Helechos/citología , Fenómenos Biomecánicos , Pared Celular/química , Pared Celular/ultraestructura , Helechos/fisiología , Helechos/ultraestructura , Mananos/análisis , Microscopía Electrónica de Transmisión , Difracción de Rayos X
10.
PLoS One ; 12(9): e0185648, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28953931

RESUMEN

Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i) exclusive to the angiosperms, (ii) a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii) has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms) appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas exchange.


Asunto(s)
Helechos/fisiología , Magnoliopsida/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Helechos/citología
11.
Lab Chip ; 17(6): 1095-1103, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28205656

RESUMEN

This report describes the development of lab-on-a-chip device designed to measure changes in cellular ion gradients that are induced by changes in gravitational (g) forces. The bioCD presented here detects differential calcium ion concentrations outside of individual cells. The device includes sufficient replicates for statistical analysis of the gradients around multiple single cells and around control wells that are empty or include dead cells. In the data presented, the degree of the cellular response correlates with the magnitude of the g-force applied via rotation of the bioCD. The experiments recorded the longest continuous observation of a cellular response to hypergravity made to date, and they demonstrate the potential utility of this device for assaying the threshold of cells' g-force responses in spaceflight conditions.


Asunto(s)
Calcio/metabolismo , Helechos/fisiología , Gravitación , Dispositivos Laboratorio en un Chip , Vuelo Espacial/instrumentación , Esporas/fisiología , Automatización de Laboratorios , Calcio/química , Calibración , Diseño de Equipo , Helechos/química , Helechos/citología , Helechos/metabolismo , Rotación , Esporas/química , Esporas/citología , Esporas/metabolismo
12.
PLoS One ; 11(10): e0163686, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27760151

RESUMEN

To determine the taxonomic identities and the systematic positions of some collections of Lindsaea sect. Synaphlebium (Lindsaeaceae) from Papua New Guinea, we conducted morphological comparisons and phylogenetic analyses on the whole section. A total of 22 morphological characters were selected and coded for each of all known taxa in L. sect. Synaphlebium, and were analyzed using maximum parsimony. The datasets containing either of or combined two plastid DNA sequences (trnL-trnF spacer and trnH-psbA spacer) of 37 taxa were analyzed using maximum parsimony, maximum likelihood, and Bayesian inference. Morphological comparisons revealed two new species which are formally published here as L. subobscura and L. novoguineensis. Lindsaea subobscura is similar to sympatric L. obscura and L. modesta but differs in the obviously reduced upper pinnules and other characters. Lindsaea novoguineensis is most similar to L. pacifica from Melanesia but differs in having rhomboid pinnules with truncate apices and concave soral receptacles. Molecular analyses resolved L. sect. Synaphlebium and allied species into five well-supported clades, namely L. rigida clade, L. obtusa clade, L. pulchella clade, L. multisora clade, and L. cultrata clade. The new species L. novoguineensis is included in L. obtusa clade; L. subobscura is in L. pulchella clade; whereas the majority of L. sect. Synaphlebium is clustered in L. cultrata clade. As the section Synaphlebium sensu Kramer is strongly suggested as polyphyletic, we propose the concept of a monophyletic L. sect. Synaphlebium in a broad sense that comprises five lineages. The morphological circumscription of L. sect. Synaphlebium sensu lato and the divergence in morphology, habit, and distribution between the five lineages are briefly discussed. Further molecular study is needed to test the systematic positions of 16 other species which are supposed to be within L. sect. Synaphlebium sensu lato but have not been included in this and previous molecular analyses.


Asunto(s)
Helechos/clasificación , Filogenia , ADN de Plantas/genética , Helechos/anatomía & histología , Helechos/citología , Helechos/genética , Nueva Guinea , Plastidios/genética , Análisis de Secuencia de ADN
13.
New Phytol ; 212(3): 745-758, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27385116

RESUMEN

Despite the extraordinary significance leaves have for life on Earth, their origin and development remain vigorously debated. More than a century of paleobotanical, morphological, and phylogenetic research has still not resolved fundamental questions about leaves. Developmental genetic data are sparse in ferns, and comparative studies of lycophytes and seed plants have reached opposing conclusions on the conservation of a leaf developmental program. We performed phylogenetic and expression analyses of a leaf developmental regulator (Class III HD-Zip genes; C3HDZs) spanning lycophytes and ferns. We show that a duplication and neofunctionalization of C3HDZs probably occurred in the ancestor of euphyllophytes, and that there is a common leaf developmental mechanism conserved between ferns and seed plants. We show C3HDZ expression in lycophyte and fern sporangia and show that C3HDZs have conserved expression patterns during initiation of lateral primordia (leaves or sporangia). This expression is maintained throughout sporangium development in lycophytes and ferns and indicates an ancestral role of C3HDZs in sporangium development. We hypothesize that there is a deep homology of all leaves and that a sporangium-specific developmental program was coopted independently for the development of lycophyte and euphyllophyte leaves. This provides molecular genetic support for a paradigm shift in theories of lycophyte leaf evolution.


Asunto(s)
Evolución Biológica , Helechos/metabolismo , Proteínas de Homeodominio/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Secuencia Conservada , Helechos/citología , Helechos/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Modelos Biológicos , Familia de Multigenes , Filogenia , Hojas de la Planta/citología
15.
Ann Bot ; 116(1): 113-22, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26050068

RESUMEN

BACKGROUND AND AIMS: The advantage of clonal integration (resource sharing between connected ramets of clonal plants) varies and a higher degree of integration is expected in more stressful and/or more heterogeneous habitats. Clonal facultative epiphytes occur in both forest canopies (epiphytic habitats) and forest understories (terrestrial habitats). Because environmental conditions, especially water and nutrients, are more stressful and heterogeneous in the canopy than in the understorey, this study hypothesizes that clonal integration is more important for facultative epiphytes in epiphytic habitats than in terrestrial habitats. METHODS: In a field experiment, an examination was made of the effects of rhizome connection (connected vs. disconnected, i.e. with vs. without clonal integration) on survival and growth of single ramets, both young and old, of the facultative epiphytic rhizomatous fern Selliguea griffithiana (Polypodiaceae) in both epiphytic and terrestrial habitats. In another field experiment, the effects of rhizome connection on performance of ramets were tested in small (10 × 10 cm(2)) and large (20 × 20 cm(2)) plots in both epiphytic and terrestrial habitats. KEY RESULTS: Rhizome disconnection significantly decreased survival and growth of S. griffithiana in both experiments. The effects of rhizome disconnection on survival of single ramets and on ramet number and growth in plots were greater in epiphytic habitats than in terrestrial habitats. CONCLUSIONS: Clonal integration contributes greatly to performance of facultative epiphytic ferns, and the effects were more important in forest canopies than in forest understories. The results therefore support the hypothesis that natural selection favours genotypes with a higher degree of integration in more stressful and heterogeneous environments.


Asunto(s)
Helechos/citología , Helechos/crecimiento & desarrollo , Bosques , Análisis de Varianza , Biomasa , Células Clonales , Ecosistema
16.
BMC Plant Biol ; 15: 56, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25848828

RESUMEN

BACKGROUND: While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. RESULTS: To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. CONCLUSIONS: The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Pared Celular/metabolismo , Helechos/clasificación , Helechos/metabolismo , Especificidad de Órganos , Filogenia , Polisacáridos/metabolismo , Epítopos/metabolismo , Helechos/citología , Técnica del Anticuerpo Fluorescente Indirecta , Galactanos/metabolismo , Glucanos , Mananos/metabolismo , Análisis por Micromatrices , Pectinas/metabolismo , Floema/metabolismo , Extractos Vegetales/metabolismo , Polisacárido Liasas/metabolismo , Xilanos
17.
Plant Cell Rep ; 34(5): 783-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25599853

RESUMEN

KEY MESSAGE: Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.


Asunto(s)
Medios de Cultivo , Helechos/fisiología , Técnicas de Embriogénesis Somática de Plantas/métodos , Helechos/citología
19.
Science ; 346(6208): 469-73, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25342803

RESUMEN

Some ferns possess the ability to control their sex ratio to maintain genetic variation in their colony with the aid of antheridiogen pheromones, antheridium (male organ)-inducing compounds that are related to gibberellin. We determined that ferns have evolved an antheridiogen-mediated communication system to produce males by modifying the gibberellin biosynthetic pathway, which is split between two individuals of different developmental stages in the colony. Antheridiogen acts as a bridge between them because it is more readily taken up by prothalli than bioactive gibberellin. The pathway initiates in early-maturing prothalli (gametophytes) within a colony, which produce antheridiogens and secrete them into the environment. After the secreted antheridiogen is absorbed by neighboring late-maturing prothalli, it is modified in to bioactive gibberellin to trigger male organ formation.


Asunto(s)
Helechos/citología , Helechos/fisiología , Gametogénesis en la Planta , Giberelinas/biosíntesis , Feromonas/fisiología , Expresión Génica , Giberelinas/genética , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Feromonas/metabolismo , Razón de Masculinidad , Análisis Espacio-Temporal
20.
Plant Biol (Stuttg) ; 16 Suppl 1: 151-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24373013

RESUMEN

Spores of the fern Ceratopteris richardii have proven to be a valuable single-cell system for studying gravity responses. The earliest cellular change directed by gravity in these cells is a trans-cell calcium current, which peaks near 10 h after the spores are induced to germinate. This current is needed for gravity-directed axis alignment, and its peak is coincident with the time period when gravity polarises the direction of subsequent nuclear migration and rhizoid growth. Transcriptomic analysis of genes expressed at the 10-h time point revealed several that encode proteins likely to be key components that either drive the current or regulate it. Notable among these is a plasma membrane (PM)-type Ca(2+) ATPase, CrACA1, whose activity pumping Ca(2+) out of cells is regulated by gravity. This report provides an initial characterisation of the structure and expression of this protein, and demonstrates its heterologous function complementing the K616 mutant of yeast, which is deficient in PM-type Ca(2+) pump activity. Gravity-induced changes in the trans-cell Ca(2+) current occur within seconds, a result consistent with the hypothesis that the force of gravity can rapidly alter the post-translational state of the channels and pumps that drive this current across spore cells. This report identifies a transporter likely to be a key driver of the current, CrACA1, and characterises the role of this protein in early germination and gravity-driven polarity fixation through analysis of expression levels, functional complementation and pharmacological treatments. These data, along with newly available transcriptomic data obtained at the 10-h time point, indicate that CrACA1 is present, functional and likely a major contributing component of the trans-cell Ca(2+) efflux. CrACA1 is not necessary for polar axis alignment, but pharmacological perturbations of it disrupt rhizoid development. These data support and help refine the post-translational modification model for gravity responses.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Membrana Celular/enzimología , Helechos/enzimología , Gravitación , Proteínas de Plantas/metabolismo , Esporas/enzimología , Secuencia de Aminoácidos , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/química , Membrana Celular/efectos de los fármacos , Pruebas de Enzimas , Inhibidores Enzimáticos/farmacología , Helechos/citología , Helechos/efectos de los fármacos , Helechos/crecimiento & desarrollo , Prueba de Complementación Genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Alineación de Secuencia , Esporas/citología , Esporas/efectos de los fármacos , Esporas/crecimiento & desarrollo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...