Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1216-1223, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30287221

RESUMEN

The nitrogen metabolism of Proteobacteria is controlled by the general Ntr system in response to nitrogen quality and availability. The PII proteins play an important role in this system by modulating the cellular metabolism through physical interaction with protein partners. Herbaspirillum seropedicae, a nitrogen-fixing bacterium, has two PII proteins paralogues, GlnB and GlnK. The interaction of H. seropedicae PII proteins with its targets is regulated by allosteric ligands and by reversible post-translational uridylylation. Both uridylylation and deuridylylation reactions are catalyzed by the same bifunctional enzyme, GlnD. The mechanism of regulation of GlnD activity is still not fully understood. Here, we characterized the regulation of deuridylylation activity of H. seropedicae GlnD in vitro. To this purpose, fully modified PII proteins were submitted to kinetics analysis of its deuridylylation catalyzed by purified GlnD. The deuridylylation activity was strongly stimulated by glutamine and repressed by 2-oxoglutarate and this repression was strong enough to overcome the glutamine stimulus of enzymatic activity. We also constructed and analyzed a truncated version of GlnD, lacking the C-terminal regulatory ACT domains. The GlnDΔACT protein catalyzed the futile cycle of uridylylation and deuridylylation of PII, regardless of glutamine and 2-oxoglutarate levels. The results presented here suggest that GlnD can sense the glutamine:2-oxoglutarate ratio and confirm that the ACT domains of GlnD are the protein sensors of environment clues of nitrogen availability.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glutamina/metabolismo , Herbaspirillum/enzimología , Ácidos Cetoglutáricos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Glutamina/química , Ácidos Cetoglutáricos/química , Cinética , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación
2.
Biochem J ; 475(7): 1371-1383, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29535276

RESUMEN

Bacterial sulfoglycolytic pathways catabolize sulfoquinovose (SQ), or glycosides thereof, to generate a three-carbon metabolite for primary cellular metabolism and a three-carbon sulfonate that is expelled from the cell. Sulfoglycolytic operons encoding an Embden-Meyerhof-Parnas-like or Entner-Doudoroff (ED)-like pathway harbor an uncharacterized gene (yihR in Escherichia coli; PpSQ1_00415 in Pseudomonas putida) that is up-regulated in the presence of SQ, has been annotated as an aldose-1-epimerase and which may encode an SQ mutarotase. Our sequence analyses and structural modeling confirmed that these proteins possess mutarotase-like active sites with conserved catalytic residues. We overexpressed the homolog from the sulfo-ED operon of Herbaspirillum seropedicaea (HsSQM) and used it to demonstrate SQ mutarotase activity for the first time. This was accomplished using nuclear magnetic resonance exchange spectroscopy, a method that allows the chemical exchange of magnetization between the two SQ anomers at equilibrium. HsSQM also catalyzed the mutarotation of various aldohexoses with an equatorial 2-hydroxy group, including d-galactose, d-glucose, d-glucose-6-phosphate (Glc-6-P), and d-glucuronic acid, but not d-mannose. HsSQM displayed only 5-fold selectivity in terms of efficiency (kcat/KM) for SQ versus the glycolysis intermediate Glc-6-P; however, its proficiency [kuncat/(kcat/KM)] for SQ was 17 000-fold better than for Glc-6-P, revealing that HsSQM preferentially stabilizes the SQ transition state.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Herbaspirillum/enzimología , Espectroscopía de Resonancia Magnética/métodos , Metilglucósidos/metabolismo , Secuencia de Aminoácidos , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Glucólisis , Cinética , Modelos Moleculares , Conformación Proteica , Homología de Secuencia
3.
J Biol Chem ; 293(19): 7397-7407, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29581233

RESUMEN

NADH (NAD+) and its reduced form NADH serve as cofactors for a variety of oxidoreductases that participate in many metabolic pathways. NAD+ also is used as substrate by ADP-ribosyl transferases and by sirtuins. NAD+ biosynthesis is one of the most fundamental biochemical pathways in nature, and the ubiquitous NAD+ synthetase (NadE) catalyzes the final step in this biosynthetic route. Two different classes of NadE have been described to date: dimeric single-domain ammonium-dependent NadENH3 and octameric glutamine-dependent NadEGln, and the presence of multiple NadE isoforms is relatively common in prokaryotes. Here, we identified a novel dimeric group of NadEGln in bacteria. Substrate preferences and structural analyses suggested that dimeric NadEGln enzymes may constitute evolutionary intermediates between dimeric NadENH3 and octameric NadEGln The characterization of additional NadE isoforms in the diazotrophic bacterium Azospirillum brasilense along with the determination of intracellular glutamine levels in response to an ammonium shock led us to propose a model in which these different NadE isoforms became active accordingly to the availability of nitrogen. These data may explain the selective pressures that support the coexistence of multiple isoforms of NadE in some prokaryotes.


Asunto(s)
Adaptación Fisiológica , Azospirillum brasilense/enzimología , Evolución Biológica , Glutamina/metabolismo , Herbaspirillum/enzimología , Mycobacterium tuberculosis/enzimología , Amida Sintasas/química , Amida Sintasas/metabolismo , Secuencia de Aminoácidos , Amoníaco/metabolismo , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiología , Catálisis , Herbaspirillum/metabolismo , Herbaspirillum/fisiología , Cinética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiología , NAD/metabolismo , Filogenia , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
Sci Rep ; 7(1): 13546, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051509

RESUMEN

The NTR system is the major regulator of nitrogen metabolism in Bacteria. Despite its broad and well-known role in the assimilation, biosynthesis and recycling of nitrogenous molecules, little is known about its role in carbon metabolism. In this work, we present a new facet of the NTR system in the control of NADPH concentration and the biosynthesis of molecules dependent on reduced coenzyme in Herbaspirillum seropedicae SmR1. We demonstrated that a ntrC mutant strain accumulated high levels of polyhydroxybutyrate (PHB), reaching levels up to 2-fold higher than the parental strain. In the absence of NtrC, the activity of glucose-6-phosphate dehydrogenase (encoded by zwf) increased by 2.8-fold, consequently leading to a 2.1-fold increase in the NADPH/NADP+ ratio. A GFP fusion showed that expression of zwf is likewise controlled by NtrC. The increase in NADPH availability stimulated the production of polyhydroxybutyrate regardless the C/N ratio in the medium. The mutant ntrC was more resistant to H2O2 exposure and controlled the propagation of ROS when facing the oxidative condition, a phenotype associated with the increase in PHB content.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Herbaspirillum/metabolismo , Hidroxibutiratos/metabolismo , NADP/metabolismo , Poliésteres/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Cromatografía de Gases , Regulación Bacteriana de la Expresión Génica , Glucosafosfato Deshidrogenasa/genética , Herbaspirillum/efectos de los fármacos , Herbaspirillum/enzimología , Peróxido de Hidrógeno/toxicidad , Hidroxibutiratos/análisis , Monosacáridos/metabolismo , Mutagénesis , Nitrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poliésteres/análisis , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética
5.
J Sci Food Agric ; 97(3): 949-955, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27226244

RESUMEN

BACKGROUND: Phosphorus-containing fertilizers play an important role in tropical agriculture owing to the well documented shortage of plant-available P in soils. Traditional P fertilizer production is based on chemical processing of insoluble rock phosphate (RP), which includes an acid treatment at high temperature. Processing the RP increases fertilizer costs, making it unavailable for undercapitalized and typically family-based farmers. Biotechnological methods have been proposed as an alternative to increase phosphate availability in RP. In this study, Burkholderia silvatlantica and Herbaspirillum seropedicae were co-inoculated into an RP-enriched compost with the aim of determining the effects of this technology on the levels of phosphatase activities and release of plant-available P. RESULTS: Inoculation of both microorganisms resulted in higher organic matter decomposition and higher humic acid formation in composting. Herbaspirillum seropedicae was the most promising microorganism for the production of acid and alkaline phosphatase enzymes. Both microorganisms presented potential to increase the supply of P from poorly soluble sources owing to increased levels of water-soluble P and citric acid P. CONCLUSION: Burkholderia silvatlantica and H. seropedicae in RP-enriched compost may represent an important biotechnological tool to reduce the overall time required for composting and increase the supply of P from poorly soluble sources. © 2016 Society of Chemical Industry.


Asunto(s)
Inoculantes Agrícolas/metabolismo , Biofortificación/métodos , Burkholderia/enzimología , Fertilizantes , Herbaspirillum/metabolismo , Fosfatos/metabolismo , Microbiología del Suelo , Fosfatasa Ácida/metabolismo , Inoculantes Agrícolas/enzimología , Inoculantes Agrícolas/crecimiento & desarrollo , Fosfatasa Alcalina/metabolismo , Proteínas Bacterianas/metabolismo , Brasil , Burkholderia/crecimiento & desarrollo , Burkholderia/metabolismo , Productos Agrícolas/economía , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Países en Desarrollo , Fertilizantes/economía , Herbaspirillum/enzimología , Herbaspirillum/crecimiento & desarrollo , Sustancias Húmicas/análisis , Sustancias Húmicas/economía , Sustancias Húmicas/microbiología , Concentración de Iones de Hidrógeno , Cinética , Fijación del Nitrógeno , Fosfatos/química , Solubilidad
6.
Carbohydr Res ; 435: 106-112, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27744113

RESUMEN

A phosphorolytic activity has been reported for beta-N-acetylglucosaminidases from glycoside hydrolase family 3 (GH3) giving an interesting explanation for an unusual histidine as catalytic acid/base residue and suggesting that members from this family may be phosphorylases [J. Biol. Chem. 2015, 290, 4887]. Here, we describe the characterization of Hsero1941, a GH3 beta-N-acetylglucosaminidase from the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1. The enzyme has significantly higher activity against pNP-beta-D-GlcNAcp (Km = 0.24 mM, kcat = 1.2 s-1, kcat/Km = 5.0 mM-1s-1) than pNP-beta-D-Glcp (Km = 33 mM, kcat = 3.3 × 10-3 s-1, kcat/Km = 9 × 10-4 mM-1s-1). The presence of phosphate failed to significantly modify the kinetic parameters of the reaction. The enzyme showed a broad aglycone site specificity, being able to hydrolyze sugar phosphates beta-D-GlcNAc 1P and beta-D-Glc 1P, albeit at a fraction of the rate of hydrolysis of aryl glycosides. GH3 beta-glucosidase EryBI, that does not have a histidine as the general acid/base residue, also hydrolyzed beta-D-Glc 1P, at comparable rates to Hsero1941. These data indicate that Hsero1941 functions primarily as a hydrolase and that phosphorolytic activity is likely adventitious. The prevalence of histidine as a general acid/base residue is not predictive, nor correlative, with GH3 beta-N-acetylglucosaminidases having phosphorolytic activity.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Glucosidasas/metabolismo , Herbaspirillum/enzimología , Saccharopolyspora/enzimología , Acetilglucosaminidasa/química , Acetilglucosaminidasa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Glucosidasas/química , Glucosidasas/genética , Herbaspirillum/genética , Hidrólisis , Fosforilación , Saccharopolyspora/genética , Especificidad por Sustrato
7.
PLoS One ; 11(7): e0159871, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27447485

RESUMEN

The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.


Asunto(s)
Herbaspirillum/enzimología , Rec A Recombinasas/química , Rec A Recombinasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , ADN/genética , ADN/metabolismo , Activación Enzimática , Modelos Moleculares , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes , Electricidad Estática , Relación Estructura-Actividad
8.
Environ Microbiol ; 18(8): 2677-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27322548

RESUMEN

Herbaspirillum seropedicae is a nitrogen-fixing ß-proteobacterium that associates with roots of gramineous plants. In silico analyses revealed that H. seropedicae genome has genes encoding a putative respiratory (NAR) and an assimilatory nitrate reductase (NAS). To date, little is known about nitrate metabolism in H. seropedicae, and, as this bacterium cannot respire nitrate, the function of NAR remains unknown. This study aimed to investigate the function of NAR in H. seropedicae and how it metabolizes nitrate in a low aerated-condition. RNA-seq transcriptional profiling in the presence of nitrate allowed us to pinpoint genes important for nitrate metabolism in H. seropedicae, including nitrate transporters and regulatory proteins. Additionally, both RNA-seq data and physiological characterization of a mutant in the catalytic subunit of NAR (narG mutant) showed that NAR is not required for nitrate assimilation but is required for: (i) production of high levels of nitrite, (ii) production of NO and (iii) dissipation of redox power, which in turn lead to an increase in carbon consumption. In addition, wheat plants showed an increase in shoot dry weight only when inoculated with H. seropedicae wild type, but not with the narG mutant, suggesting that NAR is important to H. seropedicae-wheat interaction.


Asunto(s)
Herbaspirillum/enzimología , Herbaspirillum/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Herbaspirillum/genética , Nitrato-Reductasa/genética , Raíces de Plantas/microbiología , ARN/metabolismo , Factores de Transcripción/metabolismo , Triticum/microbiología
9.
Arch Microbiol ; 198(8): 737-42, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27154571

RESUMEN

Phytoremediation is an in situ, low-cost strategy for cleanup of the sites contaminated with heavy metals. Experiments were conducted to assess the impact of synthetic chelators and plant growth-promoting rhizosphere bacteria (Herbaspirillum sp. GW103) on heavy metal lead (Pb) uptake in Z. mays cultivated in Pb-contaminated soil. The present study investigated the Pb phytoaccumulation rate and plant antioxidant enzyme activities in Z. mays exposed to 100 mg/kg of PbNO3. The combination of gluconic acid (GA) with Herbaspirillum sp. GW103 treatment showed higher Pb solubility (18.9 mg/kg) compared with other chelators. The chemical chelators showed the significant difference in phytoaccumulation as well as antioxidant enzyme activities. The antioxidant enzymes such as catalase, peroxidase and superoxide dismutase activities changed under Pb stress. The study indicated that increased activity of antioxidant enzymes may play as signal inducers to fight against Pb.


Asunto(s)
Antioxidantes/metabolismo , Quelantes/metabolismo , Herbaspirillum/metabolismo , Plomo/metabolismo , Nitratos/metabolismo , Contaminantes del Suelo/metabolismo , Zea mays/metabolismo , Biodegradación Ambiental , Catalasa/metabolismo , Gluconatos/metabolismo , Herbaspirillum/enzimología , Estrés Oxidativo/fisiología , Peroxidasas/metabolismo , Rizosfera , Superóxido Dismutasa/metabolismo , Zea mays/microbiología
10.
Environ Microbiol ; 18(12): 4653-4661, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27059806

RESUMEN

In this study, a random mutant library of Herbaspirillum seropedicae SmR1 was constructed by Tn5 insertion and a mutant incapable of utilizing naringenin as a carbon source was isolated. The Tn5 transposon was found to be inserted in the fdeE gene (Hsero_1007), which encodes a monooxygenase. Two other mutant strains in fdeC (Hsero_1005) and fdeG (Hsero_1009) genes coding for a dioxygenase and a putative cyclase, respectively, were obtained by site-directed mutagenesis and then characterized. Liquid Chromatography coupled to mass spectrometry (LC-MS)/MS analyses of culture supernatant from the fdeE mutant strain revealed that naringenin remained unaltered, suggesting that the FdeE protein is involved in the initial step of naringenin degradation. LC-MS/MS analyses of culture supernatants from the wild-type (SmR1) and FdeC deficient mutant suggested that in H. seropedicae SmR1 naringenin is first mono-oxygenated by the FdeE protein, to produce 5,7,8-trihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one, that is subsequently dioxygenated and cleaved at the A-ring by the FdeC dioxygenase, since the latter compound accumulated in the fdeC strain. After meta-cleavage of the A-ring, the subsequent metabolic steps generate oxaloacetic acid that is metabolized via the tricarboxylic acid cycle. This bacterium can also modify naringenin by attaching a glycosyl group to the B-ring or a methoxy group to the A-ring, leading to the generation of dead-end products.


Asunto(s)
Flavanonas/metabolismo , Herbaspirillum/metabolismo , Biodegradación Ambiental , Herbaspirillum/enzimología , Herbaspirillum/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Espectrometría de Masas en Tándem
11.
Arch Microbiol ; 198(4): 307-13, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26802007

RESUMEN

Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.


Asunto(s)
Amida Sintasas/aislamiento & purificación , Amida Sintasas/metabolismo , Herbaspirillum/enzimología , Cromatografía en Gel , Glutamina/metabolismo , Cinética , NAD/análogos & derivados , NAD/biosíntesis , NAD/metabolismo , Nitrógeno/metabolismo
12.
FEBS J ; 282(24): 4797-809, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26433003

RESUMEN

Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Herbaspirillum/enzimología , Ácidos Cetoglutáricos/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Calorimetría , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Herbaspirillum/fisiología , Cinética , Ligandos , Fijación del Nitrógeno , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estrés Fisiológico , Volumetría
13.
Curr Microbiol ; 71(3): 311-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26048485

RESUMEN

This study investigated the expression rate and molecular modeling of Wzb gene, a low molecular weight protein tyrosine phosphatase, under As stress in Herbaspirillum sp. GW103. Expression of Wzb gene was quantified at transcriptional level through real-time quantitative PCR. The results showed up- and down-regulations of Wzb gene in the presence of As (50 and 100 mg/L). The maximum Wzb transcript expression was 1.2-fold after 72 h exposure to 50 mg/L of As. However, the minimum expression was 0.1-fold after 48 h exposure to 100 mg/L of As. The Wzb protein sequence was retrieved from NCBI sequence database and was used for in silico analysis. 3D structure of Wzb gene was predicted by comparative modeling using modeler 9v9. Further, the model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D, and SAVES server which revealed structure and quality of the Wzb gene model.


Asunto(s)
Arsénico/toxicidad , Perfilación de la Expresión Génica , Herbaspirillum/efectos de los fármacos , Herbaspirillum/enzimología , Proteínas Tirosina Fosfatasas/biosíntesis , Proteínas Tirosina Fosfatasas/química , Modelos Moleculares , Conformación Proteica , Proteínas Tirosina Fosfatasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética
14.
J Basic Microbiol ; 55(10): 1232-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25903936

RESUMEN

This study aimed to understand the influence of heavy metals on 1-aminocyclopropane-1-carboxylate deaminase activity (ACCD) and acdS gene expression in Herbaspirillium sp. GW103. The GW103 strain ACCD activity decreased in cells grown in a medium supplemented with Pb and As, whereas cells grown in medium supplemented with Cu showed increase in enzyme activity. The GW103 strain produced 262.2 ± 6.17 µmol of α-ketobutyrate per milligram of protein per hour during ACC deamination at 25 °C after 24 h incubation. Using a PCR approach, an acdS coding-gene of 1.06 kbp was amplified in isolate GW103, showing 92% identity with Herbaspirillum seropedicae SmR1 acdS gene. Real time quantitative polymerase chain reaction results indicate that the acdS expression rate was increased (7.1-fold) in the presence of Cu, whereas it decreased (0.2- and 0.1-fold) in the presence of As and Pb.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Herbaspirillum/enzimología , Herbaspirillum/genética , Metales Pesados/metabolismo , Microbiología del Suelo , Arsénico , Liasas de Carbono-Carbono/genética , Cobre , ADN Bacteriano/genética , Herbaspirillum/aislamiento & purificación , Plomo , Raíces de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Rizosfera , Análisis de Secuencia de ADN
15.
Res Microbiol ; 166(3): 196-204, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25744778

RESUMEN

This study investigated the mechanism of arsenic resistance in the diazotrophic bacterium Herbaspirillum sp. GW103 isolated from rhizosphere soil of Phragmites austrails. The isolate Herbaspirillum sp. GW103 exhibited maximum tolerance to arsenic (550 mg/L). Four different arsenate reductase (arsC) genes (arsC1, arsC2, arsC3 and arsC4) were located in the genome of the isolate Herbaspirillum sp. GW103. The expression pattern of the arsC1 differed from other genes. All four types of arsC genes had different protein secondary structures and stereochemical properties. Molecular modeling and structural analysis of arsC genes revealed close structural homology with arsC family proteins from Escherichia coli (PDB ID: 1I9D) and Pseudomonas aeruginosa (PDB ID: 1RW1).


Asunto(s)
Arseniato Reductasas/genética , Herbaspirillum/enzimología , Herbaspirillum/genética , Modelos Moleculares , Secuencia de Aminoácidos , Arseniato Reductasas/química , Arsénico/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Simulación por Computador , Escherichia coli/genética , Expresión Génica , Metales Pesados , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Rizosfera , Microbiología del Suelo
16.
Wei Sheng Wu Xue Bao ; 54(3): 292-8, 2014 Mar 04.
Artículo en Chino | MEDLINE | ID: mdl-24984521

RESUMEN

OBJECTIVE: To screen efficient nitrogen fixation endophytes from rice and to analyze their growth-promoting properties. METHOD: We isolated strains from the roots of rice in the field where it has a rice-rice-green manure rotation system for 30 years. Efficient strains were screened by acetylene reduction assay. Phylogenetic analysis is based on 16S rRNA gene, nifH gene and the composition of fatty acid. In addition, we also detected the ability of indole acetic acid secretion through the Salkowski colorimetric method, measured the production of siderophore through the blue plate assay and detected phosphate solubilization, to analyze the growth-promoting properties. RESULT: A total of 48 strains were isolated, in which DX35 has the highest nitrogenase activity. It belongs to Herbaspirillum seropedicae after identification. Its nitrogenase activity (181.21 nmol C2H4/(mg protein x h)) was 10 times as much as the reference strain Azotobacter chroococcum ACCC10006. In addition, it also can secrete siderophore and solubilize phosphorus. CONCLUSION: Strain DX35, belonging to Herbaspirillum seropedicae, is an efficient nitrogen fixation endophytes.


Asunto(s)
Endófitos/metabolismo , Herbaspirillum/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Oryza/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endófitos/enzimología , Endófitos/genética , Endófitos/aislamiento & purificación , Herbaspirillum/enzimología , Herbaspirillum/genética , Herbaspirillum/aislamiento & purificación , Datos de Secuencia Molecular , Nitrogenasa/genética , Nitrogenasa/metabolismo , Filogenia
17.
Appl Microbiol Biotechnol ; 98(11): 5117-29, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24682480

RESUMEN

Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 µM and 168.07 µM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions.


Asunto(s)
Vías Biosintéticas/genética , Expresión Génica , Herbaspirillum/genética , Herbaspirillum/metabolismo , Minerales/metabolismo , Cofactor PQQ/metabolismo , Fosfatos/metabolismo , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Erwinia/enzimología , Erwinia/genética , Herbaspirillum/enzimología , Ingeniería Metabólica , Familia de Multigenes , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Proteome Res ; 12(11): 4757-68, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23971515

RESUMEN

Although the use of plant growth-promoting bacteria in agriculture is a reality, the molecular basis of plant-bacterial interaction is still poorly understood. We used a proteomic approach to study the mechanisms of interaction of Herbaspirillum seropedicae SmR1 with rice. Root proteins of rice seedlings inoculated or noninoculated with H. seropedicae were separated by 2-D electrophoresis. Differentially expressed proteins were identified by MALDI-TOF/TOF and MASCOT program. Among the identified proteins of H. seropedicae, the dinitrogenase reductase NifH and glutamine synthetase GlnA, which participate in nitrogen fixation and ammonium assimilation, respectively, were the most abundant. The rice proteins up-regulated included the S-adenosylmethionine synthetase, methylthioribose kinase, and acireductone dioxygenase 1, all of which are involved in the methionine recycling. S-Adenosylmethionine synthetase catalyzes the synthesis of S-adenosylmethionine, an intermediate used in transmethylation reactions and in ethylene, polyamine, and phytosiderophore biosynthesis. RT-qPCR analysis also confirmed that the methionine recycling and phytosiderophore biosynthesis genes were up-regulated, while ACC oxidase mRNA level was down-regulated in rice roots colonized by bacteria. In agreement with these results, ethylene production was reduced approximately three-fold in rice roots colonized by H. seropedicae. The results suggest that H. seropedicae stimulates methionine recycling and phytosiderophore synthesis and diminishes ethylene synthesis in rice roots.


Asunto(s)
Herbaspirillum/enzimología , Metionina/metabolismo , Oryza/metabolismo , Oryza/microbiología , Raíces de Plantas/microbiología , Proteómica/métodos , Simbiosis , Dinitrogenasa Reductasa/metabolismo , Electroforesis en Gel Bidimensional , Glutamato-Amoníaco Ligasa/metabolismo , Metionina Adenosiltransferasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/metabolismo , Sideróforos/biosíntesis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Arch Microbiol ; 194(8): 643-52, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22382722

RESUMEN

PII are signal-transducing proteins that integrate metabolic signals and transmit this information to a large number of proteins. In proteobacteria, PII are modified by GlnD (uridylyltransferase/uridylyl-removing enzyme) in response to the nitrogen status. The uridylylation/deuridylylation cycle of PII is also regulated by carbon and energy signals such as ATP, ADP and 2-oxoglutarate (2-OG). These molecules bind to PII proteins and alter their tridimensional structure/conformation and activity. In this work, we determined the effects of ATP, ADP and 2-OG levels on the in vitro uridylylation of Herbaspirillum seropedicae PII proteins, GlnB and GlnK. Both proteins were uridylylated by GlnD in the presence of ATP or ADP, although the uridylylation levels were higher in the presence of ATP and under high 2-OG levels. Under excess of 2-OG, the GlnB uridylylation level was higher in the presence of ATP than with ADP, while GlnK uridylylation was similar with ATP or ADP. Moreover, in the presence of ADP/ATP molar ratios varying from 10/1 to 1/10, GlnB uridylylation level decreased as ADP concentration increased, whereas GlnK uridylylation remained constant. The results suggest that uridylylation of both GlnB and GlnK responds to 2-OG levels, but only GlnB responds effectively to variation on ADP/ATP ratio.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Herbaspirillum/enzimología , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Herbaspirillum/metabolismo , Nitrógeno/metabolismo , Nucleotidiltransferasas/metabolismo , Unión Proteica , Transducción de Señal
20.
Protein Expr Purif ; 55(2): 293-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17553696

RESUMEN

GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme that has a central role in the general nitrogen regulatory system NTR. In enterobacteria, GlnD uridylylates the PII proteins GlnB and GlnK under low levels of fixed nitrogen or ammonium. Under high ammonium levels, GlnD removes UMP from these proteins (deuridylylation). The PII proteins are signal transduction elements that integrate the signals of nitrogen, carbon and energy, and transduce this information to proteins involved in nitrogen metabolism. In Herbaspirillum seropedicae, an endophytic diazotroph isolated from grasses, several genes coding for proteins involved in nitrogen metabolism have been identified and cloned, including glnB, glnK and glnD. In this work, the GlnB, GlnK and GlnD proteins of H. seropedicae were overexpressed in their native forms, purified and used to reconstitute the uridylylation system in vitro. The results show that H. seropedicae GlnD uridylylates GlnB and GlnK trimers producing the forms PII (UMP)(1), PII (UMP)(2) and PII (UMP)(3), in a reaction that requires 2-oxoglutarate and ATP, and is inhibited by glutamine. The quantification of these PII forms indicates that GlnB was more efficiently uridylylated than GlnK in the system used.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Herbaspirillum/metabolismo , Proteínas PII Reguladoras del Nitrógeno/aislamiento & purificación , Transducción de Señal , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , Herbaspirillum/enzimología , Proteínas PII Reguladoras del Nitrógeno/metabolismo , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA