Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.465
Filtrar
1.
Front Immunol ; 15: 1385863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774871

RESUMEN

Background: In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is Galleria mellonella (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens. G. mellonella is also a perfect subject for studies into the presence of cytokine-like proteins. Specific objectives: The main goal of present research was detection in insect immunocompetent cells the 18 mammalian cytokines (IL-1α, IL-1ß, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-γ, TNF-α, TNF-ß, GM-CSF, M-CSF, G-CSF), which play important role in immunological response and indication how their level change after fungal infection. Methodology: The changes of cytokine-like proteins level were detected in hemocytes taken from G. mellonella larvae infected with entomopathogenic fungus, C. coronatus. The presence of cytokine-proteins was confirmed with using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in freshly collected hemolymph). The ELISA test was used to detect changes in concentration of examined cytokine-like proteins. Results: Our findings indicated the presence of eighteen cytokine-like molecules in G. mellonella hemocytes during infection with C. coronatus. The hemocytes taken from infected larvae demonstrated higher fluorescence intensity for six cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1ß and IL-19) compared to untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-CSF, IL-1α and IL-19 concentration in the hemolymph after fungal infection, and significantly lower TNF-ß and G-CSF. Conclusions: Our findings confirm that the selected cytokine-like molecules are present in insect hemocytes and that their concentrations change after fungal infection, which might suggest that they play a role in the anti-fungal immunological response.


Asunto(s)
Conidiobolus , Citocinas , Larva , Mariposas Nocturnas , Animales , Conidiobolus/inmunología , Larva/inmunología , Larva/microbiología , Citocinas/metabolismo , Citocinas/inmunología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Cigomicosis/inmunología , Cigomicosis/metabolismo
2.
PLoS Biol ; 22(5): e3002299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713712

RESUMEN

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Asunto(s)
Glucosa , Hemocitos , Vía de Pentosa Fosfato , Trehalosa , Animales , Trehalosa/metabolismo , Glucosa/metabolismo , Hemocitos/metabolismo , Larva/metabolismo , Larva/parasitología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitología , Resistencia a la Enfermedad , Glucólisis , Interacciones Huésped-Parásitos , Avispas/metabolismo , Avispas/fisiología , Diferenciación Celular , Drosophila/metabolismo , Drosophila/parasitología
3.
J Invertebr Pathol ; 204: 108113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631559

RESUMEN

Macins are a family of antimicrobial peptides, which play multiple roles in the elimination of invading pathogens. In the present study, a macin was cloned and characterized from Pacific abalone Haliotis discus hannai (Designated as HdMac). Analysis of the conserved domain suggested that HdMac was a new member of the macin family. In non-stimulated abalones, HdMac transcripts were constitutively expressed in all five tested tissues, especially in hemocytes. After Vibrio harveyi stimulation, the expression of HdMac mRNA in hemocytes was significantly up-regulated at 12 hr (P < 0.01). RNAi-mediated knockdown of HdMac transcripts affected the survival rates of abalone against V. harveyi. Moreover, recombinant protein of HdMac (rHdMac) exhibited high antibacterial activities against invading bacteria, especially for Vibrio anguillarum. In addition, rHdMac possessed binding activities towards glucan, lipopolysaccharides (LPS), and peptidoglycan (PGN), but not chitin in vitro. Membrane integrity analysis revealed that rHdMac could increase the membrane permeability of bacteria. Meanwhile, both the phagocytosis and chemotaxis ability of hemocytes could be significantly enhanced by rHdMac. Overall, the results showed that HdMac could function as a versatile molecule involved in immune responses of H. discus hannai.


Asunto(s)
Gastrópodos , Animales , Gastrópodos/microbiología , Gastrópodos/genética , Gastrópodos/inmunología , Vibrio/fisiología , Antibacterianos/farmacología , Hemocitos/metabolismo , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/genética
4.
Mol Immunol ; 170: 76-87, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640818

RESUMEN

Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.


Asunto(s)
Hemocitos , Peróxido de Hidrógeno , Mariposas Nocturnas , Estrés Oxidativo , Peroxirredoxinas , Animales , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/inmunología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Estrés Oxidativo/genética , Peróxido de Hidrógeno/farmacología , Hemocitos/metabolismo , Hemocitos/inmunología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Antioxidantes/metabolismo , Secuencia de Aminoácidos , Daño del ADN
6.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685211

RESUMEN

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Proteínas de Insectos , Lectinas Tipo C , Staphylococcus aureus , Tribolium , Animales , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Staphylococcus aureus/inmunología , Tribolium/inmunología , Tribolium/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Hemocitos/inmunología , Hemocitos/metabolismo , Escherichia coli , Fagocitosis , Larva/inmunología , Larva/microbiología
7.
Dev Comp Immunol ; 156: 105171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537729

RESUMEN

Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.


Asunto(s)
Crassostrea , Defensinas , Hemocitos , Lipopolisacáridos , Receptores Acoplados a Proteínas G , Vibrio , Animales , Crassostrea/inmunología , Hemocitos/inmunología , Hemocitos/metabolismo , Vibrio/inmunología , Vibrio/fisiología , Lipopolisacáridos/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Defensinas/genética , Defensinas/metabolismo , Inmunidad Innata , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Poli I-C/inmunología , ARN Interferente Pequeño/genética , Vibriosis/inmunología , Receptores Asociados a Trazas de Aminas
8.
Int J Biol Macromol ; 264(Pt 2): 130470, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453124

RESUMEN

LKB1 (liver kinase B1) is a key upstream kinase of AMPK and plays an important role in various cellular activities. While the function and mechanism of LKB1 have been widely reported in the study of tumor, there are few reports on its role in bacterial infectious diseases, especially in shrimp. In the present study, molecular characterization revealed that LvLKB1 has an open reading frame (ORF) of 1266 bp encoding 421 amino acids with a molecular weight of about 48 KDa, including the kinase region, N-terminal regulatory domain and C-terminal regulatory domain. LvLKB1 in hepatopancreas and hemocytes was significantly upregulated after infection with Vibrio alginolyticus (V. alginolyticus). After silencing LvLKB1 gene in Litopenaeus vannamei (L. vannamei) and artificially infecting V. alginolyticus, the survival rate of L. vannamei was significantly decreased. Subsequently, it was found that the expression of inflammatory factors in hepatopancreas and hemocytes of shrimp was up-regulated, and the expression of lipid oxidation factors was decreased after silencing LKB1, leading to the phenomenon of lipid accumulation in hepatopancreas. In order to explore the mechanism, autophagy levels of shrimp were detected after silencing LKB1, which showed that autophagy levels in hepatopancreas and hemocytes were significantly reduced. Further studies conclusively showed that silencing LvLKB1 inhibited AMPK phosphorylation induced by V. alginolyticus infection, thereby activating TOR pathway and inhibiting autophagy in shrimp. These results indicate that LvLKB1 regulates autophagy through AMPK/TOR signaling pathway to alleviate the damage caused by V. alginolyticus infection.


Asunto(s)
Penaeidae , Vibriosis , Animales , Vibrio alginolyticus/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Autofagia , Lípidos , Penaeidae/microbiología , Inmunidad Innata/genética , Hemocitos/metabolismo , Proteínas de Artrópodos/química
9.
Int J Biol Macromol ; 264(Pt 1): 130503, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428783

RESUMEN

Mannose-binding lectin plays an essential role in bacteria or virus-triggered immune response in mammals. Previous proteomic data revealed that in Eriocheir sinensis, the mannose-binding protein was differentially expressed after Spiroplasma eriocheiris infection. However, the function of mannose-binding protein against pathogen infection in invertebrates is poorly understood. In this study, a crab mannose-binding protein (EsMBP) was characterized and enhanced the host resistance to S. eriocheiris infection. The application of recombinant C-type carbohydrate recognition domain (CTLD) of EsMBP led to increased crab survival and decreased S. eriocheiris load in hemocytes. Meanwhile, the overexpression of CTLD of EsMBP in Raw264.7 cells inhibited S. eriocheiris intracellular replication. In contrast, depletion of EsMBP by RNA interference or antibody neutralization attenuated phenoloxidase activity and hemocyte phagocytosis, rendering host more susceptible to S. eriocheiris infection. Furthermore, miR-381-5p in hemocytes suppressed EsMBP expression and negatively regulated phenoloxidase activity to exacerbate S. eriocheiris invasion of hemocytes. Taken together, our findings revealed that crab mannose-binding protein was involved in host defense against S. eriocheiris infection and targeted by miR-381-5p, providing further insights into the control of S. eriocheiris spread in crabs.


Asunto(s)
Braquiuros , Catecol Oxidasa , Precursores Enzimáticos , Lectina de Unión a Manosa , MicroARNs , Spiroplasma , Animales , Lectina de Unión a Manosa/metabolismo , Proteómica , Monofenol Monooxigenasa/metabolismo , Fagocitosis , MicroARNs/genética , MicroARNs/metabolismo , Hemocitos/metabolismo , Mamíferos/genética
10.
Dev Comp Immunol ; 156: 105168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522715

RESUMEN

Prohibitin2 (PHB2) is recently identified as a novel inner membrane mitophagy receptor to mediate mitophagy. In the present study, the function of CgPHB2 in mediating mitophagy in response to Vibrio splendidus stimulation was investigated in Crassostrea gigas. CgPHB2 protein was mainly distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the expressions of CgPHB2 mRNA in haemocytes were up-regulated significantly at 6, 12 and 24 h, and the abundance of CgPHB2 protein was also enhanced at 12-24 h compared to control group. Furthermore, the green signals of CgPHB2 were colocalized respectively with the red signals of mitochondria and CgLC3 in the haemocytes at 12 h after V. splendidus stimulation, and the co-localization value of CgPHB2 and mtphagy Dye was significantly increased. The direct interaction between CgPHB2 and CgLC3 was simulated by molecular docking. In PHB2-inhibitor Fluorizoline-treated oysters, the mRNA expressions of mitophagy-related genes and the ratio of mitophagy were significantly decreased in haemocytes of oysters after V. splendidus stimulation. All the results collectively suggested that CgPHB2 participated in mediating the haemocyte mitophagy in the antibacterial immune response of oysters.


Asunto(s)
Crassostrea , Hemocitos , Mitofagia , Prohibitinas , Proteínas Represoras , Vibrio , Animales , Vibrio/inmunología , Vibrio/fisiología , Hemocitos/inmunología , Hemocitos/metabolismo , Crassostrea/inmunología , Crassostrea/microbiología , Mitofagia/inmunología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Vibriosis/inmunología , Mitocondrias/metabolismo , Mitocondrias/inmunología , Simulación del Acoplamiento Molecular , Inmunidad Innata
11.
Dev Comp Immunol ; 156: 105172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537730

RESUMEN

Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.


Asunto(s)
Proliferación Celular , Crassostrea , Hemocitos , Factores Reguladores del Interferón , Lipopolisacáridos , Animales , Hemocitos/metabolismo , Hemocitos/inmunología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Crassostrea/inmunología , Lipopolisacáridos/inmunología , Inmunidad Innata , Humanos , Granulocitos/inmunología , Granulocitos/metabolismo , Células HEK293
12.
BMC Biol ; 22(1): 60, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475850

RESUMEN

BACKGROUND: Mitochondria participate in various cellular processes including energy metabolism, apoptosis, autophagy, production of reactive oxygen species, stress responses, inflammation and immunity. However, the role of mitochondrial metabolism in immune cells and tissues shaping the innate immune responses are not yet fully understood. We investigated the effects of tissue-specific mitochondrial perturbation on the immune responses at the organismal level. Genes for oxidative phosphorylation (OXPHOS) complexes cI-cV were knocked down in the fruit fly Drosophila melanogaster, targeting the two main immune tissues, the fat body and the immune cells (hemocytes). RESULTS: While OXPHOS perturbation in the fat body was detrimental, hemocyte-specific perturbation led to an enhanced immunocompetence. This was accompanied by the formation of melanized hemocyte aggregates (melanotic nodules), a sign of activation of cell-mediated innate immunity. Furthermore, the hemocyte-specific OXPHOS perturbation induced immune activation of hemocytes, resulting in an infection-like hemocyte profile and an enhanced immune response against parasitoid wasp infection. In addition, OXPHOS perturbation in hemocytes resulted in mitochondrial membrane depolarization and upregulation of genes associated with the mitochondrial unfolded protein response. CONCLUSIONS: Overall, we show that while the effects of mitochondrial perturbation on immune responses are highly tissue-specific, mild mitochondrial dysfunction can be beneficial in immune-challenged individuals and contributes to variation in infection outcomes among individuals.


Asunto(s)
Drosophila , Avispas , Animales , Humanos , Drosophila melanogaster/metabolismo , Avispas/genética , Mitocondrias , Inmunidad Innata , Hemocitos/metabolismo
13.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323810

RESUMEN

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Asunto(s)
Proteínas de Artrópodos , Hemocitos , Interacciones Microbiota-Huesped , Penaeidae , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Virus del Síndrome de la Mancha Blanca 1 , Animales , Proteínas de Artrópodos/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación de la Expresión Génica , Hemocitos/citología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Penaeidae/citología , Penaeidae/genética , Penaeidae/inmunología , Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/genética , Virus del Síndrome de la Mancha Blanca 1/inmunología
14.
Insect Mol Biol ; 33(3): 270-282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329162

RESUMEN

Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Hemocitos/metabolismo , Inmunidad Innata
15.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396656

RESUMEN

A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino-acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 h resulted in 1.9- to 2.4-fold increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx) but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, which paves the way for research on the biological roles of hemocyte peptides in chordates.


Asunto(s)
Ciona intestinalis , Animales , Ciona intestinalis/genética , Hemocitos/metabolismo , Péptidos/metabolismo , Faringe , Inmunidad
16.
Artículo en Inglés | MEDLINE | ID: mdl-38278206

RESUMEN

To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.


Asunto(s)
Braquiuros , Peróxido de Hidrógeno , Animales , Peróxido de Hidrógeno/farmacología , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Antibacterianos/farmacología , Proteínas Recombinantes/genética , Bacterias/metabolismo , Braquiuros/genética , Inmunidad Innata , Filogenia , Proteínas de Artrópodos/genética , Hemocitos/metabolismo
17.
Fish Shellfish Immunol ; 144: 109278, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072136

RESUMEN

Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.


Asunto(s)
Contaminantes Ambientales , Pectinidae , Animales , Benzo(a)pireno , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Hemocitos/metabolismo , FN-kappa B , Norepinefrina , Pectinidae/metabolismo
18.
Front Immunol ; 14: 1293766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035083

RESUMEN

Hemocytes, the myeloid-like immune cells of Drosophila, fulfill a variety of functions that are not completely understood, ranging from phagocytosis to transduction of inflammatory signals. We here show that downregulating the hemocyte-specific Glial cell deficient/Glial cell missing (Glide/Gcm) transcription factor enhances the inflammatory response to the constitutive activation of the Toll pathway. This correlates with lower levels of glutathione S-transferase, suggesting an implication of Glide/Gcm in reactive oxygen species (ROS) signaling and calling for a widespread anti-inflammatory potential of Glide/Gcm. In addition, our data reveal the expression of acetylcholine receptors in hemocytes and that Toll activation affects their expressions, disclosing a novel aspect of the inflammatory response mediated by neurotransmitters. Finally, we provide evidence for acetylcholine receptor nicotinic acetylcholine receptor alpha 6 (nAchRalpha6) regulating hemocyte proliferation in a cell autonomous fashion and for non-cell autonomous cholinergic signaling regulating the number of hemocytes. Altogether, this study provides new insights on the molecular pathways involved in the inflammatory response.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Drosophila , Animales , Proteínas de Unión al ADN/metabolismo , Hemocitos/metabolismo , Proteínas de Drosophila/metabolismo , Diferenciación Celular , Drosophila/metabolismo , Colinérgicos , Inflamación
19.
Sci Rep ; 13(1): 20939, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016989

RESUMEN

Because China produces the most crayfish in the world, safe solutions must be improved to mitigate the risks of ongoing heavy metal stressors accumulation. This study aimed to use Saccharomyces cerevisiae as a bioremediation agent to counteract the harmful effect of cadmium (Cd) on crayfish (Procambarus clarkia). Our study used three concentrations of S. cerevisiae on crayfish feed to assess their Cd toxicity remediation effect by measuring total antioxidant capacity (TAC) and the biomarkers related to oxidative stress like malondialdehyde (MDA), protein carbonyl derivates (PCO), and DNA-protein crosslink (DPC). A graphite furnace atomic absorption spectroscopy device was used to determine Cd contents in crayfish. Furthermore, the mRNA expression levels of lysozyme (LSZ), metallothionein (MT), and prophenoloxidase (proPO) were evaluated before and following the addition of S. cerevisiae. The results indicated that S. cerevisae at 5% supplemented in fundamental feed exhibited the best removal effect, and Cd removal rates at days 4th, 8th, 12th, and 21st were 12, 19, 29.7, and 66.45%, respectively, which were significantly higher than the basal diet of crayfish. The addition of S. cerevisiae increased TAC levels. On the other hand, it decreased MDA, PCO, and DPC, which had risen due to Cd exposure. Furthermore, it increased the expression of proPO, which was reduced by Cd exposure, and decreased the expression of LSZ and MT, acting in the opposite direction of Cd exposure alone. These findings demonstrated that feeding S. cerevisiae effectively reduces the Cd from crayfish and could be used to develop Cd-free crayfish-based foods.


Asunto(s)
Cadmio , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cadmio/metabolismo , Astacoidea/metabolismo , Hemocitos/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo
20.
Fish Shellfish Immunol ; 143: 109175, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890735

RESUMEN

Tumor necrosis factor (TNF) is an important cytokine that can regulate a variety of cellular responses by binding tumor necrosis factor receptor (TNFR). We studied whether the TNF of Eriocheir sinensis can regulate hemocyte proliferation. The results showed that the EsTNF and EsTNFR were constitutively expressed in all tested tissues, including the heart, hepatopancreas, muscles, gills, stomachs, intestines, and hemocytes. We found that low levels of EsTNF and EsTNFR transcripts were present in hemocytes. The gene expression levels were significantly increased in the hemocytes after being stimulated by Staphylococcus aureus or Vibrio parahaemolyticus. We also found some genes related to cell proliferation were expressed at a higher level in pulsing rTNF-stimulated hemocytes compared with the control group. We also knocked down the EsTNFR gene with RNAi technology. The results showed that the expression level of these genes related to cell proliferation was significantly down-regulated compared with the control group when the TNF does not bind TNFR. We used Edu technology to repeat the above experiments and the results were similar. Compared with the control group, the hemocytes stimulated by rTNF showed more significant proliferation, and the proliferation rate was significantly down-regulated after knocking down the EsTNFR gene. Therefore, we indicate that TNF binding TNFR can affect the proliferation of E. sinensis hemocytes, which might be manifested by affecting the expression of some proliferation-related genes.


Asunto(s)
Braquiuros , Infecciones Estafilocócicas , Animales , Hemocitos/metabolismo , Inmunidad Innata/genética , Factores de Necrosis Tumoral/genética , Proliferación Celular , Braquiuros/genética , Braquiuros/metabolismo , Proteínas de Artrópodos/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...