Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 69(46): 13871-13880, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34780187

RESUMEN

IGPD is an essential metalloenzyme that catalyzes histidine biosynthesis. We found that its C-terminus loop region has a vital role in determining enzyme activity but has been hardly mentioned before. In this work, we focused on the dynamic feature and function of C-Loop in Arabidopsis thaliana and Saccharomyces cerevisiae IGPD (At_IGPD and Sc_IGPD, respectively). Due to the high flexibility of this region, we performed a total of 3.4 µs of accelerated molecular dynamics simulation to enhance sampling. Inhibitor C348 in At-IGPD exhibited instability in the later stage of simulation, while the characteristic sequence in Sc_IGPD reduced solvent interference and significantly restrained the interaction mode. For the C-Loop-assisted ligand-binding process, we proposed a "Lock-Lid" model. Meanwhile, the dissociated ligand in At_IGPD served as a probe, a metastable pocket was determined at the root of C-Loop, and its rationality was proved by theoretical verification and enzyme mutation experiments. This study complemented the important structural features of C-Loop and provided a basis for the design of selective inhibitors. Considering the absence in mammals, we suggested that IGPD could be a promising germicide target.


Asunto(s)
Hidroliasas/química , Hidroliasas/fisiología , Animales , Antiinfecciosos/farmacología , Arabidopsis/enzimología , Hidroliasas/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología
2.
Hepatology ; 72(4): 1394-1411, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31997373

RESUMEN

BACKGROUND AND AIMS: Itaconate, a metabolite of the tricarboxylic acid cycle, plays anti-inflammatory roles in macrophages during endotoxemia. The mechanisms underlying its anti-inflammatory roles have been shown to be mediated by the modulation of oxidative stress, an important mechanism of hepatic ischemia-reperfusion (I/R) injury. However, the role of itaconate in liver I/R injury is unknown. APPROACH AND RESULTS: We found that deletion of immune-responsive gene 1 (IRG1), encoding for the enzyme producing itaconate, exacerbated liver injury and systemic inflammation. Furthermore, bone marrow adoptive transfer experiments indicated that deletion of IRG1 in both hematopoietic and nonhematopoietic compartments contributes to the protection mediated by IRG1 after I/R. Interestingly, the expression of IRG1 was up-regulated in hepatocytes after I/R and hypoxia/reoxygenation-induced oxidative stress. Modulation of the IRG1 expression levels in hepatocytes regulated hepatocyte cell death. Importantly, addition of 4-octyl itaconate significantly improved liver injury and hepatocyte cell death after I/R. Furthermore, our data indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) is required for the protective effect of IRG1 on mouse and human hepatocytes against oxidative stress-induced injury. Our studies document the important role of IRG1 in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that the IRG1/itaconate pathway activates Nrf2-mediated antioxidative response in hepatocytes to protect liver from I/R injury. CONCLUSIONS: Our data expand on the importance of IRG1/itaconate in nonimmune cells and identify itaconate as a potential therapeutic strategy for this unfavorable postsurgical complication.


Asunto(s)
Antiinflamatorios/farmacología , Carboxiliasas/fisiología , Hepatocitos/metabolismo , Hígado/irrigación sanguínea , Factor 2 Relacionado con NF-E2/fisiología , Daño por Reperfusión/prevención & control , Succinatos/farmacología , Animales , Humanos , Hidroliasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Transducción de Señal/fisiología , Succinatos/uso terapéutico
3.
Hepatology ; 71(1): 130-147, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31148183

RESUMEN

Hepatocellular carcinoma (HCC) is one of the fastest-rising causes of cancer-related death worldwide, but its deficiency of specific biomarkers and therapeutic targets in the early stages lead to severe inadequacy in the early diagnosis and treatment of HCC. Covalently closed circular RNA (circRNA), which was once considered an aberrant splicing by-product, is now drawing new interest in cancer research because of its remarkable functionality. Beneath the surface of the dominant functional proteins events, a hidden circRNA-centric noncoding regulatory RNAs network active in the very early stage of HCC is here revealed by a genome-wide analysis of mRNA, circRNA, and microRNA (miRNA) expression profiles. Circ-CDYL (chromodomain Y like) is specifically up-regulated in the early stages of HCC and therefore contributes to the properties of epithelial cell adhesion molecule (EPCAM)-positive liver tumor-initiating cells. Circ-CDYL interacts with mRNAs encoding hepatoma-derived growth factor (HDGF) and hypoxia-inducible factor asparagine hydroxylase (HIF1AN) by acting as the sponge of miR-892a and miR-328-3p, respectively. Subsequently, activation of the phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase-mechanistic target of rapamycin kinase complex 1/ß-catenin and NOTCH2 pathways, which promote the expression of the effect proteins, baculoviral IAP repeat containing 5 (BIRC5 or SURVIVIN) and MYC proto-oncogene, is influenced by circ-CDYL. A treatment incorporating circ-CDYL interference and traditional enzyme inhibitors targeting PI3K and HIF1AN demonstrated highly effective inhibition of stem-like characteristics and tumor growth in HCC. Finally, we demonstrated that circ-CDYL expression or which combined with HDGF and HIF1AN are both independent markers for discrimination of early stages of HCC with the odds ratios of 1.09 (95% confidence interval [CI], 1.02-1.17) and 124.58 (95% CI, 13.26-1170.56), respectively. Conclusion: These findings uncover a circRNA-centric noncoding regulatory RNAs network in the early stages of HCC and thus provide a possibility for surveillance and early treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proteínas Co-Represoras/fisiología , Hidroliasas/fisiología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , ARN Circular/fisiología , ARN no Traducido/fisiología , Humanos , Estadificación de Neoplasias , Proto-Oncogenes Mas , Células Tumorales Cultivadas
4.
Mol Microbiol ; 112(1): 147-165, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30985034

RESUMEN

The gene context in microorganism genomes is of considerable help for identifying potential substrates. The C785_RS13685 gene in Herbaspirillum huttiense IAM 15032 is a member of the d-altronate dehydratase protein family, and which functions as a d-arabinonate dehydratase in vitro, is clustered with genes related to putative pentose metabolism. In the present study, further biochemical characterization and gene expression analyses revealed that l-xylonate is a physiological substrate that is ultimately converted to α-ketoglutarate via so-called Route II of a non-phosphorylative pathway. Several hexonates, including d-altronate, d-idonate and l-gluconate, which are also substrates of C785_RS13685, also significantly up-regulated the gene cluster containing C785_RS13685, suggesting a possibility that pyruvate and d- or l-glycerate were ultimately produced (novel Route III). On the contrary, ACAV_RS08155 of Acidovorax avenae ATCC 19860, a homologous gene to C785_RS13685, functioned as a d-altronate dehydratase in a novel l-galactose pathway, through which l-galactonate was epimerized at the C5 position by the sequential activity of two dehydrogenases, resulting in d-altronate. Furthermore, this pathway completely overlapped with Route III of the non-phosphorylative l-fucose pathway. The 'substrate promiscuity' of d-altronate dehydratase protein(s) is significantly expanded to 'metabolic promiscuity' in the d-arabinose, sugar acid, l-fucose and l-galactose pathways.


Asunto(s)
Hidroliasas/genética , Hidroliasas/metabolismo , Secuencia de Aminoácidos/genética , Arabinosa/metabolismo , Clonación Molecular/métodos , Fucosa/metabolismo , Galactosa/metabolismo , Genoma Bacteriano/genética , Gluconatos/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Hidroliasas/fisiología , Familia de Multigenes/genética , Azúcares Ácidos/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(23): 6016-6021, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784774

RESUMEN

Trait-based community ecology promises an understanding of the factors that determine species abundances and distributions across habitats. However, ecologists are often faced with large suites of potentially important traits, making generalizations across ecosystems and species difficult or even impossible. Here, we hypothesize that key traits structuring ecological communities may be causally dependent on common physiological mechanisms and that elucidating these mechanisms can help us understand the distributions of traits and species across habitats. We test this hypothesis by investigating putatively causal relationships between physiological and behavioral traits at the species and community levels in larvae of 17 species of dragonfly that co-occur at the landscape scale but segregate among lakes. We use tools borrowed from phenotypic selection analyses to show that physiological traits underlie activity rate, which has opposing effects on foraging and predator avoidance behaviors. The effect of activity on these behaviors ultimately shapes species distributions and community composition in habitats with either large-bodied fish or invertebrates as top predators. Remarkably, despite the inherent complexity of ecological communities, the expression of just two biomolecules accounts for a high proportion of the variation in behavioral traits and hence, dragonfly community composition between habitats. We suggest that causal relationships among traits can drive species distributions and community assembly.


Asunto(s)
Conducta Animal/fisiología , Biota/fisiología , Odonata/fisiología , Animales , Arginina Quinasa/análisis , Arginina Quinasa/fisiología , Biodiversidad , Ecosistema , Cadena Alimentaria , Hidroliasas/análisis , Hidroliasas/fisiología , Larva/fisiología , Fenotipo , Conducta Predatoria/fisiología
7.
Biochemistry ; 57(22): 3126-3129, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29293329

RESUMEN

Incubation of (±)-2-methyl-3-ketobutyryl-SNAC (3) and (±)-2-methyl-3-ketopentanoyl-SNAC (4) with BonKR2 or OxaKR5, ketoreductase domains from the bongkrekic acid (1) and oxazolomycin (2) polyketide synthases, in the presence of NADPH gave in each case the corresponding (2 R,3 S)-2-methyl-3-hydroxybutyryl-SNAC (5) or (2 R,3 S)-2-methyl-3-hydroxypentanoyl-SNAC (6) products, as established by chiral gas chromatography-mass spectrometry analysis of the derived methyl esters. Identical results were obtained by BonKR2- and OxaKR5-catalyzed reduction of chemoenzymatically prepared (2 R)-2-methyl-3-ketopentanoyl-EryACP6, (2 R)-2-methyl-3-ketobutyryl-BonACP2 (12), and (2 R)-2-methyl-3-ketopentanoyl-BonACP2 (13). The paired dehydratase domains, BonDH2 and OxaDH5, were then shown to catalyze the reversible syn dehydration of (2 R,3 S)-2-methyl-3-hydroxybutyryl-BonACP2 (14) to give the corresponding trisubstituted ( Z)-2-methylbutenoyl-BonACP2 (16).


Asunto(s)
Hidroliasas/fisiología , Sintasas Poliquetidas/química , Proteínas Bacterianas/química , Biocatálisis , Hidroliasas/química , Metacrilatos/metabolismo , NADP/metabolismo , Sintasas Poliquetidas/fisiología , Estereoisomerismo , Especificidad por Sustrato/fisiología
8.
Sci Rep ; 7(1): 347, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28337032

RESUMEN

Drosophila represents an excellent model to dissect the roles played by the evolutionary conserved family of eukaryotic dyskerins. These multifunctional proteins are involved in the formation of H/ACA snoRNP and telomerase complexes, both involved in essential cellular tasks. Since fly telomere integrity is guaranteed by a different mechanism, we used this organism to investigate the specific role played by dyskerin in somatic stem cell maintenance. To this aim, we focussed on Drosophila midgut, a hierarchically organized and well characterized model for stemness analysis. Surprisingly, the ubiquitous loss of the protein uniquely affects the formation of the larval stem cell niches, without altering other midgut cell types. The number of adult midgut precursor stem cells is dramatically reduced, and this effect is not caused by premature differentiation and is cell-autonomous. Moreover, a few dispersed precursors found in the depleted midguts can maintain stem identity and the ability to divide asymmetrically, nor show cell-growth defects or undergo apoptosis. Instead, their loss is mainly specifically dependent on defective amplification. These studies establish a strict link between dyskerin and somatic stem cell maintenance in a telomerase-lacking organism, indicating that loss of stemness can be regarded as a conserved, telomerase-independent effect of dyskerin dysfunction.


Asunto(s)
Células Madre Adultas/fisiología , Proteínas de Drosophila/fisiología , Homeostasis , Hidroliasas/fisiología , Proteínas Nucleares/fisiología , Animales , Diferenciación Celular , Drosophila/crecimiento & desarrollo , Tracto Gastrointestinal/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Proteínas de Unión al ARN , Nicho de Células Madre
9.
Proc Natl Acad Sci U S A ; 113(29): E4228-37, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27385830

RESUMEN

Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the ß-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors.


Asunto(s)
Hidroliasas/fisiología , Infecciones por Mycobacterium/enzimología , Mycobacterium/patogenicidad , Proteínas de Pez Cebra/fisiología , Animales , Línea Celular , Embrión no Mamífero/enzimología , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Infecciones por Mycobacterium/microbiología , Neutrófilos/inmunología , Virulencia , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/microbiología
10.
J Biol Chem ; 291(27): 14274-14284, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27189937

RESUMEN

Metabolic reprogramming is emerging as a hallmark of the innate immune response, and the dynamic control of metabolites such as succinate serves to facilitate the execution of inflammatory responses in macrophages and other immune cells. Immunoresponsive gene 1 (Irg1) expression is induced by inflammatory stimuli, and its enzyme product cis-aconitate decarboxylase catalyzes the production of itaconate from the tricarboxylic acid cycle. Here we identify an immunometabolic regulatory pathway that links Irg1 and itaconate production to the succinate accumulation that occurs in the context of innate immune responses. Itaconate levels and Irg1 expression correlate strongly with succinate during LPS exposure in macrophages and non-immune cells. We demonstrate that itaconate acts as an endogenous succinate dehydrogenase inhibitor to cause succinate accumulation. Loss of itaconate production in activated macrophages from Irg1(-/-) mice decreases the accumulation of succinate in response to LPS exposure. This metabolic network links the innate immune response and tricarboxylic acid metabolism to function of the electron transport chain.


Asunto(s)
Hidroliasas/fisiología , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinatos/farmacología , Ácido Succínico/metabolismo , Animales , Línea Celular , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones
11.
J Cell Biol ; 207(2): 189-99, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25332162

RESUMEN

Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Hidroliasas/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , ARN de Transferencia/genética , Ribonucleoproteínas Nucleares Pequeñas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/citología , Huso Acromático/metabolismo , Adenosina Trifosfatasas/análisis , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cromatina/ultraestructura , Proteínas de Unión al ADN/análisis , Hidroliasas/análisis , Hidroliasas/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/análisis , Ribonucleoproteínas Nucleares Pequeñas/análisis , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/ultraestructura
12.
J Inherit Metab Dis ; 36(3): 427-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23296366

RESUMEN

Enzymes of intermediary metabolism are less specific than what is usually assumed: they often act on metabolites that are not their 'true' substrate, making abnormal metabolites that may be deleterious if they accumulate. Some of these abnormal metabolites are reconverted to normal metabolites by repair enzymes, which play therefore a role akin to the proofreading activities of DNA polymerases and aminoacyl-tRNA synthetases. An illustrative example of such repair enzymes is L-2-hydroxyglutarate dehydrogenase, which eliminates a metabolite abnormally made by a Krebs cycle enzyme. Mutations in L-2-hydroxyglutarate dehydrogenase lead to L-2-hydroxyglutaric aciduria, a leukoencephalopathy. Other examples are the epimerase and the ATP-dependent dehydratase that repair hydrated forms of NADH and NADPH; ethylmalonyl-CoA decarboxylase, which eliminates an abnormal metabolite formed by acetyl-CoA carboxylase, an enzyme of fatty acid synthesis; L-pipecolate oxidase, which repairs a metabolite formed by a side activity of an enzyme of L-proline biosynthesis. Metabolite proofreading enzymes are likely quite common, but most of them are still unidentified. A defect in these enzymes may account for new metabolic disorders.


Asunto(s)
Enzimas/metabolismo , Enzimas/fisiología , Redes y Vías Metabólicas , Errores Innatos del Metabolismo/prevención & control , Metabolismo/fisiología , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/fisiología , Acilcoenzima A/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/fisiología , Animales , Humanos , Hidroliasas/metabolismo , Hidroliasas/fisiología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo
13.
J Bacteriol ; 192(11): 2892-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363943

RESUMEN

Glucose metabolism in Legionella pneumophila was studied by focusing on the Entner-Doudoroff (ED) pathway with a combined genetic and biochemical approach. The bacterium utilized exogenous glucose for synthesis of acid-insoluble cell components but manifested no discernible increase in the growth rate. Assays with permeabilized cell preparations revealed the activities of three enzymes involved in the pathway, i.e., glucokinase, phosphogluconate dehydratase, and 2-dehydro-3-deoxy-phosphogluconate aldolase, presumed to be encoded by the glk, edd, and eda genes, respectively. Gene-disrupted mutants for the three genes and the ywtG gene encoding a putative sugar transporter were devoid of the ability to metabolize exogenous glucose, indicating that the pathway is almost exclusively responsible for glucose metabolism and that the ywtG gene product is the glucose transporter. It was also established that these four genes formed part of an operon in which the gene order was edd-glk-eda-ywtG, as predicted by genomic information. Intriguingly, while the mutants exhibited no appreciable change in growth characteristics in vitro, they were defective in multiplication within eukaryotic cells, strongly indicating that the ED pathway must be functional for the intracellular growth of the bacterium to occur. Curiously, while the deficient glucose metabolism of the ywtG mutant was successfully complemented by the ywtG(+) gene supplied in trans via plasmid, its defect in intracellular growth was not. However, the latter defect was also manifested in wild-type cells when a plasmid carrying the mutant ywtG gene was introduced. This phenomenon, resembling so-called dominant negativity, awaits further investigation.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Glucosa/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/metabolismo , Transducción de Señal/fisiología , Aldehído-Liasas/genética , Aldehído-Liasas/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Northern Blotting , Regulación Bacteriana de la Expresión Génica/genética , Glucoquinasa/genética , Glucoquinasa/fisiología , Hidroliasas/genética , Hidroliasas/fisiología , Legionella pneumophila/genética , Plásmidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
14.
Am J Pathol ; 174(5): 1745-55, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19349363

RESUMEN

Notch1 is an evolutionarily conserved receptor that regulates cell fate, including such events as differentiation, proliferation, and apoptosis. Myofibroblast differentiation is a key feature of lung fibrosis. Found in inflammatory zone 1 (FIZZ1) has direct fibrogenic properties because of its ability to induce myofibroblast differentiation. However, the downstream signaling pathway that mediates FIZZ1 induction of myofibroblast differentiation remains unknown. The objective of this study was to investigate the involvement of Notch signaling in FIZZ1 induction of lung myofibroblast differentiation and thus explore the potential role of Notch1 in pulmonary fibrosis. The results showed that FIZZ1 increased the expression levels of activated intracellular domain of Notch1 (NIC), its ligand Jagged1, and its target gene Hes1, which were associated with elevated alpha-smooth muscle actin expression levels. Fibroblast alpha-smooth muscle actin expression is induced by the overexpression of NIC but is suppressed by the inhibition of NIC. Moreover, lung fibroblasts that were isolated from mice lacking the GDP-4-keto-6-deoxymannose3,5-epimerase-4-reductase enzyme (FX knockout) exhibited significantly reduced responsiveness to FIZZ1, which was reversed by fucose supplementation. In the absence of exogenous fucose, these FX-deficient cells exhibited defective fucosylation, which is required for Notch signaling. These knockout mice also showed impaired lung fibrosis. These findings suggest that Notch1 signaling in response to FIZZ1 may play a significant role in myofibroblast differentiation during lung fibrosis.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Pulmón/citología , Receptor Notch1/metabolismo , Actinas/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bleomicina/toxicidad , Western Blotting , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Fucosa/administración & dosificación , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hidroliasas/fisiología , Hidroxiprolina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Pulmón/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso/citología , Músculo Liso/metabolismo , Regiones Promotoras Genéticas , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Notch1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged , Factor de Transcripción HES-1
15.
J Biol Chem ; 283(43): 28888-96, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18765671

RESUMEN

Homoaconitase enzymes catalyze hydrolyase reactions in the alpha-aminoadipate pathway for lysine biosynthesis or the 2-oxosuberate pathway for methanogenic coenzyme B biosynthesis. Despite the homology of this iron-sulfur protein to aconitase, previously studied homoaconitases catalyze only the hydration of cis-homoaconitate to form homoisocitrate rather than the complete isomerization of homocitrate to homoisocitrate. The MJ1003 and MJ1271 proteins from the methanogen Methanocaldococcus jannaschii formed the first homoaconitase shown to catalyze both the dehydration of (R)-homocitrate to form cis-homoaconitate, and its hydration is shown to produce homoisocitrate. This heterotetrameric enzyme also used the analogous longer chain substrates cis-(homo)(2)aconitate, cis-(homo)(3)aconitate, and cis-(homo)(4)aconitate, all with similar specificities. A combination of the homoaconitase with the M. jannaschii homoisocitrate dehydrogenase catalyzed all of the isomerization and oxidative decarboxylation reactions required to form 2-oxoadipate, 2-oxopimelate, and 2-oxosuberate, completing three iterations of the 2-oxoacid elongation pathway. Methanogenic archaeal homoaconitases and fungal homoaconitases evolved in parallel in the aconitase superfamily. The archaeal homoaconitases share a common ancestor with isopropylmalate isomerases, and both enzymes catalyzed the hydration of the minimal substrate maleate to form d-malate. The variation in substrate specificity among these enzymes correlated with the amino acid sequences of a flexible loop in the small subunits.


Asunto(s)
Hidroliasas/química , Hidroliasas/fisiología , Metano/química , Fosfotreonina/análogos & derivados , Archaea/metabolismo , Catálisis , Clonación Molecular , Hierro/química , Cinética , Espectroscopía de Resonancia Magnética , Methanococcus/metabolismo , Modelos Biológicos , Modelos Químicos , Datos de Secuencia Molecular , Fosfotreonina/química , Especificidad por Sustrato
16.
J Biol Chem ; 283(17): 11199-209, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18272525

RESUMEN

Yeast Phs1 is the 3-hydroxyacyl-CoA dehydratase that catalyzes the third reaction of the four-step cycle in the elongation of very long-chain fatty acids (VLCFAs). In yeast, the hydrophobic backbone of sphingolipids, ceramide, consists of a long-chain base and an amide-linked C26 VLCFA. Therefore, defects in VLCFA synthesis would be expected to greatly affect sphingolipid synthesis. In fact, in this study we found that reduced Phs1 levels result in significant impairment of the conversion of ceramide to inositol phosphorylceramide. Phs1 proteins are conserved among eukaryotes, constituting a novel protein family. Phs1 family members exhibit no sequence similarity to other dehydratase families, so their active site sequence and catalytic mechanism have been completely unknown. Here, by mutating 22 residues conserved among Phs1 family members, we identified six amino acid residues important in Phs1 function, two of which (Tyr-149 and Glu-156) are indispensable. We also examined the membrane topology of Phs1 using an N-glycosylation reporter assay. Our results suggest that Phs1 is a membrane-spanning protein that traverses the membrane six times and has an N terminus and C terminus facing the cytosol. The important amino acids are concentrated in or near two of the six proposed transmembrane regions. Thus, we also propose a catalytic mechanism for Phs1 that is not unlike mechanisms used by other hydratases active in lipid synthesis.


Asunto(s)
Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Proteínas Fúngicas/química , Hidroliasas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Citosol/metabolismo , Cartilla de ADN/química , Regulación Fúngica de la Expresión Génica , Hidroliasas/química , Hidroliasas/fisiología , Modelos Biológicos , Modelos Químicos , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Esfingolípidos/metabolismo
17.
Mol Cell Biol ; 28(7): 2332-41, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18212040

RESUMEN

Dyskerin binds the H/ACA box of human telomerase RNA and is a core telomerase subunit required for RNP biogenesis and enzyme function in vivo. Missense mutations in dyskerin result in dyskeratosis congenita, a complex syndrome characterized by bone marrow failure, telomerase enzyme deficiency, and progressive telomere shortening. Here we demonstrate that dyskerin also contributes to telomere maintenance in Arabidopsis thaliana. We report that both AtNAP57, the Arabidopsis dyskerin homolog, and AtTERT, the telomerase catalytic subunit, accumulate in the plant nucleolus, and AtNAP57 associates with active telomerase RNP particles in an RNA-dependent manner. Furthermore, AtNAP57 interacts in vitro with AtPOT1a, a novel component of Arabidopsis telomerase. Although a null mutation in AtNAP57 is lethal, AtNAP57, like AtTERT, is not haploinsufficient for telomere maintenance in Arabidopsis. However, introduction of an AtNAP57 allele containing a T66A mutation decreased telomerase activity in vitro, disrupted telomere length regulation on individual chromosome ends in vivo, and established a new, shorter telomere length set point. These results imply that T66A NAP57 behaves as a dominant-negative inhibitor of telomerase. We conclude that dyskerin is a conserved component of the telomerase RNP complex in higher eukaryotes that is required for maximal enzyme activity in vivo.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Cromosomas de las Plantas/ultraestructura , Hidroliasas/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/fisiología , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/ultraestructura , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células Cultivadas/metabolismo , Células Cultivadas/ultraestructura , Cromosomas de las Plantas/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Humanos , Hidroliasas/genética , Datos de Secuencia Molecular , Mutación Missense , Plantas Modificadas Genéticamente , Mutación Puntual , Mapeo de Interacción de Proteínas , Procesamiento Postranscripcional del ARN , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Complejo Shelterina , Telómero/metabolismo , Uridina/metabolismo
19.
J Mol Biol ; 371(5): 1338-53, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17612558

RESUMEN

Naf1 is an essential protein involved in the maturation of box H/ACA ribonucleoproteins, a group of particles required for ribosome biogenesis, modification of spliceosomal small nuclear RNAs and telomere synthesis. Naf1 participates in the assembly of the RNP at transcription sites and in the nuclear trafficking of the complex. The crystal structure of a domain of yeast Naf1p, Naf1Delta1p, reveals a striking structural homology with the core domain of archaeal Gar1, an essential protein component of the mature RNP; it suggests that Naf1p and Gar1p have a common binding site on the enzymatic protein component of the particle, Cbf5p. We propose that Naf1p is a competitive binder for Cbf5p, which is replaced by Gar1p during maturation of the H/ACA particle. The exchange of Naf1p by Gar1p might be prompted by external factors that alter the oligomerisation state of Naf1p and Gar1p. The structural homology with Gar1 suggests that the function of Naf1 involves preventing non-cognate RNAs from being loaded during transport of the particle by inducing a non-productive conformation of Cbf5.


Asunto(s)
Proteínas Fúngicas/química , Hidroliasas/química , Proteínas Asociadas a Microtúbulos/química , Proteínas Nucleares/química , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Dimerización , Proteínas Fúngicas/fisiología , Hidroliasas/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/fisiología , Estructura Terciaria de Proteína , ARN/química , ARN Nuclear Pequeño/química , Ribonucleoproteínas Nucleares Pequeñas/fisiología , Ribonucleoproteínas Nucleolares Pequeñas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Propiedades de Superficie
20.
J Exp Bot ; 58(8): 2053-67, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17463052

RESUMEN

In plants, the shikimate pathway occurs in the plastid and leads to the biosynthesis of aromatic amino acids. The bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHD/SHD) catalyses the conversion of dehydroquinate into shikimate. Expression of NtDHD/SHD was suppressed by RNAi in transgenic tobacco plants. Transgenic lines with <40% of wild-type activity displayed severe growth retardation and reduced content of aromatic amino acids and downstream products such as cholorogenic acid and lignin. Dehydroquinate, the substrate of the enzyme, accumulated. However, unexpectedly, so did the product, shikimate. To exclude that this finding is due to developmental differences between wild-type and transgenic plants, the RNAi approach was additionally carried out using a chemically inducible promoter. This approach revealed that the accumulation of shikimate was a direct effect of the reduced activity of NtDHD/SHD with a gradual accumulation of both dehydroquinate and shikimate following induction of gene silencing. As an explanation for these findings the existence of a parallel extra-plastidic shikimate pathway into which dehydroquinate is diverted is proposed. Consistent with this notion was the identification of a second DHD/SHD gene in tobacco (NtDHD/SHD-2) that lacked a plastidic targeting sequence. Expression of an NtDHD/SHD-2-GFP fusion revealed that the NtDHD/SHD-2 protein is exclusively cytosolic and is capable of shikimate biosynthesis. However, given the fact that this cytosolic shikimate synthesis cannot complement loss of the plastidial pathway it appears likely that the role of the cytosolic DHD/SHD in vivo is different from that of the plastidial enzyme. These data are discussed in the context of current models of plant intermediary metabolism.


Asunto(s)
Oxidorreductasas de Alcohol/fisiología , Hidroliasas/fisiología , Nicotiana/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/enzimología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Proteínas Fluorescentes Verdes/análisis , Hidroliasas/genética , Hidroliasas/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/análisis , Alineación de Secuencia , Ácido Shikímico/metabolismo , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA