Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Front Immunol ; 14: 1186188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790926

RESUMEN

The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-ß adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from Fissurella latimarginata (FLH) and a recombinant surface immunogenic protein (rSIP) from Streptococcus agalactiae. We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Hemocianinas/metabolismo , Streptococcus agalactiae , Ligandos , Proteínas de la Membrana/metabolismo , Adyuvantes de Vacunas , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adyuvantes Inmunológicos/farmacología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
2.
Sci Total Environ ; 905: 167073, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37714341

RESUMEN

Agricultural and anthropogenic activities release high ammonia levels into aquatic ecosystems, severely affecting aquatic organisms. Penaeid shrimp can survive high ammonia stress conditions, but the underlying molecular mechanisms are unknown. Here, total hemocyanin and oxyhemocyanin levels decreased in Penaeus vannamei plasma under high ammonia stress. When shrimp were subjected to high ammonia stress for 12 h, 24 hemocyanin (HMC) derived peptides were identified in shrimp plasma, among which one peptide, designated as HMCs27, was chosen for further analysis. Shrimp survival was significantly enhanced after treatment with the recombinant protein of HMCs27 (rHMCs27), followed by high ammonia stress. Transcriptome analysis of shrimp hepatopancreas after treatment with or without rHMCs27 followed by high ammonia stress revealed 973 significantly dysregulated genes, notable among which were genes involved in oxidation and metabolism, such as cytochrome C, catalase (CAT), isocitrate dehydrogenase, superoxide dismutase (SOD), trypsin, chymotrypsin, glutathione peroxidase, glutathione s-transferase (GST), and alanine aminotransferase (ALT). In addition, levels of key biochemical indicators, such as SOD, CAT, and total antioxidant capacity (T-AOC), were significantly enhanced, whereas hepatopancreas malondialdehyde levels and plasma pH, NH3, GST, and ALT levels were significantly decreased after rHMCs27 treatment followed by high ammonia stress. Moreover, high ammonia stress induced hepatopancreas tissue injury and apoptosis, but rHMCs27 treatment ameliorated these effects. Collectively, the current study revealed that in response to high ammonia stress, shrimp generate functional peptides, such as peptide HMCs27 from hemocyanin, which helps to attenuate the ammonia toxicity by enhancing the antioxidant system and the tricarboxylic acid cycle to decrease plasma NH3 levels and pH.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Antioxidantes/metabolismo , Estrés Fisiológico , Hemocianinas/metabolismo , Hemocianinas/farmacología , Penaeidae/fisiología , Amoníaco/metabolismo , Ecosistema , Superóxido Dismutasa/metabolismo , Péptidos/metabolismo
3.
PLoS One ; 18(6): e0287294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347755

RESUMEN

Hemocyanins are multimeric oxygen transport proteins present in the blood of arthropods and molluscs, containing up to 8 oxygen-binding functional units per monomer. In molluscs, hemocyanins are assembled in decamer 'building blocks' formed of 5 dimer 'plates', routinely forming didecamer or higher-order assemblies with d5 or c5 symmetry. Here we describe the cryoEM structures of the didecamer (20-mer) and tridecamer (30-mer) forms of a novel hemocyanin from the slipper limpet Crepidula fornicata (SLH) at 7.0 and 4.7 Å resolution respectively. We show that two decamers assemble in a 'tail-tail' configuration, forming a partially capped cylinder, with an additional decamer adding on in 'head-tail' configuration to make the tridecamer. Analysis of SLH samples shows substantial heterogeneity, suggesting the presence of many higher-order multimers including tetra- and pentadecamers, formed by successive addition of decamers in head-tail configuration. Retrieval of sequence data for a full-length isoform of SLH enabled the use of Alphafold to produce a molecular model of SLH, which indicated the formation of dimer slabs with high similarity to those found in keyhole limpet hemocyanin. The fit of the molecular model to the cryoEM density was excellent, showing an overall structure where the final two functional units of the subunit (FU-g and FU-h) form the partial cap at one end of the decamer, and permitting analysis of the subunit interfaces governing the assembly of tail-tail and head-tail decamer interactions as well as potential sites for N-glycosylation. Our work contributes to the understanding of higher-order oligomer formation in molluscan hemocyanins and demonstrates the utility of Alphafold for building accurate structural models of large oligomeric proteins.


Asunto(s)
Artrópodos , Gastrópodos , Animales , Hemocianinas/metabolismo , Microscopía por Crioelectrón , Moluscos/química , Modelos Moleculares , Artrópodos/metabolismo , Gastrópodos/metabolismo , Polímeros
4.
Food Chem ; 424: 136422, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37229897

RESUMEN

Hemocyanin in crustaceans is an allergen for humans. However, little information was available on its molecular, structural and allergenic properties. In this study, the purified natural protein was identified as Eriocheir sinensis HC by LC-MS/MS, which was allergenic because its reaction with the serum IgE of crustacean patients. Results of the molecular properties showed that, HC was resistant to trypsin digestion, but not a heat-stable protein. Boiling (55.05 ± 3.50 %) and steaming (66.84 ± 1.65 %) induced an increase in ß-sheet and decreased allergenicity of HC. By comparing the amino acid sequences of eight crustaceans, HC was found to be highly conserved. Five epitopes of HC were identified and validated by murine sensitization model, and two of them (P3 and P10) were exactly as the predicted by six types of bioinformatics. Multiple bioinformatics analysis combining with murine sensitization model seemed to be effective way for identification of allergenic epitopes.


Asunto(s)
Braquiuros , Hemocianinas , Humanos , Animales , Ratones , Hemocianinas/metabolismo , Alérgenos/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Epítopos , Braquiuros/genética , Braquiuros/metabolismo
5.
J Immunol ; 210(9): 1396-1407, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36971684

RESUMEN

Posttranslational modifications expand the functions of immune-related proteins, especially during infections. The respiratory glycoprotein, hemocyanin, has been implicated in many other functions, but the role of phosphorylation modification in its functional diversity is not fully understood. In this study, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes phosphorylation modification during bacterial infection. Dephosphorylation of PvHMC mediated by P. vannamei protein phosphatase 2A catalytic increases its in vitro antibacterial activity, whereas phosphorylation by P. vannamei casein kinase 2 catalytic subunit α decreases its oxygen-carrying capacity and attenuates its in vitro antibacterial activity. Mechanistically, we show that Thr517 is a critical phosphorylation modification site on PvHMC to modulate its functions, which when mutated attenuates the action of P. vannamei casein kinase 2 catalytic subunit α and P. vannamei protein phosphatase 2A catalytic, and hence abolishes the antibacterial activity of PvHMC. Our results reveal that phosphorylation of PvHMC modulates its antimicrobial functions in penaeid shrimp.


Asunto(s)
Hemocianinas , Penaeidae , Animales , Hemocianinas/metabolismo , Penaeidae/metabolismo , Quinasa de la Caseína II/metabolismo , Proteína Fosfatasa 2/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
6.
Mar Drugs ; 21(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976213

RESUMEN

Many environmental and pathogenic insults induce endoplasmic reticulum (ER) stress in animals, especially in aquatic ecosystems, where these factors are crucial for life. In penaeid shrimp, pathogens and environmental stressors induce hemocyanin expression, but the involvement of hemocyanin in ER stress response is unknown. We demonstrate that in response to pathogenic bacteria (Vibrio parahaemolyticus and Streptococcus iniae), hemocyanin, ER stress proteins (Bip, Xbp1s, and Chop), and sterol regulatory element binding protein (SREBP) are induced to alter fatty acid levels in Penaeus vannamei. Interestingly, hemocyanin interacts with ER stress proteins to modulate SREBP expression, while ER stress inhibition with 4-Phenylbutyric acid or hemocyanin knockdown attenuates the expression of ER stress proteins, SREBP, and fatty acid levels. Contrarily, hemocyanin knockdown followed by tunicamycin treatment (ER stress activator) increased their expression. Thus, hemocyanin mediates ER stress during pathogen challenge, which consequently modulates SREBP to regulate the expression of downstream lipogenic genes and fatty acid levels. Our findings reveal a novel mechanism employed by penaeid shrimp to counteract pathogen-induced ER stress.


Asunto(s)
Penaeidae , Proteínas de Unión a los Elementos Reguladores de Esteroles , Animales , Hemocianinas/genética , Hemocianinas/metabolismo , Penaeidae/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ecosistema , Estrés del Retículo Endoplásmico , Ácidos Grasos/metabolismo , Bacterias/metabolismo , Proteínas de Choque Térmico/metabolismo
7.
Biochimie ; 206: 36-48, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36216224

RESUMEN

Lectins or agglutinins are mainly proteins or glycoproteins, reported to uphold an ability to agglutinate the red blood cells (RBCs) with a known sugar specificity in a diverse group of organisms. In the present study, we purified a hemocyanin (named as MmHc) from a shrimp, Metapenaeus monoceros by size-exclusion chromatography. Further characterization revealed that the purified MmHc showed hemagglutination activity that was found to be specifically inhibited by Lewis B and Lewis Y tetrasaccharides. The MmHc displayed two oligomers of molecular weight approximately ∼78 and ∼85 kDa in SDS-PAGE. The native molecular mass of MmHc was found to be ∼457 kDa as determined by size-exclusion chromatography which indicated that the purified MmHc is an oligomeric protein. MmHc showed a maximum activity within pH 7.0-8.0, while a wide range of temperature stability was observed between 4 to 55 °C, however, it did not show any dependency on metal ions for binding. Subsequently, the analysis of the peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) identified the purified MmHc as shrimp hemocyanin showing significant similarity to the hemocyanin of Penaeus vannamei. The results of multiple sequence alignment and detailed analysis of the molecular interactions predicted by AutoDock suggested that besides the oxygen carrier function, this MmHc may have multiple roles and can interact well with the Lewis Y antigen through a typical sugar binding motif containing the similar hydrophilic amino acids as the conserved residues.


Asunto(s)
Penaeidae , Animales , Penaeidae/metabolismo , Hemocianinas/química , Hemocianinas/metabolismo , Hemolinfa/química , Hemolinfa/metabolismo , Lectinas/farmacología , Lectinas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Azúcares/análisis
8.
ACS Biomater Sci Eng ; 9(4): 1796-1807, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-34468131

RESUMEN

In contrast to the external shells in bivalves and gastropods, most cephalopods are missing this external protection. The cuttlefish, belonging to class cephalopod, has an internal biomineralized structure made of mainly calcium carbonate for controlling buoyancy. However, the macromolecules, especially proteins that control cuttlebone mineral formation, are not sufficiently understood, limiting our understanding of the evolution of this internal shell. In this study, we extracted proteins from the cuttlebone of pharaoh cuttlefish Sepia pharaonis and performed liquid chromatography-tandem mass spectrometry to identify the shell matrix proteins (SMPs). In total, 41 SMPs were identified. Among them, hemocyanin, an oxygen-carrying protein, was the most abundant SMP. By comparison with SMPs of other marine biominerals, hemocyanin, apolipophorin, soul domain proteins, transferrin, FL-rich, and enolase were found to be unique to the cuttlebone. In contrast, typical SMPs of external shells such as carbonic anhydrase complement control protein, fibronectin type III, and G/A-rich proteins were lacking from the cuttlebone. Furthermore, the cluster analysis of biomineral SMPs suggests that the SMP repertoire of the cuttlebone does not resemble that of other species with external shells. Taken together, this study implies a potential relationship of the cuttlefish internal shell with other internal biominerals, which highlights a unique shell evolutionary pathway in invertebrates.


Asunto(s)
Cefalópodos , Animales , Cefalópodos/metabolismo , Biomineralización , Decapodiformes/metabolismo , Proteómica/métodos , Hemocianinas/metabolismo , Proteínas/análisis , Proteínas/química , Proteínas/metabolismo
9.
Ecotoxicol Environ Saf ; 249: 114448, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321667

RESUMEN

The aim of this study was to evaluate the quantitative and qualitative changes in the proteome of the hemolymph of female Steatoda grossa spiders (Theridiidae) that were chronically exposed to cadmium and copper in food and were additionally immunostimulated (phorbol 12-myristate 13-acetate (PMA); bacterial suspensions: Staphylococcus aureus (G+), Pseudomonas fluorescens (G-). It was found that the expression of nearly 90 proteins was altered in cadmium-intoxicated spiders and more than 60 in copper-exposed individuals. Regardless of the type of metal used, these proteins were mainly overexpressed in the hemolymph of the exposed spiders. On the other hand, immunostimulation did not significantly change the number of proteins with altered expression in metal-intoxicated individuals. Hemocyanin (Hc) was found to be the most abundant of the proteins identified with altered expression. In copper-intoxicated spiders, immunostimulation increased the expression of A-, E-, F-, and G-chain-containing proteins, while in the case of cadmium-intoxicates spiders, it decreased the expression of E- and A-chain-containing Hc and increased the expression of G-chain-containing Hc. Regardless of the type of metal and immunostimulant used, there was an increase in the expression of actin. In addition, cadmium increased the expression of cullin, vimentin, and ceruloplasmin. The changes observed in the expression of hemolymph proteins indicate their protective function in S. grossa (Theridiidae) spiders under conditions of metal exposure.


Asunto(s)
Cobre , Arañas , Animales , Femenino , Cadmio/metabolismo , Cobre/metabolismo , Hemocianinas/metabolismo , Hemolinfa , Proteoma/metabolismo
10.
J Aquat Anim Health ; 34(4): 208-220, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205717

RESUMEN

OBJECTIVE: Hemocyanin is a copper-bearing protein in the hemolymph of many arthropods and mollusks and functions as an oxygen transport and important nonspecific immune protein. METHODS: In this study, complementary DNA of hemocyanin isoform 2 of the prawn Macrobrachium rosenbergii (MrHc2) was isolated by rapid amplification of cDNA ends and mRNA expression was characterized to elucidate molecular basis of its function. RESULT: With a molecular mass of 77.3 kDa, MrHc2 contained three domains: hemocyanin-all-alpha, hemocyanin-copper-containing, and hemocyanin-immunoglobulin-like domains. Molecular phylogenetic analysis revealed that MrHc2 belongs to the γ-type subunit and is closely related to hemocyanin subunit 1 of the palaemonid shrimp Macrobrachium nipponense. In addition, MrHc2 resided in a different clade relative to hemocyanin (MrHc) of M. rosenbergii (α-type subunit) and in a different subclade relative to the hemocyanin proteins of penaeid shrimp. The messenger RNA transcript of MrHc2 was highly expressed in the hepatopancreas and weakly expressed in the gills, intestine, stomach, muscle, and hemocytes. Upon challenge with M. rosenbergii nodavirus (MrNV), the expression of MrHc2 was 1.96-, 2.93-, and 1.96-fold on days 3, 4, and 5, respectively, and then gradually declined to basal levels on day 7. CONCLUSION: This study suggests that MrHc2 plays an important role in the innate immune response of M. rosenbergii to MrNV.


Asunto(s)
Hemocianinas , Palaemonidae , Animales , Hemocianinas/genética , Hemocianinas/metabolismo , Cobre , Palaemonidae/genética , Filogenia , Isoformas de Proteínas/genética
11.
Ecotoxicol Environ Saf ; 241: 113827, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36068754

RESUMEN

Anthropogenic factors and climate change have serious effects on the aquatic ecosystem and aquaculture. Among water pollutants, ammonia has the greatest impact on aquaculture organisms such as penaeid shrimp because it makes them more susceptible to infections. In this study, we explored the effects of ammonia stress (0, 50, 100, and 150 mg/L) on the molecular structure and functions of the multifunctional respiratory protein hemocyanin (HMC) in Penaeus vannamei. While the mRNA expression of Penaeus vannamei hemocyanin (PvHMC) was up-regulated after ammonia stress, both plasma hemocyanin protein and oxyhemocyanin (OxyHMC) levels decreased. Moreover, ammonia stress changed the molecular structure of hemocyanin, modulated the expression of protein phosphatase 2 A (PP2A) and casein kinase 2α (CK2α) to regulate the phosphorylation modification of hemocyanin, and enhanced its degradation into fragments by trypsin. Under moderate ammonia stress conditions, hemocyanin also undergoes glycosylation to improve its in vitro antibacterial activity and binding with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Staphylococcus aureus) bacteria, albeit differently. The current findings indicate that P. vannamei hemocyanin undergoes adaptive molecular modifications under ammonia stress enabling the shrimp to survive and counteract the consequences of the stress.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Amoníaco/metabolismo , Amoníaco/toxicidad , Animales , Ecosistema , Hemocianinas/metabolismo , Penaeidae/metabolismo
12.
An Acad Bras Cienc ; 94(3): e20210159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35976362

RESUMEN

Analysis of energy expense during development has achieved special interest through time on account of the crucial role of the consumption of resources required for offspring survival. Spider eggs have a fixed composition as well as some initial energy that is supplied by mothers. These resources are necessary to support the metabolic expense not only through the embryonic period but also during the post-embryonic period, as well as for post emerging activities before spiderlings become self-sustaining. Depletion of these resources would be critical for spiders since it could give rise to prey competition as well as filial cannibalism. Even though spiders represent a megadiverse order, information regarding the metabolic requirements during spiders development is very scarce. In this study, we analyse the changes in protein, lipid and carbohydrate content as well as the variation in lipovitellin reserves and hemocyanin content during Polybetes pythagoricus development. Our results show that lipovitellins and phospholipids represent the major energy source throughout embryonic and post-embryonic development. Lipovitellin apolipoproteins are gradually consumed but are later depleted after dispersion. Phosphatidylethanolamine is mainly consumed during the post-embryonic period, while triacylglycerides are consumed after juveniles' dispersion. Finally, hemocyanin concentration starts to increase in postembryonic stages.


Asunto(s)
Arañas , Animales , Canibalismo , Carbohidratos , Desarrollo Embrionario , Hemocianinas/química , Hemocianinas/metabolismo
13.
Mar Drugs ; 20(7)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35877752

RESUMEN

Hemocyanins present in the hemolymph of invertebrates are multifunctional proteins that are responsible for oxygen transport and play crucial roles in the immune system. They have also been identified as a source of antimicrobial peptides during infection in mollusks. Hemocyanin has also been identified in the cephalopod ancestor Nautilus, but antimicrobial peptides derived from the hemocyanin of Nautilus pompilius have not been reported. Here, the bactericidal activity of six predicted peptides from N. pompilius hemocyanin and seven mutant peptides was analyzed. Among those peptides, a mutant peptide with 15 amino acids (1RVFAGFLRHGIKRSR15), NpHM4, showed relatively high antibacterial activity. NpHM4 was determined to have typical antimicrobial peptide characteristics, including a positive charge (+5.25) and a high hydrophobic residue ratio (40%), and it was predicted to form an alpha-helical structure. In addition, NpHM4 exhibited significant antibacterial activity against Gram-negative bacteria (MBC = 30 µM for Vibrio alginolyticus), with no cytotoxicity to mammalian cells even at a high concentration of 180 µM. Upon contact with V. alginolyticus cells, we confirmed that the bactericidal activity of NpHM4 was coupled with membrane permeabilization, which was further confirmed via ultrastructural images using a scanning electron microscope. Therefore, our study provides a rationalization for the development and optimization of antimicrobial peptide from the cephalopod ancestor Nautilus, paving the way for future novel AMP development with broad applications.


Asunto(s)
Hemocianinas , Nautilus , Animales , Antibacterianos/farmacología , Hemocianinas/química , Hemocianinas/metabolismo , Hemocianinas/farmacología , Mamíferos/metabolismo , Moluscos/metabolismo , Nautilus/química , Nautilus/metabolismo , Péptidos/química
14.
Cell Tissue Res ; 388(2): 359-371, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35088179

RESUMEN

Rhogocyte is a unique molluscan cell that synthesises a supramolecular respiratory protein known as hemocyanin. Its ability to synthesise the protein has eluded the scientists despite hemocyanin's importance as a carrier protein and complex molecule with anti-viral activity. Although a hypothetical model of hemocyanin release from the rhogocytes lacunae was proposed based on colloid-osmotic pressure mechanism, lack of in vitro studies limits further validation of this model. In this study, we aim to investigate the impact of cell culture conditions and nature of hemocyanin biosynthesis of rhogocyte cells dissociated from Haliotis laevigata mantle tissue. Population of cells with different hemocyanin expression levels was profiled using flow cytometry, while hemocyanin concentrations in the media were elucidated by ELISA assay. We demonstrated that addition of lipoprotein supplement into the media resulted in a burst secretion of hemocyanin into the culture media. Over 7 days of culture, the population of cells tagged with hemocyanin antibody increased steadily while hemocyanin release in the media decreased significantly. Variation of culture medium, temperature, growth supplement type and concentration also impacted the cell growth and hemocyanin biosynthesis. These results indicated the possibility of an active process triggered by the addition of supplement to synthesise the protein at the highest amount during the first hour. The current study provides a glimpse of the hemocyanin biosynthesis by rhogocyte that may be significant to understand the cell ability to synthesise supramolecular protein and secretion through lacunae.


Asunto(s)
Gastrópodos , Hemocianinas , Animales , Citometría de Flujo , Hemocianinas/metabolismo , Lipoproteínas
15.
Cell Biol Toxicol ; 38(1): 87-110, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630204

RESUMEN

Current cancer treatment regimens such as chemotherapy and traditional chemical drugs have adverse side effects including the appearance of drug-resistant tumor cells. For these reasons, it is imperative to find novel therapeutic agents that overcome these factors. To this end, we explored a cationic antimicrobial peptide derived from Litopenaeus vannamei hemocyanin (designated LvHemB1) that induces cancer cell death, but sparing normal cells. LvHemB1 inhibits the proliferation of human cervical (HeLa), esophageal (EC109), hepatocellular (HepG2), and bladder (EJ) cancer cell lines, but had no significant effect on normal liver cell lines (T-antigen-immortalized human liver epithelial (THLE-3) cells). In addition to its antiproliferative effects, LvHemB1 induced apoptosis, by permeating cells and targeting mitochondrial voltage-dependent anion channel 1 (VDAC1). Colocalization studies revealed the localization of LvHemB1 in mitochondria, while molecular docking and pull-down analyses confirmed LvHemB1-VDAC1 interaction. Moreover, LvHemB1 causes loss in mitochondrial membrane potential and increases levels of reactive oxygen species (ROS) and apoptotic proteins (caspase-9, caspase-3, and Bax (Bcl-2-associated X)), which results in mitochondrial-mediated apoptosis. Thus, peptide LvHemB1 has the potential of being used as an anticancer agent due to its antiproliferation effect and targeting to VDAC1 to cause mitochondrial dysfunction in cancer cells, as well as its ability to induce apoptosis by increasing ROS levels, and the expression of proapoptotic proteins.


Asunto(s)
Neoplasias , Canal Aniónico 1 Dependiente del Voltaje , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Hemocianinas/metabolismo , Hemocianinas/farmacología , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
16.
J Immunol ; 207(11): 2733-2743, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34670821

RESUMEN

Aquatic organisms have to produce proteins or factors that help maintain a stable relationship with microbiota and prevent colonization by pathogenic microorganisms. In crustaceans and other aquatic invertebrates, relatively few of these host factors have been characterized. In this study, we show that the respiratory glycoprotein hemocyanin is a crucial host factor that modulates microbial composition and diversity in the hepatopancreas of penaeid shrimp. Diseased penaeid shrimp (Penaeus vannamei), had an empty gastrointestinal tract with atrophied hepatopancreas, expressed low hemocyanin, and high total bacterial abundance, with Vibrio as the dominant bacteria. Similarly, shrimp depleted of hemocyanin had mitochondrial depolarization, increased reactive oxygen species (ROS) levels, and dysregulation of several energy metabolism-related genes. Hemocyanin silencing together with ROS scavenger (N-acetylcysteine) treatment improved microbial diversity and decreased Vibrio dominance in the hepatopancreas. However, fecal microbiota transplantation after hemocyanin knockdown could not restore the microbial composition in the hepatopancreas. Collectively, our data provide, to our knowledge, new insight into the pivotal role of hemocyanin in modulating microbial composition in penaeid shrimp hepatopancreas via its effect on mitochondrial integrity, energy metabolism, and ROS production.


Asunto(s)
Hemocianinas/metabolismo , Hepatopáncreas/metabolismo , Penaeidae/microbiología , Animales , Metabolismo Energético , Hemocianinas/inmunología , Hepatopáncreas/inmunología , Penaeidae/inmunología , Penaeidae/metabolismo
17.
Mol Immunol ; 138: 181-187, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450346

RESUMEN

Prophenoloxidase (proPO)-activating system is a critical innate immune defense in invertebrates. However, the mechanisms involved in regulating the phenoloxidase (PO) activity in shrimp hemolymph remain ill-defined. Our previous studies showed that Penaeus vannamei hemocyanin (HMC) and α2-macroglobulin (α2M), two key regulators of proPO-activating system in plasma, might interact with each other, indicating that this interaction could be implicated in controlling PO activity. Herein, we further confirmed that HMC specifically bind to α2M using Pull down and Far-Western blot analyses. Further studies demonstrated that HMC could directly interact with the receptor binding domain of α2M. In addition, HMC and α2M followed similar expression pattern upon Vibrio parahaemolyticus infection, suggesting the interaction of HMC and α2M might have a role in immune response. Finally, we found that α2M, as a broad-spectrum proteinase inhibitor, suppressed the serum PO activity in vitro, while hemocyanin could partially restore this inhibitory effect. In sum, the present data indicate that HMC interacts with α2M and therefore modulates the PO activity. This finding contributes to better understanding of stable state maintenance of PO activity in shrimp.


Asunto(s)
Hemocianinas/inmunología , Inmunidad Innata/inmunología , Monofenol Monooxigenasa/inmunología , Penaeidae/inmunología , alfa 2-Macroglobulinas Asociadas al Embarazo/inmunología , Animales , Hemocianinas/metabolismo , Monofenol Monooxigenasa/metabolismo , Penaeidae/metabolismo , alfa 2-Macroglobulinas Asociadas al Embarazo/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-33388391

RESUMEN

Enzymes adapted to cold temperatures are commonly characterized for having higher Michaelis-Menten constants (KM) values and lower optimum and denaturation temperature, when compared to other meso or thermophilic enzymes. Phenoloxidase (PO) enzymes are ubiquitous in nature, however, they have not been reported in spiders. It is the oxygen carrier protein hemocyanin (Hc), found at high concentrations in their hemolymph, which displays an inducible PO activity. Hence, we hypothesize that Hc-derived PO activity could show features of cold adaptation in alpine species. We analyzed the Hc from two species of Theraphosidae from different thermal environments: Euathlus condorito (2400 m a.s.l.) and Grammostola rosea (500 m a.s.l.). Hc was purified from the hemolymph of both spiders and was characterized by identifying subunit composition and measuring the sodium dodecyl sulfate (SDS)-induced PO activity. The high-altitude spider Hc showed higher PO activity under all conditions and higher apparent Michaelis-Menten constant. Moreover, the optimum temperature for PO activity was lower for E. condorito Hc. These findings suggest a potential adaptation at the level of Hc-derived PO activity in Euathlus condorito, giving insights on possible mechanisms used by this mygalomorph spider to occupy extremes and variable thermal environments.


Asunto(s)
Ecosistema , Hemocianinas/metabolismo , Monofenol Monooxigenasa/metabolismo , Arañas/enzimología , Temperatura , Animales , Activación Enzimática , Arañas/fisiología
19.
Genes (Basel) ; 12(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450956

RESUMEN

Hemocyanins are copper-binding proteins that play a crucial role in the physiological processes in crustaceans. In this study, the cDNA encoding hemocyanin subunit 5 from the Black sea crab Eriphia verrucosa (EvHc5) was cloned using EST analysis, RT-PCR and rapid amplification of the cDNA ends (RACE) approach. The full-length cDNA of EvHc5 was 2254 bp, consisting of a 5' and 3' untranslated regions and an open reading frame of 2022 bp, encoding a protein consisting of 674 amino acid residues. The protein has an N-terminal signal peptide of 14 amino acids as is expected for proteins synthesized in hepatopancreas tubule cells and secreted into the hemolymph. The 3D model showed the presence of three functional domains and six conserved histidine residues that participate in the formation of the copper active site in Domain 2. The EvHc5 is O-glycosylated and the glycan is exposed on the surface of the subunit similar to Panulirus interruptus. The phylogenetic analysis has shown its close grouping with γ-type of hemocyanins of other crustacean species belonging to order Decapoda, infraorder Brachyura.


Asunto(s)
Clonación Molecular , Crustáceos , Evolución Molecular , Hemocianinas , Filogenia , Animales , Mar Negro , Crustáceos/genética , Crustáceos/metabolismo , Hemocianinas/genética , Hemocianinas/metabolismo , Hemolinfa/metabolismo
20.
J Exp Zool A Ecol Integr Physiol ; 335(2): 228-238, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33146003

RESUMEN

Terrestrial gastropods express metal-selective metallothioneins (MTs) by which they handle metal ions such as Zn2+ , Cd2+ , and Cu+ /Cu2+ through separate metabolic pathways. At the same time, they depend on the availability of sufficient amounts of Cu as an essential constituent of their respiratory protein, hemocyanin (Hc). It was, therefore, suggested that in snails Cu-dependent MT and Hc pathways might be metabolically connected. In fact, the Cu-specific snail MT (CuMT) is exclusively expressed in rhogocytes, a particular molluscan cell type present in the hemocoel and connective tissues. Snail rhogocytes are also the sites of Hc synthesis. In the present study, possible interactions between the metal-regulatory and detoxifying activity of MTs and the Cu demand of Hc isoforms was explored in the edible snail Cornu aspersum, one of the most common European helicid land snails. This species possesses CdMT and CuMT isoforms involved in metal-selective physiological tasks. In addition, C. aspersum expresses three different Hc isoforms (CaH ɑD, CaH ɑN, CaH ß). We have examined the effect of Cd2+ and Cu2+ exposure on metal accumulation in the midgut gland and mantle of C. aspersum, testing the impact of these metals on transcriptional upregulation of CdMT, CuMT, and the three Hc genes in the two organs. We found that the CuMT and CaH ɑD genes exhibit an organ-specific transcriptional upregulation in the midgut gland of Cu-exposed snails. These results are discussed in view of possible interrelationships between the metal-selective activity of snail MT isoforms and the synthesis and metabolism of Hc isoforms.


Asunto(s)
Cadmio/farmacología , Cobre/farmacología , Hemocianinas/metabolismo , Caracoles/efectos de los fármacos , Animales , Secuencia de Bases , Cadmio/metabolismo , Cobre/metabolismo , ADN Complementario , Regulación de la Expresión Génica/efectos de los fármacos , Hemocianinas/genética , Metalotioneína , Metales/metabolismo , Metales/farmacología , Caracoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...