Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 40(1): e1800608, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417498

RESUMEN

The world population will rapidly grow from 7 to 9 billion by 2050 and this will parallel a surging annual plastics consumption from today's 350 million tons to well beyond 1 billion tons. The switch from a linear economy with its throwaway culture to a circular economy with efficient reuse of waste plastics is therefore mandatory. Hydrocarbon polymers, accounting for more than half the world's plastics production, enable closed-loop recycling and effective product-stewardship systems. High-molar-mass hydrocarbons serve as highly versatile, cost-, resource-, eco- and energy-efficient, durable lightweight materials produced by solvent-free, environmentally benign catalytic olefin polymerization. Nanophase separation and alignment of unentangled hydrocarbon polymers afford 100% recyclable self-reinforcing all-hydrocarbon composites without requiring the addition of either alien fibers or hazardous nanoparticles. Recycling of durable hydrocarbons is far superior to biodegradation. The facile thermal degradation enables liquefaction and quantitative recovery of low molar mass hydrocarbon oil and gas. Teamed up with biomass-to-liquid and carbon dioxide-to-fuel conversions, powered by renewable energy, waste hydrocarbons serve as renewable hydrocarbon feedstocks for the synthesis of high molar mass hydrocarbon materials. Herein, an overview is given on how innovations in catalyst and process technology enable tailoring of advanced recyclable hydrocarbon materials meeting the needs of sustainable development and a circular economy.


Asunto(s)
Hidrocarburos/economía , Polímeros/economía , Hidrocarburos/química , Polímeros/química
2.
Bioresour Technol ; 227: 179-187, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28024195

RESUMEN

This study quantifies and compares the costs of production for six alternative jet fuel pathways using consistent financial and technical assumptions. Uncertainty was propagated through the analysis using Monte Carlo simulations. The six processes assessed were HEFA, advanced fermentation, Fischer-Tropsch, aqueous phase processing, hydrothermal liquefaction, and fast pyrolysis. The results indicate that none of the six processes would be profitable in the absence of government incentives, with HEFA using yellow grease, HEFA using tallow, and FT revealing the lowest mean jet fuel prices at $0.91/liter ($0.66/liter-$1.24/liter), $1.06/liter ($0.79/liter-$1.42/liter), and $1.15/liter ($0.95/liter-$1.39/liter), respectively. This study also quantifies plant performance in the United States with a Renewable Fuel Standard policy analysis. Results indicate that some pathways could achieve positive NPV with relatively high likelihood under existing policy supports, with HEFA and FPH revealing the highest probability of positive NPV at 94.9% and 99.7%, respectively, in the best-case scenario.


Asunto(s)
Biocombustibles/economía , Costos y Análisis de Costo , Hidrocarburos/economía , Políticas , Probabilidad , Procesos Estocásticos , Incertidumbre
5.
J Air Waste Manag Assoc ; 62(10): 1182-95, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23155864

RESUMEN

UNLABELLED: To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/ production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector. According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NO(x), and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user. IMPLICATIONS: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. At current use rates, U.S. coal reserves (262 billion short tons, including 23 billion short tons lignite) would last 236 years. Accordingly, the University of Texas at Arlington (UT Arlington) has developed a process that converts lignite to crude oil, at about half the cost of regular crude. According to the screening analysis presented here, producing jet fuel from UT Arlington crude generates lower levels of pollutants compared to international conventional crude extraction/refining (CCER).


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbón Mineral , Conservación de los Recursos Energéticos/métodos , Gases/análisis , Hidrocarburos/síntesis química , Cromatografía de Gases , Carbón Mineral/análisis , Conservación de los Recursos Energéticos/economía , Monitoreo del Ambiente , Efecto Invernadero , Hidrocarburos/economía
6.
J Environ Monit ; 14(1): 233-40, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22116523

RESUMEN

A study has been carried out to assess the contribution of Polycyclic Aromatic Hydrocarbons (PAHs) from asphalt plant operation, utilising Benzo(a)pyrene (BaP) as a marker for PAHs, to the background air concentration around asphalt plants in the UK. The purpose behind this assessment was to determine whether the use of published BaP emission factors based on the US Environmental Protection Agency (EPA) methodology is appropriate in the context of the UK, especially as the EPA methodology does not give BaP emission factors for all activities. The study also aimed to improve the overall understanding of BaP emissions from asphalt plants in the UK, and determine whether site location and operation is likely to influence the contribution of PAHs to ambient air quality. In order to establish whether the use of US EPA emissions factors is appropriate, the study has compared the BaP emissions measured and calculated emissions rates from two UK sites with those estimated using US EPA emission factors. A dispersion modelling exercise was carried out to show the BaP contribution to ambient air around each site. This study showed that, as the US EPA methodology does not provide factors for all emission sources on asphalt plants, their use may give rise to over- or under-estimations, particularly where sources of BaP are temperature dependent. However, the contribution of both the estimated and measured BaP concentrations to environmental concentration were low, averaging about 0.05 ng m(-3) at the boundary of the sites, which is well below the UK BaP assessment threshold of 0.25 ng m(-3). Therefore, BaP concentrations, and hence PAH concentrations, from similar asphalt plant operations are unlikely to contribute negatively to ambient air quality.


Asunto(s)
Contaminantes Atmosféricos/análisis , Benzo(a)pireno/análisis , Monitoreo del Ambiente , Hidrocarburos/química , Contaminación del Aire/estadística & datos numéricos , Hidrocarburos/economía , Industrias , Transportes , Reino Unido
7.
Int J Environ Res Public Health ; 8(8): 3496-513, 2011 08.
Artículo en Inglés | MEDLINE | ID: mdl-21909320

RESUMEN

Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.


Asunto(s)
Contaminación Ambiental/prevención & control , Restauración y Remediación Ambiental/métodos , Gasolina/análisis , Contaminantes del Suelo/análisis , Contaminación Ambiental/economía , Restauración y Remediación Ambiental/economía , Agua Subterránea/análisis , Hidrocarburos/química , Hidrocarburos/economía , Modelos Teóricos , Suelo/química , Volatilización
8.
J Ind Microbiol Biotechnol ; 37(11): 1157-68, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20596882

RESUMEN

MixAlco is a robust process that converts biomass to fuels and chemicals. A key feature of the MixAlco process is the fermentation, which employs a mixed culture of acid-forming microorganisms to convert biomass components (carbohydrates, proteins, and fats) to carboxylate salts. Subsequently, these intermediate salts are chemically converted to hydrocarbon fuels (gasoline, jet fuel, and diesel). This work focuses on process synthesis, simulation, integration, and cost estimation of the MixAlco process. For the base-case capacity of 40 dry tonne feedstock per hour, the total capital investment is US $5.54/annual gallon of hydrocarbon fuels (US $3.79/annual gallon of ethanol equivalent), and the minimum selling price [with 10% return on investment (ROI), internal hydrogen production, and US $60/tonne biomass] is US $2.56/gal hydrocarbon, which is equivalent to US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US $1.76/gal hydrocarbon (US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US $65/bbl. At 40 tph, using the average tipping fee for municipal solid waste (US $45/dry tonne) and current price of external hydrogen (US $1/kg), the minimum selling price is only US $1.24/gal hydrocarbon (US $0.85/gal ethanol equivalent).


Asunto(s)
Biocombustibles/economía , Biomasa , Etanol/síntesis química , Etanol/economía , Biocombustibles/microbiología , Simulación por Computador , Costos y Análisis de Costo , Fermentación , Gasolina/economía , Hidrocarburos/economía , Hidrógeno/metabolismo , Hidrogenación , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA