Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Environ Sci Pollut Res Int ; 31(21): 31590-31604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38639905

RESUMEN

Phytoremediation using fast-growing woody plants assisted by plant growth-promoting bacteria (PGPB) on cadmium (Cd)-contaminated sites is considered a promising technique; however, its remediation efficiency is still affected by multiple factors. In this study, the mining areas' soil conditions were simulated with different Cd addition levels (0, 3, 6, 9 mg kg-1) in order to investigate the response strategy to Cd stress of fast-growing economic tree species, slash pine (Pinus elliottii), and the effects of inoculation with the PGPB strain Herbaspirillum sp. YTG72 on the physiological activity and Cd accumulation of plants. The main results showed that there were significant (p < 0.05) increases in contents of chlorophyll and nutrient elements (P, K, Ca, and Mg) at low Cd addition level (3 mg kg-1) compared to non-Cd addition treatment. When the additive amount of Cd increased, the growth of plants was severely inhibited and the content of proline was increased, as well as Cd in plants. Besides, the ratios of K:P, Ca:P, and Mg:P in plants were negatively correlated with the contents of Cd in plants and soils. Inoculation of P. elliottii with the PGPB strain Herbaspirillum sp. YTG72 improved the physiological functions of the plants under Cd stress and activated the antioxidant system, reduced the accumulation of proline, and decreased the ratios of K:P, Ca:P, and Mg:P in plant. More importantly, planting P. elliottii in Cd-contaminated soil could significantly (p < 0.05) reduce the Cd content in the rhizosphere soil, and furthermore, inoculation treatment could promote the reduction of soil Cd content and increased the accumulation of Cd by root. The results of the present study emphasized the Cd response mechanism of P. elliottii based on multifaceted regulation, as well as the feasibility of strain Herbaspirillum sp. YTG72 assisted P. elliottii for the remediation on Cd-contaminated sites.


Asunto(s)
Biodegradación Ambiental , Cadmio , Herbaspirillum , Pinus , Contaminantes del Suelo , Cadmio/metabolismo , Herbaspirillum/metabolismo , Contaminantes del Suelo/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38546460

RESUMEN

A Gram-stain-negative bacterium, designated as R-40T, was isolated from sediment of the Mulong river in Mianyang city, Sichuan province, PR China. The cells of strain R-40T were aerobic non-motile and formed translucent white colonies on R2A agar. Growth occurred at 15-37 °C (optimum 30 °C), pH 5.0-9.0 (optimum 7.0) and salinities of 0-3.0 % (w/v, optimum 0 %). R-40T showed 95.2-96.6 % 16S rRNA gene sequence similarities with the type strains of species of the genera Oxalicibacterium, Herminiimonas, Lacisediminimonas, Paucimonas, Herbaspirillum and Noviherbaspirillum in the family Oxalobacteraceae. The results of phylogenetic analysis based on genome sequences indicated that the strain was clustered with type strains of species of the genera Oxalicibacterium and Herminiimonas in the family Oxalobacteraceae but formed a distinct lineage. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH) and average amino acid identity (AAI) values between R-40T and type strains of species of the genera Oxalicibacterium, Herminiimonas, Lacisediminimonas, Paucimonas, Herbaspirillum and Noviherbaspirillum ranged from 69.3 to 74.1 %, from 18.2 to 21.4 % and from 60.1 to 67.4 %, respectively. The major cellular fatty acids were C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The major quinone was ubiquinone-8 (Q-8). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and small amounts of glycophospholipids. The genome size of R-40T was 5.1 Mbp with 54.0 % DNA G+C content. On the basis of the evidence presented in this study, strain R-40T represents a novel species of a novel genus in the family Oxalobacteraceae, for which the name Keguizhuia sedimenti gen. nov., sp. nov. (type strain R-40T=MCCC 1K08818T=KCTC 8137T) is proposed.


Asunto(s)
Compuestos Azo , Burkholderiaceae , Herbaspirillum , Oxalobacteraceae , Filogenia , ARN Ribosómico 16S/genética , Ríos , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Oxalobacteraceae/genética
3.
Environ Res ; 249: 118345, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331147

RESUMEN

Strategies seeking to increase the use efficiency of nitrogen (N) fertilizers and that benefit plant growth through multiple mechanisms can reduce production costs and contribute to more sustainable agriculture free of polluting residues. Under controlled conditions, we investigated the compatibility between foliar inoculation with an endophytic diazotrophic bacterium (Herbaspirillum seropedicae HRC54) at control and low, medium and high N fertilization levels (0, 25, 50 and 100 mg of N kg-1 as urea, respectively) in Marandu palisadegrass. Common procedures in our research field (biometric and nutritional assessments) were combined with isotopic techniques (natural abundance - δ15N‰ and 15N isotope dilution) and root scanning to determine the contribution of fixed N and recovery of N fertilizer by the grass. Overall, the combined use of 15N isotopic techniques revealed that inoculation not only improved the recovery of applied N-urea from the soil but also provided fixed nitrogen to Marandu palisade grass, resulting in an increase in the total accumulated N. When inoculated plants grew at control and low levels of N, a positive cascade effect encompassing root growth stimulation (nodes of smaller diameter roots), better soil and fertilizer resource exploitation and increased forage production was observed. In contrast, increasing N reduced the contributions of N fixed by H. seropedicae from 21.5% at the control level to 8.6% at the high N level. Given the minimal to no observed growth promotion, this condition was deemed inhibitory to the positive effects of H. seropedicae. We discuss how to make better use of H. seropedicae inoculation in Marandu palisadegrass, albeit on a small scale, thus contributing to a more rational and efficient use of N fertilizers. Finally, we pose questions for future investigations based on 15N isotopic techniques under field conditions, which have great applicability potential.


Asunto(s)
Fertilizantes , Herbaspirillum , Isótopos de Nitrógeno , Nitrógeno , Raíces de Plantas , Herbaspirillum/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Nitrógeno/metabolismo , Poaceae/microbiología , Poaceae/metabolismo , Poaceae/crecimiento & desarrollo
4.
Int J Biol Macromol ; 261(Pt 1): 129516, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278393

RESUMEN

The lipopolysaccharides of Herbaspirillum lusitanum P6-12T (HlP6-12T) and H. frisingense GSF30T (HfGSF30T) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization. In this paper, the lipid A structure of the HlP6-12T LPS, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To prove the effect of the size of micelles on their bioavailability, we examined the activity of both LPSs toward the morphology of wheat seedlings. Analysis of the HlP6-12T and HfGSF30T genomes showed no significant differences between the operons that encode proteins involved in the biosynthesis of the lipids A and core oligosaccharides. The difference may be due to the composition of the O-antigen operon. HfGSF30T has two copies of the rfb operon, with the main one divided into two fragments. In contrast, the HlP6-12T genome contains only a single rfb-containing operon, and the other O-antigen operons are not comparable at all. The integrity of O-antigen-related genes may also affect LPS variability of. Specifically, we have observed a hairpin structure in the middle of the O-antigen glycosyltransferase gene, which led to the division of the gene into two fragments, resulting in incorrect protein synthesis and potential abnormalities in O-antigen production.


Asunto(s)
Herbaspirillum , Lipopolisacáridos , Lipopolisacáridos/química , Antígenos O/metabolismo , Interacciones Microbiota-Huesped , Herbaspirillum/genética , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Environ Res ; 246: 118143, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199465

RESUMEN

Current understanding is limited regarding technologies that use biochar and microorganisms to simultaneously treat soils contaminated with both veterinary antibiotics (VAs) and heavy metals (HMs) from different animal farms. The contributions of the keystone taxa and their similarities from different animal farms under VA and HM stresses before and after soil remediation should be further investigated as well. An innovative treatment of Herbaspirillum huttiense (HHS1) inoculated waste fungus chaff-based (WFCB) biochar was designed for immobilization of copper (Cu) and zinc (Zn), and the removal of oxytetracycline (OTC), enrofloxacin (ENR), and a subsequent reduction in their resistance genes in soils from pig, cow, and chicken farms. Roles of indigenous microorganisms which can treat soils contaminated with VAs and HMs were summarized. Results showed that available Cu and Zn were reduced by 19.5% and 28.1%, respectively, while 49.8% of OTC and 85.1% of ENR were removed by WFCB-HHS1. The decrease in ENR improved overall microbial community diversity, and the increases in genera HHS1, Pedobacter, Flavobacterium and Aequorivita, along with the decreases of genera Bacillus, Methylobacter, and Fermentimonas were indirectly favorable to treat HMs and VAs in soils from different animal farms. Bacterial communities in different animal farm soils were predominantly influenced by stochastic processes. The regulations of functional genes associated with metabolism and environmental information processing, which contribute to HM and VA defense, were altered when using WFCB-HHS1. Furthermore, the spread of their antibiotic resistance genes was restricted.


Asunto(s)
Carbón Orgánico , Herbaspirillum , Metales Pesados , Oxitetraciclina , Contaminantes del Suelo , Animales , Porcinos , Antibacterianos/farmacología , Suelo , Granjas , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Pollos
6.
Environ Res ; 239(Pt 1): 117367, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827364

RESUMEN

In today's industrialized world, contamination of soil and water with various substances has emerged as a pressing concern. Bioremediation, with its advantages of degradation or detoxification, non-polluting nature, and cost-effectiveness, has become a promising method due to technological advancements. Among the bioremediation agents, bacteria have been highly explored and documented as a productive organism. Recently, few studies have reported on the significance of Herbaspirillum sp., a Gram-negative bacterium, in bioremediating herbicides, pesticides, polycyclic aromatic hydrocarbons, metalloids, and heavy metals, as well as its role in augmenting phytoremediation efforts. Herbaspirillum sp. GW103 leached 66% of Cu from ore materials and significantly enhanced the phytoaccumulation of Pb and Zn in plumule and radical tissues of Zea mays L. plants. Additionally, Herbaspirillum sp. WT00C reduced Se6+ into Se0, resulting in an increased Se0 content in tea plants. Also, Herbaspirillum sp. proved effective in degrading 0.6 mM of 4-chlorophenol, 92.8% of pyrene, 77.4% of fluoranthene, and 16.4% of trifluralin from aqueous solution and soil-water system. Considering these findings, this review underscores the need for further exploration into the pathways of pollutant degradation, the enzymes pivotal in the degradation or detoxification processes, the influence of abiotic factors and pollutants on crucial gene expression, and the potential toxicity of intermediate products generated during the degradation process. This perspective reframes the numerical data to underscore the underutilized potential of Herbaspirillum sp. within the broader context of addressing a significant research gap. This shift in emphasis aligns more closely with the problem-necessity for solution-existing unexplored solution framework.


Asunto(s)
Contaminantes Ambientales , Herbaspirillum , Herbicidas , Metales Pesados , Plaguicidas , Biodegradación Ambiental , Herbaspirillum/genética , Hidrocarburos , Metales Pesados/toxicidad , Suelo , Agua
7.
J Agric Food Chem ; 71(13): 5283-5292, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946772

RESUMEN

Herbaspirillum sp. ZXN111 and its mutants (Δacc, Δtyrb, and Δacc-tyrb), which show PGP activity on Zijuan, were tested for tea plants' colonization characteristics and the strain-dependent response of tea metabolites. The results showed that strain ZXN111 could widely colonize in different tea cultivars of Zijuan, Yunkang-10, Longjin 43, and Shuchazao, but with significant colonization preference to Zijuan, which might be ascribed to anthocyanins' chemotaxis. After 9 weeks of co-cultivation, l-theanine and theobromine in Zijuan leaves that were inoculated with wild-type ZXN111 were decreased, while theobromine, caffeine, and l-theanine that were inoculated with mutant Δacc were increased; especially l-theanine increased much significantly. Metabolomics analysis showed that tea metabolite profiling of inoculant groups was clearly separated from the control; therein, the flavanols were downregulated in ZXN111 and Δacc groups, but the l-theanine of the Δacc group was significantly upregulated compared to control and ZXN111 groups. These results indicated that strain ZXN111, especially of mutant Δacc, improved Zijuan tea flavor.


Asunto(s)
Camellia sinensis , Herbaspirillum , Camellia sinensis/genética , Camellia sinensis/metabolismo , Antocianinas/metabolismo , Teobromina/metabolismo , Té/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
8.
Microb Ecol ; 86(1): 563-574, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35932316

RESUMEN

The genus Herbaspirillum gained the spotlight due to the several reports of diazotrophic strains and promising results in plant-growth field assays. However, as diversity exploration of Herbaspirillum species gained momentum, it became clearer that the plant beneficial lifestyle was not the only form of ecological interaction in this genus, due to reports of phytopathogenesis and nosocomial infections. Here we performed a deep search across all publicly available Herbaspirillum genomes. Using a robust core genome phylogeny, we have found that all described species are well delineated, being the only exception H. aquaticum and H. huttiense clade. We also uncovered that the nif genes are only highly prevalent in H. rubrisubalbicans; however, irrespective to the species, all nif genes share the same gene arrangement with high protein identity, and are present in only two main types, in inverted strands. By means of a NifHDKENB phylogenetic tree, we have further revealed that the Herbaspirillum nif sequences may have been acquired from the same last common ancestor belonging to the Nitrosomonadales order.


Asunto(s)
Herbaspirillum , Herbaspirillum/genética , Herbaspirillum/metabolismo , Fijación del Nitrógeno/genética , Filogenia , Genómica
9.
Front Cell Infect Microbiol ; 12: 882827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782140

RESUMEN

Bacteremia caused by Herbaspirillum huttiense (H. huttiense) is relatively rare in positive blood cultures. H. huttiense is an opportunistic bacterium in patients with cancer and cirrhosis and has also been described in immunocompromised hosts. In this study, H. huttiense was isolated from a patient with repeated chest tightness and chest pain. Smears were prepared, stained, and examined by microscopy. Single colonies were analyzed by Gram staining, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), 16S rRNA sequencing and Next-Generation Sequencing (NGS). Antibiotic sensitivity was assessed by agar dilution. Almost all publications on H. huttiense infections in the PubMed/ScienceDirect/EBSCO databases were reviewed and summarized. Blood sample culturing yielded white, gelatinous, and slightly raised colonies without hemolytic rings. The bacilli were found to be Gram-negative, and MS results showed 99.2% homology with H. huttiense. This was confirmed by 16S rRNA gene sequencing, phylogenetic tree analysis and NGS all of which were homologous with H. huttiense in GenBank. Antibiotic susceptibility tests were performed to determine the minimum inhibitory concentrations (MICs) of imipenem, meropenem, piperacillin-tazobactam, and levofloxacin. A comprehensive literature review revealed that H. huttiense was an emergent pathogen. After medical treatment, the patient's body temperature returned to normal. This is the first report of bacteremia caused by H. huttiense in China. The findings could improve the awareness and attention of the rare pathogenic microorganisms in China.


Asunto(s)
Bacteriemia , Informe de Investigación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/microbiología , Herbaspirillum , Humanos , Filogenia , ARN Ribosómico 16S/genética
10.
Arch Microbiol ; 204(7): 373, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35672591

RESUMEN

Herbaspirillum seropedicae is a plant growth-promoting bacteria isolated from diverse plant species. In this work, the main objective was to investigate the efficiency of H. seropedicae strain SmR1 in colonizing and increasing maize growth (DKB 390 variety) in the early stages of development under greenhouse conditions. Inoculation with H. seropedicae resulted in 19.43 % (regarding High and Low N controls) and 10.51% (regarding Low N control) in mean of increase of root biomass, for 1st and 2nd greenhouse experiments, respectively, mainly in the initial stages of plant development, at 21 days after emergence (DAE). Quantification of H. seropedicae in roots and leaves was performed by quantitative PCR. H. seropedicae was detected only in maize inoculated roots by qPCR, and a slight decrease in DNA copy number g-1 of fresh root weight was observed from 7 to 21 DAE, suggesting that there was initial effective colonization on maize plants. H. seropedicae strain SmR1 efficiently increased maize root biomass exhibiting its potential to be used as inoculant in agricultures systems.


Asunto(s)
Herbaspirillum , Zea mays , Biomasa , Herbaspirillum/genética , Desarrollo de la Planta , Raíces de Plantas/microbiología , Zea mays/microbiología
11.
J Exp Bot ; 73(15): 5306-5321, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35512445

RESUMEN

Nitrogen (N) fixation in cereals by root-associated bacteria is a promising solution for reducing use of chemical N fertilizers in agriculture. However, plant and bacterial responses are unpredictable across environments. We hypothesized that cereal responses to N-fixing bacteria are dynamic, depending on N supply and time. To quantify the dynamics, a gnotobiotic, fabricated ecosystem (EcoFAB) was adapted to analyse N mass balance, to image shoot and root growth, and to measure gene expression of Brachypodium distachyon inoculated with the N-fixing bacterium Herbaspirillum seropedicae. Phenotyping throughput of EcoFAB-N was 25-30 plants h-1 with open software and imaging systems. Herbaspirillum seropedicae inoculation of B. distachyon shifted root and shoot growth, nitrate versus ammonium uptake, and gene expression with time; directions and magnitude depended on N availability. Primary roots were longer and root hairs shorter regardless of N, with stronger changes at low N. At higher N, H. seropedicae provided 11% of the total plant N that came from sources other than the seed or the nutrient solution. The time-resolved phenotypic and molecular data point to distinct modes of action: at 5 mM NH4NO3 the benefit appears through N fixation, while at 0.5 mM NH4NO3 the mechanism appears to be plant physiological, with H. seropedicae promoting uptake of N from the root medium.Future work could fine-tune plant and root-associated microorganisms to growth and nutrient dynamics.


Asunto(s)
Compuestos de Amonio , Brachypodium , Herbaspirillum , Compuestos de Amonio/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Ecosistema , Grano Comestible/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo
12.
Sci Rep ; 12(1): 8827, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614083

RESUMEN

Non-legume plants such as rice and maize can form beneficial associations with plant growth-promoting bacteria (PGPB) such as Herbaspirillum seropedicae and Azospirillum brasilense. Several studies have shown that these PGPB promote plant growth via multiple mechanisms. Our current understanding of the molecular aspects and signaling between plants like rice and PGPB like Herbaspirillum seropedicae is limited. In this study, we used an experimental system where H. seropedicae could colonize the plant roots and promote growth in wild-type rice. Using this experimental setup, we identified 1688 differentially expressed genes (DEGs) in rice roots, 1 day post-inoculation (dpi) with H. seropedicae. Several of these DEGs encode proteins involved in the flavonoid biosynthetic pathway, defense, hormone signaling pathways, and nitrate and sugar transport. We validated the expression pattern of some genes via RT-PCR. Next, we compared the DEGs identified in this study to those we previously identified in rice roots during associations with another PGPB, Azospirillum brasilense. We identified 628 genes that were differentially expressed during both associations. The expression pattern of these genes suggests that some of these are likely to play a significant role(s) during associations with both H. seropedicae and A. brasilense and are excellent targets for future studies.


Asunto(s)
Azospirillum brasilense , Herbaspirillum , Oryza , Azospirillum brasilense/genética , Expresión Génica , Herbaspirillum/genética , Herbaspirillum/metabolismo , Oryza/genética , Oryza/microbiología , Raíces de Plantas/metabolismo
13.
J Agric Food Chem ; 70(12): 3757-3764, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35290053

RESUMEN

Herbaspirillum aquaticum ZXN111 which was isolated from the tea plant Zijuan can produce indole-3-acetic acid (IAA) and contain abiotic-stress tolerance gene 1-aminocyclopropane-1-carboxylate deaminase (accd). In this study, ZXN111 PGP activity and the molecular mechanism were investigated. The result showed that ACCD activity of wild-type ZXN111 was 0.4505 mM α-KB/mg·Pro·h, but mutants Δacc and Δacc-tyrb did not showed ACCD activity. IAA production by ZXN111 within 48 hrs was 20.4 µg/mL, while mutants of Δtyrb and Δacc-tyrb were lower than 3.6 µg/mL, indicating that indole-3-pyruvic acid is the primary IAA synthesis pathway. Potting tests found that ZXN111 displayed significant PGP activity to the tea plant Zijuan, but Δtyrb and Δacc-tyrb did not show PGP activity, indicating that IAA is critical to PGP activity. In a salt-stress test, ZXN111 did not enhance the tea plant NaCl tolerance by gene accd. The results of this study indicated that strain ZXN111 has potential for biofertilizer development on tea plantation.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Herbaspirillum , Desarrollo de la Planta , Estrés Fisiológico ,
14.
Appl Microbiol Biotechnol ; 106(5-6): 2007-2015, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35230494

RESUMEN

Styrene monooxygenases (SMOs) are powerful enzymes for the synthesis of enantiopure epoxides, but these SMOs have narrow substrate spectra, and the residues in controlling enantioselectivity of SMOs remains unclear. A monooxygenase from Herbaspirillum huttiense (HhMO) was found to have excellent enantioselectivities and diastereoselectivities in the epoxidation of unconjugated terminal alkenes. Here we found that HhMO could also transfer styrene into styrene epoxide with 75% ee, and it could also catalyze the epoxidation of styrene derivatives into the corresponding epoxides with enantioselectivities up to 99% ee. Meanwhile, site 199 in the substrate access channel of HhMO was found to play an important role in the controlling enantioselectivity of the epoxidation. The E199L variant catalyzed the epoxidation of styrene with > 99% ee. The identification of critical residue that affects the enantioselectivity of SMOs would thus be valuable for creating efficient monooxygenases for the preparation of essential enantiopure epoxides. KEY POINTS: • Bioexpoxidation of both conjugated and unconjugated alkenes by HhMO with excellent enantioselectivities. • Gating residue 199 played an essential role in controlling the enantioselectivity of SMO. • HhMO E199L catalyzed the epoxidation of styrenes with up to > 99% ee.


Asunto(s)
Oxigenasas de Función Mixta , Estirenos , Biocatálisis , Compuestos Epoxi/química , Herbaspirillum , Estereoisomerismo , Estireno , Estirenos/química
15.
Carbohydr Polym ; 277: 118839, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893256

RESUMEN

Lipopolysaccharides, the major outer membrane components of Gram-negative bacteria, are crucial actors of the host-microbial dialogue. They can contribute to the establishment of either symbiosis or bacterial virulence, depending on the bacterial lifestyle. Plant microbiota shows great complexity, promotes plant health and growth and assures protection from pathogens. How plants perceive LPS from plant-associated bacteria and discriminate between beneficial and pathogenic microbes is an open and urgent question. Here, we report on the structure, conformation, membrane properties and immune recognition of LPS isolated from the Arabidopsis thaliana root microbiota member Herbaspirillum sp. Root189. The LPS consists of an O-methylated and variously acetylated D-rhamnose containing polysaccharide with a rather hydrophobic surface. Plant immunology studies in A. thaliana demonstrate that the native acetylated O-antigen shields the LPS from immune recognition whereas the O-deacylated one does not. These findings highlight the role of Herbaspirillum LPS within plant-microbial crosstalk, and how O-antigen modifications influence membrane properties and modulate LPS host recognition.


Asunto(s)
Arabidopsis/química , Herbaspirillum/inmunología , Lipopolisacáridos/inmunología , Antígenos O/inmunología , Raíces de Plantas/química , Arabidopsis/inmunología , Arabidopsis/microbiología , Lipopolisacáridos/química , Lipopolisacáridos/aislamiento & purificación , Antígenos O/química , Antígenos O/aislamiento & purificación , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología
16.
World J Microbiol Biotechnol ; 38(1): 5, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34837115

RESUMEN

Herbaspirillum camelliae WT00C is a gram-negative endophyte isolated from the tea plant. It has an intact selenate metabolism pathway but poor selenate tolerability. In this study, microbiological properties of the strain WT00C were examined and compared with other three strains CT00C, NCT00C and NT00C, which were obtained respectively from four, six and eight rounds of 24-h exposures to 200 mM selenate. The selenate tolerability and the ability to generate red elemental selenium (Se0) and selenoproteins in H. camelliae WT00C has significantly improved by the forced evolution via 4-6 rounds of multiple exposures a high concentration of selenate. The original strain WT00C grew in 200 mM selenate with the lag phase of 12 h and 400 mM selenate with the lag phase of 60 h, whereas the strains CT00C and NCT00C grew in 800 mM selenate and showed a relatively short lag phase when they grew in 50-400 mM selenate. Besides selenate tolerance, the strains CT00C and NCT00C significantly improved the biosynthesis of red elemental selenium (Se0) and selenoproteins. Two strains exhibited more than 30% selenium conversion efficiency and 40% selenoprotein biosynthesis, compared to the original strain WT00C. These characteristics of the strains CT00C and NCT00C make them applicable in pharmaceuticals and feed industries. The strain NT00C obtained from eight rounds of 24-h exposures to 200 mM selenate was unable to grow in ≥ 400 mM selenate. Its selenium conversion efficiency and selenoprotein biosynthesis were similar to the strain WT00C, indicating that too many exposures may cause gene inactivation of some critical enzymes involving selenate metabolism and antioxidative stress. In addition, bacterial cells underwent obviously physiological and morphological changes, including gene activity, cell enlargement and surface-roughness alterations during the process of multiple exposures to high concentrations of selenate.


Asunto(s)
Herbaspirillum/crecimiento & desarrollo , Ácido Selénico/farmacología , Selenio/metabolismo , Selenoproteínas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Camellia sinensis/microbiología , Relación Dosis-Respuesta a Droga , Fermentación , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Herbaspirillum/clasificación , Herbaspirillum/aislamiento & purificación , Herbaspirillum/metabolismo
17.
Appl Microbiol Biotechnol ; 105(19): 7339-7352, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34499201

RESUMEN

Herbaspirillum seropedicae is a ß-proteobacterium that establishes as an endophyte in various plants. These bacteria can consume diverse carbon sources, including hexoses and pentoses like D-xylose. D-xylose catabolic pathways have been described in some microorganisms, but databases of genes involved in these routes are limited. This is of special interest in biotechnology, considering that D-xylose is the second most abundant sugar in nature and some microorganisms, including H. seropedicae, are able to accumulate poly-3-hydroxybutyrate when consuming this pentose as a carbon source. In this work, we present a study of D-xylose catabolic pathways in H. seropedicae strain Z69 using RNA-seq analysis and subsequent analysis of phenotypes determined in targeted mutants in corresponding identified genes. G5B88_22805 gene, designated xylB, encodes a NAD+-dependent D-xylose dehydrogenase. Mutant Z69∆xylB was still able to grow on D-xylose, although at a reduced rate. This appears to be due to the expression of an L-arabinose dehydrogenase, encoded by the araB gene (G5B88_05250), that can use D-xylose as a substrate. According to our results, H. seropedicae Z69 uses non-phosphorylative pathways to catabolize D-xylose. The lower portion of metabolism involves co-expression of two routes: the Weimberg pathway that produces α-ketoglutarate and a novel pathway recently described that synthesizes pyruvate and glycolate. This novel pathway appears to contribute to D-xylose metabolism, since a mutant in the last step, Z69∆mhpD, was able to grow on this pentose only after an extended lag phase (40-50 h). KEY POINTS: • xylB gene (G5B88_22805) encodes a NAD+-dependent D-xylose dehydrogenase. • araB gene (G5B88_05250) encodes a L-arabinose dehydrogenase able to recognize D-xylose. • A novel route involving mhpD gene is preferred for D-xylose catabolism.


Asunto(s)
Biotecnología , Xilosa , Herbaspirillum
18.
Sci Total Environ ; 800: 149493, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426366

RESUMEN

The development and productivity of plants are governed by their genetic background, nutrient input, and the microbial communities they host, i.e. the holobiont. Accordingly, engineering beneficial root microbiomes has emerged as a novel and sustainable approach to crop production with reduced nutrient input. Here, we tested the effects of six bacterial strains isolated from sugarcane stalks on sugarcane growth and physiology as well as the dynamics of prokaryote community assembly in the rhizosphere and root endosphere under two N fertilization regimes. All six strains, Paraburkholderia caribensis IAC/BECa 88, Kosakonia oryzae IAC/BECa 90, Kosakonia radicincitans IAC/BECa 95, Paraburkholderia tropica IAC/BECa 135, Pseudomonas fluorescens IAC/BECa 141 and Herbaspirillum frisingense IAC/BECa 152, increased in shoot and root dry mass, and influenced the concentration and accumulation of important macro- and micronutrients. However, N input reduced the impact of inoculation by shifting the sugarcane microbiome (rhizosphere and root endosphere) and weakening the co-dependence between soil microbes and sugarcane biomass and nutrients. The results show that these beneficial microbes improved plant nutrient uptake conditioned to a reduced N nutrient input. Therefore, reduced fertilization is not only desirable consequence of bacterial inoculation but essential for higher impact of these beneficial bacteria on the sugarcane microbiome.


Asunto(s)
Saccharum , Bacterias , Burkholderiaceae , Enterobacteriaceae , Herbaspirillum , Nitrógeno , Raíces de Plantas , Rizosfera , Microbiología del Suelo
19.
Environ Sci Pollut Res Int ; 28(45): 64757-64768, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34318414

RESUMEN

Microbial assisted phytoremediation and reclamation are both potential contaminated soil remediation technologies, but little is known about the combined application of the two technologies on real contaminated soils. This study investigated the potential of Herbaspirillum sp. p5-19 (p5-19) assisted with alien soil improvement on improving stress tolerance and enhancing the accumulation of Mn, Cu, Zn, and Cd by Vetiveria zizanioides L. in copper tailings. Phytoremediation potential was evaluated by plant biomass and the ability of plants to absorb and transfer heavy metals. Results showed that the biomass was increased by 19.64-173.81% in p5-19 inoculation treatments with and without alien soil improvement compared with control. Meanwhile, photosynthetic pigment contents were enhanced in co-inoculation treatment (p5-19 with alien soil improvement). In addition, the malondialdehyde (MDA) content was decreased, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in p5-19 treatment, thereby alleviating the oxidative stress. Moreover, co-inoculation significantly (p < 0.05) increased the concentrations of Mn, Cu, Zn, and Cd in the roots and shoots of V. zizanioides. In particular, the highest concentrations of Mn, Zn, and Cd in the shoots (roots) were obtained in covering 10 cm combined with p5-19 inoculation treatment, which were 4.44- (2.71-), 4.73- (3.87-), and 5.93- (4.35-) fold as that of the controls, respectively. These results provided basis for the change of phytoremediation ability of V. zizanioides after inoculation. We concluded that p5-19 assisted with alien soil improvement was a potential strategy for enhancing phytoremediation ability in tailings.


Asunto(s)
Chrysopogon , Herbaspirillum , Contaminantes del Suelo , Biodegradación Ambiental , Cobre , Especies Introducidas , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis
20.
Arch Microbiol ; 203(7): 3883-3892, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34009446

RESUMEN

Bacteria belonging to the genus Herbaspirillum are found in many different ecological niches. Some species are typically endophytic, while others were reported as free-living organisms that occupy various environments. Also, opportunistic herbaspirilli have been found infecting humans affected by several diseases. We have analyzed the production of exopolysaccharides (EPS) by Herbaspirillum strains isolated from different sources and with distinct ecological characteristics. The monosaccharide composition was determined for the EPS obtained for selected strains including free-living, plant-associated and clinical isolates, and the relationship with the ecological niches occupied by Herbaspirillum spp. is proposed.


Asunto(s)
Bacterias , Ambiente , Herbaspirillum , Polisacáridos Bacterianos , Bacterias/metabolismo , Herbaspirillum/química , Herbaspirillum/genética , Herbaspirillum/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...