Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Open Bio ; 9(12): 2072-2079, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614069

RESUMEN

HypD and HypC, or its paralogue HybG in Escherichia coli, form the core of the scaffold complex that synthesizes the Fe(CN)2 CO component of the bimetallic NiFe-cofactor of [NiFe]-hydrogenase. We show here that purified HypC-HypD and HybG-HypD complexes catalyse hydrolysis of ATP to ADP (kcat  â‰… 0.85·s-1 ); the ATPase activity of the individual proteins was between 5- and 10-fold lower than that of the complex. Pre-incubation of HypD with ATP was necessary to restore full activity upon addition of HybG. The conserved Cys41 residue on HypD was essential for full ATPase activity of the complex. Together, our data suggest that HypD undergoes ATP-dependent conformational activation to facilitate complex assembly in preparation for substrate reduction.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Hidrogenasas/metabolismo , Proteínas/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/química , Escherichia coli/metabolismo , Hidrogenasas/fisiología , Hierro/metabolismo , Níquel/metabolismo
2.
Adv Microb Physiol ; 74: 143-189, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31126530

RESUMEN

Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.


Asunto(s)
Proteínas Bacterianas/fisiología , Desulfovibrio/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Desulfovibrio/enzimología , Desulfovibrio/genética , Electrones , Regulación Bacteriana de la Expresión Génica , Variación Genética , Hidrogenasas/química , Hidrogenasas/genética , Hidrogenasas/metabolismo , Modelos Biológicos
3.
Plant Biotechnol J ; 14(7): 1487-99, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26801871

RESUMEN

The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050. Together with rising economic growth, this is forecast to result in a 50% increase in fuel demand, which will have to be met while reducing carbon dioxide (CO2 ) emissions by 50-80% to maintain social, political, energy and climate security. This tension between rising fuel demand and the requirement for rapid global decarbonization highlights the need to fast-track the coordinated development and deployment of efficient cost-effective renewable technologies for the production of CO2 neutral energy. Currently, only 20% of global energy is provided as electricity, while 80% is provided as fuel. Hydrogen (H2 ) is the most advanced CO2 -free fuel and provides a 'common' energy currency as it can be produced via a range of renewable technologies, including photovoltaic (PV), wind, wave and biological systems such as microalgae, to power the next generation of H2 fuel cells. Microalgae production systems for carbon-based fuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating the potential of microalgal technologies for the commercial production of solar-driven H2 from water. It summarizes key global technology drivers, the potential and theoretical limits of microalgal H2 production systems, emerging strategies to engineer next-generation systems and how these fit into an evolving H2 economy.


Asunto(s)
Biocombustibles , Biotecnología/tendencias , Hidrógeno/metabolismo , Microalgas/metabolismo , Conservación de los Recursos Energéticos/tendencias , Hidrógeno/química , Hidrogenasas/química , Hidrogenasas/fisiología , Modelos Teóricos , Oxígeno/química , Fotobiorreactores , Fotólisis , Tilacoides/química , Tilacoides/metabolismo
4.
Microbiologyopen ; 5(1): 47-59, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26541261

RESUMEN

The Streptomyces avermitilis genome encodes a putative high-affinity [NiFe]-hydrogenase conferring the ability to oxidize tropospheric H2 in mature spores. Here, we used a combination of transcriptomic and mutagenesis approaches to shed light on the potential ecophysiological role of the enzyme. First, S. avermitilis was either exposed to low or hydrogenase-saturating levels of H2 to investigate the impact of H2 on spore transcriptome. In total, 1293 genes were differentially expressed, with 1127 and 166 showing lower and higher expression under elevated H2 concentration, respectively. High H2 exposure lowered the expression of the Sec protein secretion pathway and ATP-binding cassette-transporters, with increased expression of genes encoding proteins directing carbon metabolism toward sugar anabolism and lower expression of NADH dehydrogenase in the respiratory chain. Overall, the expression of relA responsible for the synthesis of the pleiotropic alarmone ppGpp decreased upon elevated H2 exposure, which likely explained the reduced expression of antibiotic synthesis and stress response genes. Finally, deletion of hhySL genes resulted in a loss of H2 uptake activity and a dramatic loss of viability in spores. We propose that H2 is restricted to support the seed bank of Streptomyces under a unique survival-mixotrophic energy mode and discuss important ecological implications of this finding.


Asunto(s)
Metabolismo Energético/fisiología , Hidrógeno/metabolismo , Hidrogenasas/fisiología , Esporas Bacterianas/metabolismo , Streptomyces/enzimología , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/biosíntesis , Proteínas Bacterianas/biosíntesis , Metabolismo Energético/genética , Perfilación de la Expresión Génica , Hidrogenasas/genética , Ligasas/biosíntesis , NADH Deshidrogenasa/biosíntesis , Oxidación-Reducción , Canales de Translocación SEC/biosíntesis , Proteína SecA , Microbiología del Suelo , Esporas Bacterianas/genética , Streptomyces/genética
5.
PLoS One ; 8(5): e64161, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717558

RESUMEN

Like a majority of photosynthetic microorganisms, the green unicellular alga Chlamydomonas reinhardtii may encounter O2 deprived conditions on a regular basis. In response to anaerobiosis or in a respiration defective context, the photosynthetic electron transport chain of Chlamydomonas is remodeled by a state transition process to a conformation that favours the photoproduction of ATP at the expense of reductant synthesis. In some unicellular green algae including Chlamydomonas, anoxia also triggers the induction of a chloroplast-located, oxygen sensitive hydrogenase, which accepts electrons from reduced ferredoxin to convert protons into molecular hydrogen. Although microalgal hydrogen evolution has received much interest for its biotechnological potential, its physiological role remains unclear. By using specific Chlamydomonas mutants, we demonstrate that the state transition ability and the hydrogenase function are both critical for induction of photosynthesis in anoxia. These two processes are thus important for survival of the cells when they are transiently placed in an anaerobic environment.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Cloroplastos/enzimología , Hidrogenasas/fisiología , Microalgas/enzimología , Proteínas de Plantas/fisiología , Anaerobiosis , Transporte de Electrón , Hidrógeno/metabolismo , Cinética , Oxígeno/metabolismo , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo
6.
PLoS One ; 7(4): e34666, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511957

RESUMEN

A highly conserved histidine-rich region with unknown function was recognized in the large subunit of [NiFe] hydrogenases. The HxHxxHxxHxH sequence occurs in most membrane-bound hydrogenases, but only two of these histidines are present in the cytoplasmic ones. Site-directed mutagenesis of the His-rich region of the T. roseopersicina membrane-attached Hyn hydrogenase disclosed that the enzyme activity was significantly affected only by the replacement of the His104 residue. Computational analysis of the hydrogen bond network in the large subunits indicated that the second histidine of this motif might be a component of a proton transfer pathway including Arg487, Asp103, His104 and Glu436. Substitutions of the conserved amino acids of the presumed transfer route impaired the activity of the Hyn hydrogenase. Western hybridization was applied to demonstrate that the cellular level of the mutant hydrogenases was similar to that of the wild type. Mostly based on theoretical modeling, few proton transfer pathways have already been suggested for [NiFe] hydrogenases. Our results propose an alternative route for proton transfer between the [NiFe] active center and the surface of the protein. A novel feature of this model is that this proton pathway is located on the opposite side of the large subunit relative to the position of the small subunit. This is the first study presenting a systematic analysis of an in silico predicted proton translocation pathway in [NiFe] hydrogenases by site-directed mutagenesis.


Asunto(s)
Histidina/química , Hidrogenasas/fisiología , Thiocapsa roseopersicina/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biología Computacional , Simulación por Computador , Enlace de Hidrógeno , Hidrogenasas/química , Hidrogenasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Protones , Alineación de Secuencia
7.
Faraday Discuss ; 148: 385-407; discussion 421-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21322495

RESUMEN

We investigated di-hydrogen transport between the solvent and the active site of FeFe hydrogenases. Substrate channels supposedly exist and serve various functions in certain redox enzymes which use or produce O2, H2, NO, CO, or N2, but the preferred paths have not always been unambiguously identified, and whether a continuous, permanent channel is an absolute requirement for transporting diatomic molecules is unknown. Here, we review the literature on gas channels in proteins and enzymes and we report on the use of site-directed mutagenesis and various kinetic methods, which proved useful for characterizing substrate access to the active site of NiFe hydrogenase to test the putative "static" H2 channel of FeFe hydrogenases. We designed 8 mutations in attempts to interfere with intramolecular diffusion by remodeling this putative route in Clostridium acetobutylicum FeFe hydrogenase, and we observed that none of them has a strong effect on any of the enzyme's kinetic properties. We suggest that H2 may diffuse either via transient cavities, or along a conserved water-filled channel. Nitrogenase sets a precedent for the involvement of a hydrophilic channel to conduct hydrophobic molecules.


Asunto(s)
Hidrogenasas/química , Proteínas Hierro-Azufre/química , Monóxido de Carbono/farmacología , Hidrógeno/química , Hidrogenasas/fisiología , Proteínas Hierro-Azufre/fisiología , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxígeno/farmacología
8.
J Bacteriol ; 192(4): 925-35, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20023036

RESUMEN

Synthesis of the hydrogen uptake (Hup) system in Rhizobium leguminosarum bv. viciae requires the function of an 18-gene cluster (hupSLCDEFGHIJK-hypABFCDEX). Among them, the hupE gene encodes a protein showing six transmembrane domains for which a potential role as a nickel permease has been proposed. In this paper, we further characterize the nickel transport capacity of HupE and that of the translated product of hupE2, a hydrogenase-unlinked gene identified in the R. leguminosarum genome. HupE2 is a potential membrane protein that shows 48% amino acid sequence identity with HupE. Expression of both genes in the Escherichia coli nikABCDE mutant strain HYD723 restored hydrogenase activity and nickel transport. However, nickel transport assays revealed that HupE and HupE2 displayed different levels of nickel uptake. Site-directed mutagenesis of histidine residues in HupE revealed two motifs (HX(5)DH and FHGX[AV]HGXE) that are required for HupE functionality. An R. leguminosarum double mutant, SPF22A (hupE hupE2), exhibited reduced levels of hydrogenase activity in free-living cells, and this phenotype was complemented by nickel supplementation. Low levels of symbiotic hydrogenase activity were also observed in SPF22A bacteroid cells from lentil (Lens culinaris L.) root nodules but not in pea (Pisum sativum L.) bacteroids. Moreover, heterologous expression of the R. leguminosarum hup system in bacteroid cells of Rhizobium tropici and Mesorhizobium loti displayed reduced levels of hydrogen uptake in the absence of hupE. These data support the role of R. leguminosarum HupE as a nickel permease required for hydrogen uptake under both free-living and symbiotic conditions.


Asunto(s)
Proteínas Bacterianas/fisiología , Hidrogenasas/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Níquel/metabolismo , Rhizobium leguminosarum/fisiología , Rhizobium tropici/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Medios de Cultivo/química , Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Orden Génico , Genes Bacterianos , Prueba de Complementación Genética , Hidrogenasas/genética , Hidrogenasas/fisiología , Lens (Planta)/microbiología , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Pisum sativum/microbiología , Rhizobium leguminosarum/genética , Rhizobium tropici/genética , Alineación de Secuencia , Simbiosis
10.
Biochemistry ; 48(22): 4946-58, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19385603

RESUMEN

Iron-sulfur (Fe/S) protein maturation in the eukaryotic cytosol and nucleus requires conserved components of the essential CIA machinery. The CIA protein Nar1 performs a specific function in transferring an Fe/S cluster that is assembled de novo on the Cfd1-Nbp35 scaffold to apoproteins. Here, we used systematic site-directed mutagenesis and a combination of in vitro and in vivo studies to show that Nar1 holds two Fe/S clusters at conserved N- and C-terminal cysteine motifs. A wealth of biochemical studies suggests that the assembly of these Fe/S clusters on Nar1 cannot be studied in Escherichia coli, as the recombinant protein does not contain the native Fe/S clusters. We therefore followed Fe/S cluster incorporation directly in yeast by a (55)Fe radiolabeling method in vivo, and we measured the functional consequences of Nar1 mutations in the assembly of cytosolic Fe/S proteins. We find that both Fe/S clusters are essential for Nar1 function and cell viability. Molecular modeling using a structurally but not functionally related bacterial iron-only hydrogenase as a template provided compelling structural explanations for our mutational data. The C-terminal Fe/S cluster is stably buried within Nar1, whereas the N-terminal one is exposed at the protein surface and hence may be more easily lost. Insertion of an Fe/S cluster into the C-terminal location depends on the N-terminal motif, suggesting the participation of the latter motif in the assembly process of the C-terminal cluster. The vicinity of the two Fe/S centers suggests a close functional cooperation during cytosolic Fe/S protein maturation.


Asunto(s)
Secuencia Conservada , Cisteína/química , Citosol/química , Hidrogenasas/química , Hidrogenasas/fisiología , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos/genética , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Secuencia Conservada/genética , Cisteína/genética , Cisteína/fisiología , Citosol/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/genética , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
11.
PLoS One ; 4(3): e4695, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19277114

RESUMEN

BACKGROUND: Nitrogen (N(2)) fixation also yields hydrogen (H(2)) at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2) as sole N-source) bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase), has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase) was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase). An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2)-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2)-fixing and H(2)-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2) respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2), specifically that produced by N(2) fixation. To benefit human civilization, H(2) has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As such, the reversible, group-4 Ni,Fe-hydrogenases, such as the A. caulinodans Hyq endo-hydrogenase, offer promise as biocatalytic agents for H(2) production and/or consumption.


Asunto(s)
Azorhizobium caulinodans/enzimología , Proteínas Bacterianas/fisiología , Genes Bacterianos , Hidrógeno/metabolismo , Hidrogenasas/fisiología , Fijación del Nitrógeno/fisiología , Azorhizobium caulinodans/genética , Azorhizobium caulinodans/crecimiento & desarrollo , Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/genética , Secuencia de Bases , Secuencia Conservada , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucuronidasa/metabolismo , Hidrogenasas/clasificación , Hidrogenasas/genética , Datos de Secuencia Molecular , Fijación del Nitrógeno/genética , Operón/genética , Proteínas Recombinantes de Fusión/biosíntesis , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
Endocr Dev ; 13: 1-18, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18493130

RESUMEN

The enzymes and pathways of steroidogenesis are familiar to most endocrinologists, but the biochemistry and molecular biology of these processes are still being studied. This chapter outlines current knowledge about each enzyme. The quantitative regulation of steroidogenesis occurs at the first step, the conversion of cholesterol to pregnenolone. Chronic regulation is principally at the level of transcription of the gene for P450 side chain cleave (P450scc), which is the enzymatically rate-limiting step. Acute regulation is mediated by steroidogenic acute regulatory protein, which facilitates the rapid influx of cholesterol into mitochondria, where P450scc resides. Qualitative regulation, determining the class of steroid produced, is principally determined by P450c17. In the absence of P450c17 in the zona glomerulosa, C21 deoxy steroids are produced, leading to the mineralocorticoid aldosterone. In the presence of the 17alpha-hydroxylase but not the 17,20 lyase activity of P450c17 in the zona fasciculata, C21, 17-hydroxy steroids are produced, leading to the glucocorticoid cortisol. When both the 17alpha-hydroxylase and 17,20 lyase activities of P450c17 are present in the zona reticularis, the androgen precursor dehydroepiandrosterone is produced. The discrimination between 17alpha-hydroxylase and 17,20 lyase activities is regulated by two posttranslational events, the serine phosphorylation of P450c17 and the allosteric action of cytochrome b5, both of which act to optimize the interaction of P450c17 with its obligatory electron donor, P450 oxidoreductase.


Asunto(s)
Enzimas/metabolismo , Enzimas/fisiología , Esteroides/biosíntesis , Glándulas Suprarrenales/embriología , Glándulas Suprarrenales/enzimología , Glándulas Suprarrenales/metabolismo , Animales , Transporte Biológico/fisiología , Colesterol/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Citocromos b5/metabolismo , Citocromos b5/fisiología , Transporte de Electrón/fisiología , Ferredoxinas/metabolismo , Humanos , Hidrogenasas/metabolismo , Hidrogenasas/fisiología , Hidroxiesteroide Deshidrogenasas/metabolismo , Hidroxiesteroide Deshidrogenasas/fisiología , Modelos Biológicos , Fosfoproteínas/fisiología , Esteril-Sulfatasa/metabolismo , Esteril-Sulfatasa/fisiología , Sulfotransferasas/metabolismo , Sulfotransferasas/fisiología
14.
J Inorg Biochem ; 102(5-6): 1359-65, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18329103

RESUMEN

The knockdown of a [FeFe]-hydrogenase-like gene in the model plants Medicago truncatula and Arabidopsis thaliana resulted in a mutant with a dwarf phenotype. Surprisingly, the phenotype is undistinguishable from wild type under hypoxic conditions. The heterologous expression of the plant gene in Escherichia coli indicates that the resulting protein probably coordinates two [Fe-S] clusters with different magnetic properties. Sequence alignment analysis indicates that these two clusters would be topologically equivalent to the mesial and proximal [Fe-S] centers of [FeFe]-hydrogenases. A possible role of the gene product in oxygen signaling pathways is discussed.


Asunto(s)
Hidrogenasas/fisiología , Oxígeno/administración & dosificación , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Atmósfera/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/genética , Medicago truncatula/efectos de los fármacos , Medicago truncatula/enzimología , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Presión Parcial , Espectrofotometría Ultravioleta
15.
FEMS Microbiol Rev ; 31(6): 692-720, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17903205

RESUMEN

Cyanobacteria may possess two distinct nickel-iron (NiFe)-hydrogenases: an uptake enzyme found in N(2)-fixing strains, and a bidirectional one present in both non-N(2)-fixing and N(2)-fixing strains. The uptake hydrogenase (encoded by hupSL) catalyzes the consumption of the H(2) produced during N(2) fixation, while the bidirectional enzyme (hoxEFUYH) probably plays a role in fermentation and/or acts as an electron valve during photosynthesis. hupSL constitute a transcriptional unit, and are essentially transcribed under N(2)-fixing conditions. The bidirectional hydrogenase consists of a hydrogenase and a diaphorase part, and the corresponding five hox genes are not always clustered or cotranscribed. The biosynthesis/maturation of NiFe-hydrogenases is highly complex, requiring several core proteins. In cyanobacteria, the genes that are thought to affect hydrogenases pleiotropically (hyp), as well as the genes presumably encoding the hydrogenase-specific endopeptidases (hupW and hoxW) have been identified and characterized. Furthermore, NtcA and LexA have been implicated in the transcriptional regulation of the uptake and the bidirectional enzyme respectively. Recently, the phylogenetic origin of cyanobacterial and algal hydrogenases was analyzed, and it was proposed that the current distribution in cyanobacteria reflects a differential loss of genes according to their ecological needs or constraints. In addition, the possibilities and challenges of cyanobacterial-based H(2) production are addressed.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Cianobacterias/enzimología , Hidrogenasas/genética , Hidrogenasas/fisiología , Proteínas Bacterianas/química , Hidrógeno/metabolismo , Hidrogenasas/química , Fijación del Nitrógeno , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Transcripción Genética
16.
J Bacteriol ; 189(17): 6159-67, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17601789

RESUMEN

The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen>50% hydrogen>lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Desulfovibrio vulgaris/metabolismo , Hidrogenasas/fisiología , Proteínas Periplasmáticas/fisiología , Sulfatos/metabolismo , Medios de Cultivo/química , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/crecimiento & desarrollo , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Hidrógeno/metabolismo , Hidrogenasas/genética , Ácido Láctico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Proteínas Periplasmáticas/genética
17.
Annu Rev Plant Biol ; 58: 71-91, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17150028

RESUMEN

The photobiological production of H2 gas, using water as the only electron donor, is a property of two types of photosynthetic microorganisms: green algae and cyanobacteria. In these organisms, photosynthetic water splitting is functionally linked to H(2) production by the activity of hydrogenase enzymes. Interestingly, each of these organisms contains only one of two major types of hydrogenases, [FeFe] or [NiFe] enzymes, which are phylogenetically distinct but perform the same catalytic reaction, suggesting convergent evolution. This idea is supported by the observation that each of the two classes of hydrogenases has a different metallo-cluster, is encoded by entirely different sets of genes (apparently under the control of different promoter elements), and exhibits different maturation pathways. The genetics, biosynthesis, structure, function, and O2 sensitivity of these enzymes have been the focus of extensive research in recent years. Some of this effort is clearly driven by the potential for using these enzymes in future biological or biohybrid systems to produce renewable fuel or in fuel cell applications.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas Bacterianas/metabolismo , Chlorophyta/metabolismo , Cianobacterias/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Chlorophyta/enzimología , Chlorophyta/genética , Cianobacterias/enzimología , Cianobacterias/genética , Variación Genética , Hidrogenasas/química , Hidrogenasas/fisiología , Oxígeno/metabolismo , Fotosíntesis , Transcripción Genética
18.
FEBS J ; 273(19): 4516-27, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16972939

RESUMEN

Genes homologous to hydrogenase accessory genes are scattered over the whole genome in the cyanobacterium Synechocystis sp. PCC 6803. Deletion and insertion mutants of hypA1 (slr1675), hypB1 (sll1432), hypC, hypD, hypE and hypF were constructed and showed no hydrogenase activity. Involvement of the respective genes in maturation of the enzyme was confirmed by complementation. Deletion of the additional homologues hypA2 (sll1078) and hypB2 (sll1079) had no effect on hydrogenase activity. Thus, hypA1 and hypB1 are specific for hydrogenase maturation. We suggest that hypA2 and hypB2 are involved in a different metal insertion process. The hydrogenase activity of DeltahypA1 and DeltahypB1 could be increased by the addition of nickel, suggesting that HypA1 and HypB1 are involved in the insertion of nickel into the active site of the enzyme. The urease activity of all the hypA and hypB single- and double-mutants was the same as in wild-type cells. Therefore, there seems to be no common function for these two hyp genes in hydrogenase and urease maturation in Synechocystis. Similarity searches in the whole genome yielded Slr1876 as the best candidate for the hydrogenase-specific protease. The respective deletion mutant had no hydrogenase activity. Deletion of hupE had no effect on hydrogenase activity but resulted in a mutant unable to grow in a medium containing the metal chelator nitrilotriacetate. Growth was resumed upon the addition of cobalt or methionine. Because the latter is synthesized by a cobalt-requiring enzyme in Synechocystis, HupE is a good candidate for a cobalt transporter in cyanobacteria.


Asunto(s)
Hidrogenasas/genética , Synechocystis/genética , Secuencia de Bases , Hidrogenasas/fisiología , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis , Níquel/farmacología , Ácido Nitrilotriacético/farmacología , Synechocystis/enzimología
19.
Proc Natl Acad Sci U S A ; 102(47): 16951-4, 2005 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-16260746

RESUMEN

Use of hydrogen in fuel cells requires catalysts that are tolerant to oxygen and are able to function in the presence of poisons such as carbon monoxide. Hydrogen-cycling catalysts are widespread in the bacterial world in the form of hydrogenases, enzymes with unusual active sites composed of iron, or nickel and iron, that are buried within the protein. We have established that the membrane-bound hydrogenase from the beta-proteobacterium Ralstonia eutropha H16, when adsorbed at a graphite electrode, exhibits rapid electrocatalytic oxidation of hydrogen that is completely unaffected by carbon monoxide [at 0.9 bar (1 bar = 100 kPa), a 9-fold excess] and is inhibited only partially by oxygen. The practical significance of this discovery is illustrated with a simple fuel cell device, thus demonstrating the feasibility of future hydrogen-cycle technologies based on biological or biologically inspired electrocatalysts having high selectivity for hydrogen.


Asunto(s)
Monóxido de Carbono/metabolismo , Cupriavidus necator/enzimología , Hidrogenasas/fisiología , Oxígeno/metabolismo , Técnicas Biosensibles , Catálisis , Electroquímica , Hidrogenasas/química , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier
20.
J Biol Inorg Chem ; 10(6): 667-82, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16187073

RESUMEN

The genome of Desulfovibrio vulgaris Hildenborough (DvH) encodes for six hydrogenases (Hases), making it an interesting organism to study the role of these proteins in sulphate respiration. In this work we address the role of the [NiFeSe] Hase, found to be the major Hase associated with the cytoplasmic membrane. The purified enzyme displays interesting catalytic properties, such as a very high H(2) production activity, which is dependent on the presence of phospholipids or detergent, and resistance to oxygen inactivation since it is isolated aerobically in a Ni(II) oxidation state. Evidence was obtained that the [NiFeSe] Hase is post-translationally modified to include a hydrophobic group bound to the N-terminal, which is responsible for its membrane association. Cleavage of this group originates a soluble, less active form of the enzyme. Sequence analysis shows that [NiFeSe] Hases from Desulfovibrionacae form a separate family from the [NiFe] enzymes of these organisms, and are more closely related to [NiFe] Hases from more distant bacterial species that have a medial [4Fe4S](2+/1+) cluster, but not a selenocysteine. The interaction of the [NiFeSe] Hase with periplasmic cytochromes was investigated and is similar to the [NiFe](1) Hase, with the Type I cytochrome c (3) as the preferred electron acceptor. A model of the DvH [NiFeSe] Hase was generated based on the structure of the Desulfomicrobium baculatum enzyme. The structures of the two [NiFeSe] Hases are compared with the structures of [NiFe] Hases, to evaluate the consensual structural differences between the two families. Several conserved residues close to the redox centres were identified, which may be relevant to the higher activity displayed by [NiFeSe] Hases.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Hidrogenasas/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Membrana Celular/enzimología , Citocromos , Transporte de Electrón , Hidrogenasas/genética , Hidrogenasas/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Periplasma/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...