Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.906
Filtrar
1.
J Vis Exp ; (206)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38709074

RESUMEN

Utilizing vegetable oil as a sustainable feedstock, this study presents an innovative approach to ultrasonic-assisted transesterification for biodiesel synthesis. This alkaline-catalyzed procedure harnesses ultrasound as a potent energy input, facilitating the rapid conversion of extra virgin olive oil into biodiesel. In this demonstration, the reaction is run in an ultrasonic bath under ambient conditions for 15 min, requiring a 1:6 molar ratio of extra virgin olive oil to methanol and a minimum amount of KOH as the catalyst. The physiochemical properties of biodiesel are also reported. Emphasizing the remarkable advantages of ultrasonic-assisted transesterification, this method demonstrates notable reductions in reaction and separation times, achieving near-perfect purity (~100%), high yields, and negligible waste generation. Importantly, these benefits are achieved within a framework that prioritizes safety and environmental sustainability. These compelling findings underscore the effectiveness of this approach in converting vegetable oil into biodiesel, positioning it as a viable option for both research and practical applications.


Asunto(s)
Biocombustibles , Aceites de Plantas , Aceites de Plantas/química , Esterificación , Hidróxidos/química , Aceite de Oliva/química , Ondas Ultrasónicas , Compuestos de Potasio/química , Catálisis
2.
Environ Sci Technol ; 58(19): 8501-8509, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696244

RESUMEN

Iron/chromium hydroxide coprecipitation controls the fate and transport of toxic chromium (Cr) in many natural and engineered systems. Organic coatings on soil and engineered surfaces are ubiquitous; however, mechanistic controls of these organic coatings over Fe/Cr hydroxide coprecipitation are poorly understood. Here, Fe/Cr hydroxide coprecipitation was conducted on model organic coatings of humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA). The organics bonded with SiO2 through ligand exchange with carboxyl (-COOH), and the adsorbed amounts and pKa values of -COOH controlled surface charges of coatings. The adsorbed organic films also had different complexation capacities with Fe/Cr ions and Fe/Cr hydroxide particles, resulting in significant differences in both the amount (on HA > SA(-COOH) ≫ BSA(-NH2)) and composition (Cr/Fe molar ratio: on BSA(-NH2) ≫ HA > SA(-COOH)) of heterogeneous precipitates. Negatively charged -COOH attracted more Fe ions and oligomers of hydrolyzed Fe/Cr species and subsequently promoted heterogeneous precipitation of Fe/Cr hydroxide nanoparticles. Organic coatings containing -NH2 were positively charged at acidic pH because of the high pKa value of the functional group, limiting cation adsorption and formation of coprecipitates. Meanwhile, the higher local pH near the -NH2 coatings promoted the formation of Cr(OH)3. This study advances fundamental understanding of heterogeneous Fe/Cr hydroxide coprecipitation on organics, which is essential for successful Cr remediation and removal in both natural and engineered settings, as well as the synthesis of Cr-doped iron (oxy)hydroxides for material applications.


Asunto(s)
Cromo , Hidróxidos , Hierro , Hidróxidos/química , Hierro/química , Cromo/química , Albúmina Sérica Bovina/química , Adsorción , Sustancias Húmicas , Agua/química , Precipitación Química , Alginatos/química
3.
Biosens Bioelectron ; 256: 116275, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603839

RESUMEN

Constructing relatively inexpensive nanomaterials to simulate the catalytic performance of laccase is of great significance in recent years. Although research on improving laccase-like activity by regulating ligands of copper (amino acids or small organic molecules, etc.) have achieved remarkable success. There are few reports on improving laccase-like activity by adjusting the composition of metal Cu. Here, we used perovskite hydroxide AB(OH)6 as a model to evaluate the relationship between Cu based alloys and their laccase-like activity. We found that when the Cu/Mn alloy ratio of the perovskite hydroxide A point is greater than 1, the laccase-like activity of the binary alloy perovskite hydroxide is higher than that of the corresponding single Cu. Based on the measurements of XPS and ICP-MS, we deduced that the improvements of laccase-like activity mainly attribute to the ratio of Cu+/Cu2+and the content of Cu. Moreover, two types of substrates (toxic pollutants and catechol neurotransmitters) were used to successfully demonstrated such nanozymes' excellent environmental protecting function and biosensing property. This work will provide a novel approach for the construction and application of laccase-like nanozymes in the future.


Asunto(s)
Técnicas Biosensibles , Cobre , Lacasa , Óxidos , Titanio , Lacasa/química , Lacasa/metabolismo , Técnicas Biosensibles/métodos , Cobre/química , Titanio/química , Óxidos/química , Hidróxidos/química , Compuestos de Calcio/química , Restauración y Remediación Ambiental/métodos , Catecoles/análisis , Catecoles/química , Materiales Biomiméticos/química , Catálisis
4.
Environ Sci Pollut Res Int ; 31(20): 30196-30211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600374

RESUMEN

This study innovatively added biochar to optimize regulation in the neutralization process of simulated acid mine drainage (AMD) and recovered a new type of matrix layered double hydroxides (MLDH), which can be used to remove copper (Cu(II)) and cadmium (Cd(II)) from wastewater. A series of batch experiments show that MLDH with strong selective removal ability of Cu(II) and Cd(II) can be successfully obtained by adding biochar (BC) at pH = 5 end in the neutralization process. Kinetic and isotherm modeling studies indicated that the removal of Cu(II) and Cd(II) by the MLDH was a chemical multilayer adsorption process. The removal mechanism of Cu(II) and Cd(II) was further analyzed through related characterization analysis with contribution rate calculation: the removal rates of Cu(II) and Cd(II) by ion exchange were 42.7% and 26%, while that by precipitation were 34.5% and 49.9%, respectively. This study can provide a theoretical reference and experimental basis for the recovery and utilization of valuable by-products in AMD and the treatment of heavy metal wastewater.


Asunto(s)
Cadmio , Cobre , Hidróxidos , Minería , Aguas Residuales , Contaminantes Químicos del Agua , Cobre/química , Cadmio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Hidróxidos/química , Adsorción , Carbón Orgánico/química , Cinética , Eliminación de Residuos Líquidos/métodos
5.
Environ Sci Technol ; 58(19): 8597-8606, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687950

RESUMEN

NiFe layered double hydroxides (NiFe-LDH) exhibited an outstanding performance and promising application potential for removing ozone. However, the effect of interlayer anions on ozone removal remains ambiguous. Here, a series of NiFe-LDH with different interlayer anions (F-, Cl-, Br-, NO3-, CO32-, and SO42-) were prepared to investigate the effect of the interlayer anion on ozone removal for the first time. It was found that the interlayer anions are a key factor affecting the water resistance of the NiFe-LDH catalyst under moist conditions. NiFe-LDH-CO32- exhibited the best water resistance, which was much better than that of NiFe-LDH containing other interlayer anions. The in situ DIRFTS demonstrates that the carbonates in the interlayer of NiFe-LDH-CO32- will undergo coordination changes through the interaction with water molecules under moist conditions, exposing new metal sites. As a result, the newly exposed metal sites could activate water molecules into hydroxyl groups that act as active sites for catalyzing ozone decomposition. This work provides a new insight into the interlayer anions of LDH, which is important for the design and development of LDH catalysts with excellent ozone removal properties.


Asunto(s)
Aniones , Hidróxidos , Ozono , Ozono/química , Hidróxidos/química , Catálisis , Aniones/química
6.
Dalton Trans ; 53(19): 8429-8442, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686445

RESUMEN

Recently, layered rare-earth hydroxides (LRHs) have received growing attention in the field of theranostics. We have previously reported the hydrothermal synthesis of layered terbium hydroxide (LTbH), which exhibited high biocompatibility, reversible uptake of a range of model drugs, and release-sensitive phosphorescence. Despite these favourable properties, LTbH particles produced by the reported method suffered from poor size-uniformity (670 ± 564 nm), and are thus not suitable for therapeutic applications. To ameliorate this issue, we first derive an optimised hydrothermal synthesis method to generate LTbH particles with a high degree of homogeneity and reproducibility, within a size range appropriate for in vivo applications (152 ± 59 nm, n = 6). Subsequently, we apply this optimised method to synthesise a selected range of LRH materials (R = Pr, Nd, Gd, Dy, Er, Yb), four of which produced particles with an average size under 200 nm (Pr, Nd, Gd, and Dy) without the need for further optimisation. Finally, we incorporate Gd and Tb into LRHs in varying molar ratios (1 : 3, 1 : 1, and 3 : 1) and assess the combined magnetic relaxivity and phosphorescence properties of the resultant LRH materials. The lead formulation, LGd1.41Tb0.59H, was demonstrated to significantly shorten the T2 relaxation time of water (r2 = 52.06 mM-1 s-1), in addition to exhibiting a strong phosphorescence signal (over twice that of the other LRH formulations, including previously reported LTbH), therefore holding great promise as a potential multi-modal medical imaging probe.


Asunto(s)
Hidróxidos , Metales de Tierras Raras , Tamaño de la Partícula , Hidróxidos/química , Metales de Tierras Raras/química , Imagen por Resonancia Magnética , Imagen Multimodal , Humanos
7.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613974

RESUMEN

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Asunto(s)
Cobalto , Hidróxidos , Manganeso , Metronidazol , Cobalto/química , Metronidazol/química , Hidróxidos/química , Manganeso/química , Porosidad , Propiedades de Superficie , Sulfitos/química , Catálisis , Tamaño de la Partícula , Teoría Funcional de la Densidad , Contaminantes Químicos del Agua/química
8.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674090

RESUMEN

Cinnamic acid (CA) was successfully incorporated into Zn-Al layered double hydroxide (LDH) through coprecipitation. The CA moiety was stabilized in the interlayer space through not only electrostatic interaction but also intermolecular π-π interaction. It was noteworthy that the CA arrangement was fairly independent of the charge density of LDH, showing the important role of the layer-CA and CA-CA interactions in molecular stabilization. Computer simulations using the Monte Carlo method as well as analytical approaches including infrared, UV-vis spectroscopy, and differential scanning calorimetry showed the existence of intermolecular interaction. In order to reinforce molecular stabilization, a neutral derivative of CA, cinnamaldehyde (CAD), was additionally incorporated into LDH. It was clearly shown that CAD played a role as a π-π interaction mediator to enhance the stabilization of CA. The time-dependent release of CA from LDH was first governed by the layer charge density of LDH; however, the existence of CAD provided additional stabilization to the CA arrangement to slow down the release kinetics.


Asunto(s)
Acroleína/análogos & derivados , Cinamatos , Preparaciones de Acción Retardada , Hidróxidos , Cinamatos/química , Hidróxidos/química , Preparaciones de Acción Retardada/química , Acroleína/química , Cinética , Método de Montecarlo , Rastreo Diferencial de Calorimetría
11.
Int J Biol Macromol ; 267(Pt 2): 131378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580023

RESUMEN

Nowadays, nanofibrous structures based on organic and inorganic materials are considered a drug delivery system for the controlled release of antibiotics and other antibacterial agents. The main goal of this research is a combination of the special properties of nanofibrous structure and Mupirocin-loaded Layered double hydroxide (LDH) to obtain a dual-carrier drug release system to provide long term antibacterial properties in wound healing process. Regards, unloaded layered double hydroxide (LDH) and Mupirocin-loaded LDH, which were synthesized by co-precipitation method, were added to Polyvinyl alcohol (PVA) solution in different mass ratio and electrospun using different processing conditions. The physico-chemical characterizations were performed using SEM, FTIR and tensile strength tests. The biological properties of the fabricated nanocomposites were evaluated using antibacterial test and in vitro cell culturing followed by MTT assay. The SEM results showed a bead-less and uniform morphology of nanofibrous composite containing Mupirocin(2.3 wt%)-LDH(15 wt%)/PVA with an average fiber diameter of about 270 ± 58 nm. According to the release study, the maximum release of the mupirocin drug was about 54 % in the first 6 h. The antibiogram analysis exhibited good antibacterial activity of mupirocin-loaded nanocomposite against both bacteria, especially gram-positive one. Finally, MTT assay approved the biocompatibility of the mupirocin-loaded nanocomposite. Overall, the produced nanofibrous composites would be a promising dual-carrier system for controlled release of antibiotic.


Asunto(s)
Antibacterianos , Portadores de Fármacos , Liberación de Fármacos , Mupirocina , Nanofibras , Alcohol Polivinílico , Alcohol Polivinílico/química , Nanofibras/química , Mupirocina/química , Mupirocina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Portadores de Fármacos/química , Nanocompuestos/química , Hidróxidos/química , Pruebas de Sensibilidad Microbiana , Resistencia a la Tracción , Animales
12.
Environ Sci Pollut Res Int ; 31(20): 29132-29147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568311

RESUMEN

Layered double hydroxides (LDH) hold great promise as phosphate adsorbents; however, the conventional binary LDH exhibits low adsorption rate and adsorption capacity. In this study, Mg and La were chosen as binary metals in the synthesis of Mg-La LDH to enhance phosphate efficient adsorption. Different molar ratios of Mg to La (2:1, 3:1, and 4:1) were investigated to further enhance P adsorption. The best performing Mg-La LDH, with Mg to La ratio is 4:1 (LDH-4), presented a larger adsorption capacity and faster adsorption rate than other Mg-La LDH. The maximum adsorption capacity (87.23 mg/g) and the rapid adsorption rate in the initial 25 min of LDH-4 (70 mg/(g·h)) were at least 1.6 times and 1.8 times higher than the others. The kinetics, isotherms, the effect of initial pH and co-existing anions, and the adsorption-desorption cycle experiment were studied. The batch experiment results proved that the chemisorption progress occurred on the single-layered LDH surface and the optimized LDH exhibited strong anti-interference capability. Furthermore, the structural characteristics and adsorption mechanism were further investigated by SEM, BET, FTIR, XRD, and XPS. The characterization results showed that the different metal ratios could lead to changes in the metal hydroxide layer and the main ions inside. At lower Mg/La ratios, distortion occurred in the hydroxide layer, resulting in lower crystallinity and lower performance. The characterization results also proved that the main mechanisms of phosphate adsorption are electrostatic adsorption, ion exchange, and inner-sphere complexation. The results emphasized that the Mg-La LDH was efficient in phosphate removal and could be successfully used for this purpose.


Asunto(s)
Hidróxidos , Magnesio , Fosfatos , Adsorción , Hidróxidos/química , Fosfatos/química , Magnesio/química , Cinética , Lantano/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
13.
Chemosphere ; 356: 141916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583536

RESUMEN

This study presents an assessment of inorganic and organic modification of biochar on physicochemical properties, dissolved organic carbon (DOC) release, sorption efficiency towards enrofloxacin (E) and silver nanoparticles (Ag-NPs), as well as an evaluation of addition of prepared materials on hydro-physical properties and adsorption capacity of montmorillonite (M). The biochar was derived from wheat straw at 650 °C. An inorganic modification was performed using ammonia hydroxide, whereas an organic modification, using citric acid. The ammonia hydroxide and citric acid changed the biochar nature and surface chemistry by introducing amino and ester groups. The lowest DOC release was from ammonia-biochar (BCN) and the highest, from citric acid-biochar (BCC). The adsorption data were better described by pseudo-II order equation and Marczewski-Jaroniec isotherm. Results showed that BCN exhibited the highest efficiency in adsorption of E and Ag-NPs. It also improved the adsorptive abilities and saturated hydraulic conductivity of M. This provides the chemically modified biochars have an excellent potential to improve pollution removal from aqueous media and hydro-physical/sorption properties of soil sorption complex. They can be used with advantageous in environmental applications.


Asunto(s)
Carbón Orgánico , Ácido Cítrico , Nanopartículas del Metal , Triticum , Triticum/química , Carbón Orgánico/química , Ácido Cítrico/química , Adsorción , Nanopartículas del Metal/química , Bentonita/química , Plata/química , Enrofloxacina/química , Hidróxidos/química , Amoníaco/química
14.
Chem Biol Interact ; 394: 110974, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522563

RESUMEN

Layered double hydroxides nanoparticles (LDH-NP) are increasingly studied for biomedical applications. Nevertheless, their interaction with biomolecules such as proteins needs further exploration for an effective application. In this work, the adsorption of bovine serum albumin (BSA) on LDH-NP and the conformation changes of the protein upon adsorption were characterized using fluorescence spectroscopy. First, the quenching of tryptophan residues of BSA by chloride-intercalated LDH-NP was explored and the BSA adsorption capacity of LDH-NP were determined. Then, the structural conformation of the protein was analyzed by fluorescence spectroscopy (including synchronous, polarization and quenching studies) at different surface coverages. Finally, the proclivity of adsorbed BSA molecules to assemble as amyloid fibril was evaluated. Due to the positive charging and low curvature of LDH-NP, BSA molecules were strongly adsorbed, which produced a quenching of the protein fluorescence and a large adsorption capacity. The effect on BSA conformation was dependent on surface coverage (SC): at low values ,t he tryptophan residues were in more hydrophobic environments and more accessible to quenchers than al high ones. At low SC, there is space between the BSA molecules to spread on the surface, which led to a conformation change. Contrarily, the native conformation around tryptophan residues of BSA was preserved at high SC due to the tight packing of the adsorbed protein molecules. As a result, BSA molecules are stabilized against the formation of amyloid fibrils at high SC, while at low SC they present a similar fibrillation than free BSA.


Asunto(s)
Hidróxidos , Albúmina Sérica Bovina , Espectrometría de Fluorescencia , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Hidróxidos/química , Bovinos , Animales , Adsorción , Nanopartículas/química , Triptófano/química , Triptófano/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Amiloide/química , Amiloide/metabolismo , Fluorescencia
15.
Chemosphere ; 353: 141647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460843

RESUMEN

Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.


Asunto(s)
Lacasa , Óxidos , Óxidos/química , Óxido de Magnesio , Sustancias Húmicas/análisis , Hidróxidos/química
16.
Nanotechnology ; 35(27)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38537263

RESUMEN

An efficient and robust electrocatalyst is significant for glucose biosensing. The emergence of metal-organic framework (MOF) derived materials opens up new avenues for the development of high-performance glucose sensing catalysts. Herein, MOF derived nickel-cobalt hydroxide supported on conductive copper sheet (NiCo-OH/Cu sheet) is prepared at room temperature. The as-obtained NiCo-OH is endowed with three-dimensional network structure which enables the effective exposure of active materials, sufficient contact between glucose molecule and catalyst. The NiCo-OH/Cu sheet is revealed as good glucose electrochemical sensing material with a wide linear range of 0.05∼6.0 mM and a high sensitivity of 1340µA mM-1cm-2. Additionally, the as-fabricated NiCo-OH/Cu sheet displays good anti-interference ability and long-term stability.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Glucosa/química , Estructuras Metalorgánicas/química , Cobre/química , Técnicas Biosensibles/métodos , Hidróxidos/química , Níquel/química
17.
Environ Pollut ; 348: 123865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548162

RESUMEN

Singlet oxygen (1O2) is a reactive species for the selective degradation of stubborn organic pollutants. Given its resistance to harsh water environment, the effective and exclusive generation of 1O2 is acknowledged as a key strategy to mitigate water production costs and ensure water supply safety. Herein, we synthesized MnOx intercalated MnFe layered double hydroxides (MF-MnOx) to selectively produce 1O2 through the activation of PMS. The distinctive confined structure endowed MF-MnOx with a special pathway for the PMS activation. The direct oxidation of BPA on the intercalated MnOx induced the charge imbalance in the MnFe-LDH layer, resulting in the selective generation of 1O2. Moreover, acceptable activity deterioration of MF-MnOx was observed in a 10 h continuous degradation test in actual water, substantiating the application potential of MF-MnOx. This work presents a novel catalyst for the selective production of 1O2, and evaluates its prospects in the remediation of micro-polluted water.


Asunto(s)
Peróxidos , Oxígeno Singlete , Oxígeno Singlete/química , Peróxidos/química , Hidróxidos/química , Agua , Oxígeno
18.
Chem Rec ; 24(4): e202400010, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501833

RESUMEN

Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.


Asunto(s)
Nanocompuestos , Neoplasias , Humanos , Hidróxidos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanocompuestos/uso terapéutico , Nanocompuestos/química
19.
Talanta ; 274: 125972, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547844

RESUMEN

This study developed a novel organic-inorganic hybrid composite, shortly as GO-PEG-LDHs, by self-assembly of exfoliated Mg-Al layer double hydroxide (LDHs) on the polyethylene glycol (PEG) grafted graphene oxide (GO) to achieve the selective adsorption of hemoglobin (Hb). The prepared GO-PEG-LDHs has a hierarchical structure with a homogeneous loading of exfoliated LDHs nano-sheets on its surface. The adsorption test reveals that GO-PEG-LDHs exhibits an adsorption efficiency of 95.03% for Hb and 3.45% for bovine serum albumin (BSA). The adsorption of Hb follows the Langmuir model, with an ultrahigh adsorption capacity of 55248.6 mg/g, which is higher than any previously reported materials. Meanwhile, the adsorbed Hb can be efficiently recovered through elution with a 50 mM Tris-HCl buffer, with an elution efficiency of 80.77%. Circular dichroism (CD) spectra indicate no conformational change for Hb during the process of adsorption/desorption. Furthermore, the composite demonstrates the ability to selectively isolate Hb in the presence of interfering protein BSA, indicating its potential for practical applications.


Asunto(s)
Grafito , Hemoglobinas , Hidróxidos , Polietilenglicoles , Grafito/química , Hemoglobinas/química , Adsorción , Polietilenglicoles/química , Hidróxidos/química , Bovinos , Nanoestructuras/química , Animales , Aluminio/química , Albúmina Sérica Bovina/química
20.
Int J Biol Macromol ; 266(Pt 1): 131193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552703

RESUMEN

Beyond the conventional consideration of pretreatment severity (PS) responsible for biomass disruption, the influence of reagent properties on biomass (LCB) disruption is often overlooked. To investigate the LCB disruption as a function of reagent properties, reagents with distinct cations (NaOH and KOH) and significantly higher delignification potential were chosen. NaOH solution (3 % w/v) with a measured pH of 13.05 ± 0.01 is considered the reference, against which a KOH solution (pH = 13.05 ± 0.01) was prepared for LCB pretreatment under the same PS. Despite comparable lignin content, varying glucose yield of NaOH (68.76 %) and KOH (46.88 %) pretreated residues indicated the presence of heterogeneously disrupted substrate. Holocellulose extracted from raw poplar (ASC, control) and alkaline pretreated residues (C-NaOH and C-KOH) were analyzed using HPLC, XRD, SEM, TGA/DTG, XPS, and 13CP MAS NMR to investigate the pretreatment-induced structural modification. Results revealed that, despite the same pretreatment severity, better disruption in C-NaOH (higher accessible fibril surface and less-ordered region) leading to higher digestibility than C-KOH, likely due to the smaller ionic radius of Na+, facilitates better penetration into dense LCB matrix. This study elucidates the importance of considering the reagent properties during LCB pretreatment, eventually enhancing consciousness while selecting reagents for efficient LCB utilization.


Asunto(s)
Biomasa , Hidróxidos , Lignina , Hidróxido de Sodio , Lignina/química , Hidróxido de Sodio/química , Hidróxidos/química , Hidrólisis , Populus/química , Compuestos de Potasio/química , Indicadores y Reactivos/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...