Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
1.
Methods Mol Biol ; 2839: 213-223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008255

RESUMEN

The utilization of ultra-performance liquid chromatography (UPLC) to analyze the various intermediates in the heme biosynthetic pathway is presented. The first product, ALA, was derivatized to a highly fluorescent pyrrolizine; PBG, the second intermediate, was enzymatically converted to uroporphyrinogen, and all the porphyrinogen intermediates were oxidized in acid to form fluorescent porphyrins. Heme was measured as hemin. The stable porphyrin forms of the intermediates, are then resolved and quantified by UPLC. Further details about the various methods are discussed to promote successful UPLC analyses. Method variations that may be preferable in certain situations are also presented.


Asunto(s)
Hemo , Hemo/biosíntesis , Hemo/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Ácido Aminolevulínico/metabolismo , Hemina/metabolismo , Hemina/química
2.
Inorg Chem ; 63(26): 11986-12002, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897979

RESUMEN

Tau is a neuronal protein involved in axonal stabilization; however under pathological conditions, it triggers the deposition of insoluble neurofibrillary tangles, which are one of the biomarkers for Alzheimer's disease. The factors that might influence the fibrillation process are i) two cysteine residues in two pseudorepetitive regions, called R2 and R3, which can modulate protein-protein interaction via disulfide cross-linking; ii) an increase of reactive oxygen species affecting the post-translational modification of tau; and iii) cytotoxic levels of metals, especially ferric-heme (hemin), in hemolytic processes. Herein, we investigated how the cysteine-containing R3 peptide (R3C) and its Cys→Ala mutant (R3A) interact with hemin and how their binding affects the oxidative damage of the protein. The calculated binding constants are remarkably higher for the hemin-R3C complex (LogK1 = 5.90; LogK2 = 5.80) with respect to R3A (LogK1 = 4.44; LogK2 < 2), although NMR and CD investigations excluded the direct binding of cysteine as an iron axial ligand. Both peptides increase the peroxidase-like activity of hemin toward catecholamines and phenols, with a double catalytic efficiency detected for hemin-R3C systems. Moreover, the presence of cysteine significantly alters the susceptibility of R3 toward oxidative modifications, easily resulting in peptide dopamination and formation of cross-linked S-S derivatives.


Asunto(s)
Cisteína , Hemina , Proteínas tau , Proteínas tau/química , Proteínas tau/metabolismo , Hemina/química , Hemina/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Unión Proteica , Sitios de Unión , Péptidos/química , Péptidos/metabolismo
3.
Lab Chip ; 24(14): 3521-3527, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38939907

RESUMEN

Zeolitic imidazolate framework-8 (ZIF-8) encapsulating enzymatically active biomolecules has emerged as a novel biocompatible nanozyme and offers significant implications for bioanalysis of various biomarkers towards early diagnosis of severe diseases such as cancers. However, the rapid, continuous and scalable synthesis of these nanozymes still remains challenging. In this work, we proposed a novel microfluidic approach for rapid and continuous synthesis of hemin@ZIF-8 nanozyme. By employing a distinctive combination of zigzag-shaped channel and spiral channel with sudden expansion structures, we have enhanced the mixing efficiency within the chip and achieved effective encapsulation of hemin in ZIF-8. The resulting hemin@ZIF-8 nanoparticles exhibit peroxidase-like activity and are capable of detecting free H2O2 with a limit of detection (LOD) as low as 45 nM, as well as H2O2 secreted by viable cells with a detection threshold of approximately 10 cells per mL. By leveraging this method, we achieved successful detection of cancer cells and effective screening of anticancer drugs that induce oxidative stress injury in cancer cells. This innovative microfluidic strategy offers a new avenue for synthesizing functional nanocomposites to facilitate the development of next-generation diagnostic tools for early disease detection and personalized medicine.


Asunto(s)
Antineoplásicos , Hemina , Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Hemina/química , Hemina/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/farmacología , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Técnicas Analíticas Microfluídicas/instrumentación , Ensayos de Selección de Medicamentos Antitumorales , Dispositivos Laboratorio en un Chip , Zeolitas/química , Límite de Detección , Imidazoles
4.
Langmuir ; 40(20): 10634-10647, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38723623

RESUMEN

Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.


Asunto(s)
Hemina , Peróxido de Hidrógeno , Nanotubos de Carbono , Oxidación-Reducción , Peróxido de Hidrógeno/química , Hemina/química , Nanotubos de Carbono/química , Electrodos , Grafito/química , Puntos Cuánticos/química , Nitrógeno/química , Propiedades de Superficie , Técnicas Electroquímicas/métodos , Catálisis
5.
Mikrochim Acta ; 191(6): 340, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787447

RESUMEN

A new sandwich-type electrochemical biosensing platform was developed by gold @polyphthalenediamine nanohybrids (AuNP@PoPD) as the sensing platform and phosphorus doped reduced graphene oxide-hemin-palladium nanoparticles (PrGO-Hemin-PdNP) as the signal amplifier for phosphatidylinositol proteoglycan 3 (GPC3). AuNP@PoPD, co-electrodeposited into the screen printed electrode with high conductivity and stability, is dedicated to assembling the primary GPC3 aptamer (GPC3Apt). The second GPC3Apt immobilized on the high conductivity and large surface area of PrGO-Hemin-PdNP was utilized as an electrochemical signal reporter by hemin oxidation (PrGO-Hemin-PdNP-GPC3Apt). In the range 0.001-10.0 ng/mL, the hemin oxidation current signal of the electrochemical aptasensor increased log-linearly with the concentration of GPC3, the lowest detection limit was 0.13 pg/mL, and the sensitivity was 2.073 µA/µM/cm2. The aptasensor exhibited good sensing performance in a human serum sample with the relative error of 4.31-8.07%. The sandwich sensor showed good selectivity and stability for detection GPC3 in human serum samples, providing a new efficient and sensitive method for detecting HCC markers.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Glipicanos , Oro , Grafito , Hemina , Límite de Detección , Nanopartículas del Metal , Paladio , Glipicanos/sangre , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Aptámeros de Nucleótidos/química , Hemina/química , Grafito/química , Paladio/química , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Electrodos
6.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727763

RESUMEN

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Asunto(s)
Glicina , Glifosato , Hemina , Límite de Detección , Estructuras Metalorgánicas , Plaguicidas , Plaguicidas/análisis , Plaguicidas/química , Estructuras Metalorgánicas/química , Hemina/química , Glicina/análogos & derivados , Glicina/química , Glicina/análisis , Colorimetría/métodos , Bencidinas/química , Adsorción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Dimetoato/análisis , Dimetoato/química , Aptámeros de Nucleótidos/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química
7.
Food Chem ; 452: 139576, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735109

RESUMEN

Hemin dissociation occurs much faster from fish methemoglobin (metHb) compared to mammalian metHb yet the mechanism remains poorly understood. This may involve enhanced solvent access to His(E7) of fish metHbs by a protonation mechanism. Plasma induced modification of biomolecules (PLIMB) produces free radicals that covalently modify solvent accessible residues of proteins, and so can provide insight regarding accessibility of hydronium ions to protonate His(E7). PLIMB-induced modifications to heme crevice sites of trout IV and bovine metHb were determined using tandem mass spectrometry after generating peptides with Trypsin/Lys-C. αHis(CE3) was more modified in trout attributable to the more dynamic nature of bovine αHis(CE3) from available crystal structures. Although His(E7) was not found to be more modified in trout, aspects of trout peptides containing His(E7) hampered modification determinations. An existing computational structure-based approach was also used to estimate protonation tendencies, suggesting His(E7) of metHbs with low hemin affinity are more protonatable.


Asunto(s)
Proteínas de Peces , Hemina , Metahemoglobina , Animales , Hemina/química , Bovinos , Proteínas de Peces/química , Metahemoglobina/química , Trucha/metabolismo , Espectrometría de Masas en Tándem
8.
Biosens Bioelectron ; 260: 116435, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38820724

RESUMEN

Electrochemical detection of miRNA biomarkers in complex physiological samples holds great promise for accurate evaluation of tumor burden in the perioperative period, yet limited by reproducibility and bias issues. Here, nanosensors installed with hybrid probes that responsively release catalytic DNAzymes (G-quadruplexes/hemin) were developed to solve the fidelity challenge in an immobilization-free detection. miRNA targets triggered toehold-mediated strand displacement reactions on the sensor surface and resulted in amplified shedding of DNAzymes. Subsequently, the interference background was removed by Fe3O4 core-facilitated magnetic separation. Binding aptamers of the electrochemical reporter (dopamine) were tethered closely to the catalytic units for boosting H2O2-mediated oxidation through proximity catalysis. The one-to-many conversion by dual amplification from biological-chemical catalysis facilitated sufficient homogeneous sensing signals on electrodes. Thereby, the nanosensor exhibited a low detection limit (2.08 fM), and high reproducibility (relative standard deviation of 1.99%). Most importantly, smaller variations (RSD of 0.51-1.04%) of quantified miRNAs were observed for detection from cell lysates, multiplexed detection from unprocessed serum, and successful discrimination of small upregulations in lysates of tumor tissue samples. The nanosensor showed superior diagnostic performance with an area under curve (AUC) of 0.97 and 94% accuracy in classifying breast cancer patients and healthy donors. These findings demonstrated the synergy of signal amplification and interference removal in achieving high-fidelity miRNA detection for practical clinical applications.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Técnicas Electroquímicas , Límite de Detección , MicroARNs , Humanos , MicroARNs/aislamiento & purificación , Técnicas Electroquímicas/métodos , ADN Catalítico/química , Catálisis , G-Cuádruplex , Neoplasias de la Mama , Peróxido de Hidrógeno/química , Aptámeros de Nucleótidos/química , Femenino , Hemina/química , Reproducibilidad de los Resultados , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética
9.
Anal Chem ; 96(19): 7763-7771, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38699865

RESUMEN

Given its pivotal role in modulating various pathological processes, precise measurement of nitric oxide (●NO) levels in physiological solutions is imperative. The key techniques include the ozone-based chemiluminescence (CL) reactions, amperometric ●NO sensing, and Griess assay, each with its advantages and drawbacks. In this study, a hemin/H2O2/luminol CL reaction was employed for accurately detecting ●NO in diverse solutions. We investigated how the luminescence kinetics was influenced by ●NO from two donors, nitrite and peroxynitrite, while also assessing the impact of culture medium components and reactive species quenchers. Furthermore, we experimentally and theoretically explored the mechanism of hemin oxidation responsible for the initiation of light generation. Although both hemin and ●NO enhanced the H2O2/luminol-based luminescence reactions with distinct kinetics, hemin's interference with ●NO/peroxynitrite- modulated their individual effects. Leveraging the propagated signal due to hemin, the ●NO levels in solution were estimated, observing parallel changes to those detected via amperometric detection in response to varying concentrations of the ●NO-donor. The examined reactions aid in comprehending the mechanism of ●NO/hemin/H2O2/luminol interactions and how these can be used for detecting ●NO in solution with minimal sample size demands. Moreover, the selectivity across different solutions can be improved by incorporating certain quenchers for reactive species into the reaction.


Asunto(s)
Hemina , Sondas Moleculares , Óxido Nítrico , Hemina/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Cinética , Mediciones Luminiscentes , Luminol/química , Sondas Moleculares/química , Óxido Nítrico/análisis , Oxidación-Reducción , Ácido Peroxinitroso/análisis , Ácido Peroxinitroso/química , Soluciones
10.
Nano Lett ; 24(20): 5993-6001, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655913

RESUMEN

Bimetallic hollow structures have attracted much attention due to their unique properties, but they still face the problems of nonuniform alloys and excessive etching leading to structural collapse. Here, uniform bimetallic hollow nanospheres are constructed by pore engineering and then highly loaded with hemin (Hemin@MOF). Interestingly, in the presence of polydopamine (PDA), the competitive coordination between anionic polymer (γ-PGA) and dimethylimidazole does not lead to the collapse of the external framework but self-assembly into a hollow structure. By constructing the Hemin@MOF immune platform and using E. coli O157:H7 as the detection object, we find that the visual detection limits can reach 10, 3, and 3 CFU/mL in colorimetric, photothermal, and catalytic modes, which is 4 orders of magnitude lower than the traditional gold standard. This study provides a new idea for the morphological modification of the metal-organic skeleton and multifunctional immunochromatography detection.


Asunto(s)
Hemina , Indoles , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Hemina/química , Indoles/química , Polímeros/química , Escherichia coli O157 , Estructuras Metalorgánicas/química , Nanosferas/química , Límite de Detección
11.
Anal Chem ; 96(8): 3345-3353, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38301154

RESUMEN

Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.


Asunto(s)
Antimaláricos , Hemoproteínas , Malaria , Humanos , Antimaláricos/farmacología , Cloroquina/farmacología , Cloroquina/química , Hemina/química , Hemoproteínas/química , Análisis Espectral , Plasmodium falciparum
12.
Nano Lett ; 24(7): 2250-2256, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329289

RESUMEN

Emergence of complex catalytic machinery via simple building blocks under non-equilibrium conditions can contribute toward the system level understanding of the extant biocatalytic reaction network that fuels metabolism. Herein, we report temporal (dis)assembly of peptide nanostructures in presence of a cofactor dictated by native multistep cascade transformations. The short peptide can form a dynamic covalent bond with the thermodynamically activated substrate and recruit cofactor hemin to access non-equilibrium catalytic nanostructures (positive feedback). The neighboring imidazole and hemin moieties in the assembled state rapidly converted the substrate to product(s) via a two-step cascade reaction (hydrolase-peroxidase like) that subsequently triggered the disassembly of the catalytic nanostructures (negative feedback). The feedback coupled reaction cycle involving intrinsic catalytic prowess of short peptides to realize the advanced trait of two-stage cascade degradation of a thermodynamically activated substrate foreshadows the complex non-equilibrium protometabolic networks that might have preceded the chemical emergence of life.


Asunto(s)
Hemina , Nanoestructuras , Hemina/química , Nanoestructuras/química , Péptidos/química , Catálisis , Biocatálisis
13.
Food Chem ; 441: 138332, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38183722

RESUMEN

The impact of oxidized myoglobin (Mb) on myofibrillar protein (MP) oxidation and water retention was investigated. Results showed that the oxidation of Mb increased with increasing concentration of oxidized linoleic acid (OLA). In the presence of 100 mmol/L OLA, hemin iron decreased by 62.07 % compared to the control group. Further investigation showed that mild oxidation of Mb (≤10 mmol/L OLA) increased the water retention and the absolute value of the zeta potential of MP, whereas excessive oxidation (>10 mmol/L OLA) decreased these properties. With the increase of Mb oxidation, the carbonyl content in MP increased, and α-helices changed to random helix. And the tertiary structure changed. Pearson correlation analysis suggested that oxidized Mb affected the water retention of MP, which was closely related to hemin iron and non-hemin iron. In conclusion, OLA induced Mb oxidation, further promoted MP oxidation and affected its water retention.


Asunto(s)
Hemina , Mioglobina , Mioglobina/química , Hemina/química , Oxidación-Reducción , Hierro , Agua
14.
Bioelectrochemistry ; 157: 108635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38185025

RESUMEN

In this work, a novel sandwich-type electrochemical aptasensor based on the dual signal amplification strategy of hemin/G-quadruplex and AuNPs-MoS2 was designed and constructed, which realized the highly sensitive and specific detection of thrombin (TB). In this aptasensor, the 15-mer TB-binding aptamer (TBA-1) modified with thiol group was immobilized on the surface of AuNPs modified glassy carbon electrode (AuNPs/GCE) as capturing elements. Another thiol-modified 29-mer TB-binding aptamer (TBA-2) sequence containing G-quadruplex structure for hemin immobilization was designed. The formed hemin/G-quadruplex/TBA-2 sequence was further combined to the AuNPs decorated flower-like molybdenum disulfide (AuNPs-MoS2) composite surface via Au-S bonds, acting the role of reporter probe. In presence of the target TB, the sandwich-type electrochemical aptamer detection system could be formed properly. With the assistance of the dual signal amplification of AuNPs-MoS2 and hemin/G-quadruplex toward H2O2 reduction, the sandwich-type electrochemical aptasensor was successfully constructed for sensitive detection of TB. The results demonstrate that the fabricated aptasensor displays a wide linear range of 1.0 × 10-6 âˆ¼ 10.0 nM with a low detection limit of 0.34 fM. This proposed aptasensor shows potential application in the detection of TB content in real biological samples with high sensitivity, selectivity, and reliability.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Hemina/química , Trombina/química , Oro/química , Molibdeno/química , Reproducibilidad de los Resultados , Peróxido de Hidrógeno , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Compuestos de Sulfhidrilo , Técnicas Electroquímicas/métodos , Límite de Detección
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123902, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38281463

RESUMEN

Hematin anhydride (ß-hematin), the synthetic analogue of the malaria pigment, "hemozoin", is a heme dimer produced by reciprocal covalent bonds among carboxylic acid groups on the protoporphyrin-IX ring and the iron atom present in the two adjacent heme molecules. Hemozoin is a disposal product formed from the digestion of hemoglobin present in the red blood cells infected with hematophagous malaria parasites. Besides, as the parasites invade red blood cells, hemozoin crystals are eventually released into the bloodstream, where they accumulate over time in tissues. Severe malaria infection leads to significant dysfunction in vital organs such as the liver, spleen, and brain in part due to the autoimmune response to the excessive accumulation of hemozoin in these tissues. Also, the amount of these crystals in the vasculature correlates with disease progression. Thus, hemozoin is a unique indicator of infection used as a malaria biomarker and hence, used as a target for the development of antimalarial drugs. Hence, exploring various properties of hemozoin is extremely useful in the direction of diagnosis and cure. The present study focuses on finding one of the unknown properties of ß-hematin in physiological conditions by using the Z-scan technique, which is simple, sensitive, and economical. It is observed that hemozoin possesses one of the unique material properties, i.e., nonlinearity with a detection limit of âˆ¼ 15 µM. The self-defocusing action causes ß-hematin to exhibit negative refractive nonlinearity. The observed data is analyzed with a thermal lensing model. We strongly believe that our simple and reliable approach to probing the nonlinearity of ß-hematin will provide fresh opportunities for malaria diagnostics & cure in the near future.


Asunto(s)
Hemoproteínas , Malaria , Humanos , Hemina/química , Hemo , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Plasmodium falciparum/química
16.
Protein J ; 43(1): 48-61, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38066289

RESUMEN

Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a Kd value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H2O2 and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to ß-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H2O2 system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.


Asunto(s)
Hemo , Hemina , Hemina/química , Hemina/metabolismo , Hemo/química , Peróxido de Hidrógeno , Polimerizacion , Peroxidasas
17.
Biotechnol Appl Biochem ; 71(1): 193-201, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37904286

RESUMEN

In this study, an electrochemical biosensor was constructed for the detection of fibrin, specifically by a simple two-step approach, with a novel artificial enzyme (Tetrazyme) based on the DNA tetrahedral framework as signal probe. The multichannel screen-printed electrode with the activated surface cannot only remove some biological impurities, but also serve as a carrier to immobilize a large number of antigen proteins. The DNA tetrahedral nanostructure was employed to ensure the high sensitivity of the probe for biological analysis. The hemin was chimeric into the G-quadruplex to constitute the complex with peroxidase catalytic activity (hemin/G4-DNAzyme), subsequently, Tetrazyme was formed through combining of this complex and DNA tetrahedral nucleic acid framework. The artificial enzyme signal probe formed by the covalent combination of the homing peptide (Cys-Arg-Glu-Lys-Ala, CREKA), which is the aptamer of fibrin and the new artificial enzyme is fixed on the surface of the multichannel carbon electrode by CREKA-specific recognition, so as to realize the sensitive detection of fibrin. The feasibility of sensing platform was validated by cyclic voltammetry (CV) and amperometric i-t curve (IT) methods. Effects of Tetrazyme concentration, CREKA concentrations and hybridization time on the sensor were explored. Under the best optimal conditions of 0.6 µmol/L Tetrazyme, 80 µmol/L CREKA, and 2.5 h reaction time, the immunosensor had two linear detection ranges, 10-40 nmol/L, with linear regression equation Y = 0.01487X - 0.011 (R2 = 0.992), and 50-100 nmol/L, with linear regression equation Y = 0.00137X + 0.6405 (R2 = 0.998), the detection limit was 9.4 nmol/L, S/N ≥ 3. The biosensor could provide a new method with great potential for the detection of fibrin with good selectivity, stability, and reproducibility.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Hemina/química , Fibrina , Reproducibilidad de los Resultados , Límite de Detección , Inmunoensayo , ADN/química , Técnicas Electroquímicas/métodos
18.
Talanta ; 270: 125550, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104426

RESUMEN

Developing ultrasensitive sensing platforms for trace ochratoxin A (OTA) in food safety is still challenging. Herein, we presented a novel dual-mode sensing strategy for fluorescence and colorimetric detection of OTA by combining the target-responsive hemin-encapsulated and copper nanoclusters (CuNCs) functionalized DNA hydrogel. Through simple assembly and in situ synthesis methods, fluorescence CuNCs are synthesized and modified on the 3D hydrophilic network structure of DNA cross-linked. OTA specifically recognized by Apt-linker can control the collapse of hydrogel, resulting in the fluorescence quenching of CuNCs and release of coated hemin. Interestingly, OTA could trigger Apt-linker conformational changes to form G-quadruplex structures, allowing the released hemin to form G-quadruplex/hemin DNAzyme via self-assembly. Fluorescence signal amplification could be achieved through further fluorescence quenching of CuNCs caused by DNAzyme-catalyzed hydrogen peroxide (H2O2) because of the peroxidase activity of DNAzyme. Simultaneously, DNAzyme could catalyze the H2O2-mediated oxidation of TMB to provide colorimetric signal. Thereafter, the DNA-CuNCs hydrogel exhibited low detection limits of 3.49 pg/mL in fluorescence mode and 0.25 ng/mL in colorimetric modality. Real sample analyses of foodstuffs showed satisfactory results, providing prospective potential for monitoring mycotoxin contaminant.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Ocratoxinas , ADN Catalítico/química , Cobre , Hidrogeles , Hemina/química , Peróxido de Hidrógeno/química , ADN , Técnicas Biosensibles/métodos , Límite de Detección , Aptámeros de Nucleótidos/química
19.
Angew Chem Int Ed Engl ; 63(6): e202314450, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38150561

RESUMEN

Previous aptamers for porphyrins and metalloporphyrins were all guanine-rich sequences that can fold in G-quadruplex structures. Due to stacking-based binding, these aptamers can hardly tell different porphyrins apart, and they can also bind other planar molecules, hindering their practical applications. In this work, we used the capture selection method to obtain aptamers for hemin and protoporphyrin IX (PPIX). The hemin aptamer (Hem1) features two highly conserved repeating binding loops, and it cannot form a G-quadruplex, which was supported by its Mg2+ -dependent but K+ -independent hemin binding and CD spectroscopy. Isothermal titration calorimetry revealed much higher enthalpy change for the new aptamer, and the best aptamer showed a Kd of 43 nM hemin. Hem1 can also enhance the peroxidase-like activity of hemin. This work demonstrates that aptamers have alternative ways to bind porphyrins allowing selective recognition of different porphyrins.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Porfirinas , Hemina/química , Aptámeros de Nucleótidos/química , Porfirinas/metabolismo , Peroxidasas/metabolismo
20.
Chemistry ; 30(11): e202303254, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38145337

RESUMEN

Developing enzyme alternatives is pivotal to improving and enabling new processes in biotechnology and industry. Artificial metalloenzymes (ArMs) are combinations of protein scaffolds with metal elements, such as metal nanoclusters or metal-containing molecules with specific catalytic properties, which can be customized. Here, we engineered an ArM based on the consensus tetratricopeptide repeat (CTPR) scaffold by introducing a unique histidine residue to coordinate the hemin cofactor. Our results show that this engineered system exhibits robust peroxidase-like catalytic activity driven by the hemin. The expression of the scaffold and subsequent coordination of hemin was achieved by recombinant expression in bulk and through in vitro transcription and translation systems in water-in-oil drops. The ability to synthesize this system in emulsio paves the way to improve its properties by means of droplet microfluidic screenings, facilitating the exploration of the protein combinatorial space to discover improved or novel catalytic activities.


Asunto(s)
Hemina , Metaloproteínas , Hemina/química , Metaloproteínas/química , Peroxidasa , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...