Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.798
Filtrar
1.
Arch Microbiol ; 206(6): 275, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775940

RESUMEN

In many European regions, both local metallic and non-metallic raw materials are poorly exploited due to their low quality and the lack of technologies to increase their economic value. In this context, the development of low cost and eco-friendly approaches, such as bioleaching of metal impurities, is crucial. The acidophilic strain Acidiphilium sp. SJH reduces Fe(III) to Fe(II) by coupling the oxidation of an organic substrate to the reduction of Fe(III) and can therefore be applied in the bioleaching of iron impurities from non-metallic raw materials. In this work, the physiology of Acidiphilium sp. SJH and the reduction of iron impurities from quartz sand and its derivatives have been studied during growth on media supplemented with various carbon sources and under different oxygenation conditions, highlighting that cell physiology and iron reduction are tightly coupled. Although the organism is known to be aerobic, maximum bioleaching performance was obtained by cultures cultivated until the exponential phase of growth under oxygen limitation. Among carbon sources, glucose has been shown to support faster biomass growth, while galactose allowed highest bioleaching. Moreover, Acidiphilium sp. SJH cells can synthesise and accumulate Poly-ß-hydroxybutyrate (PHB) during the process, a polymer with relevant application in biotechnology. In summary, this work gives an insight into the physiology of Acidiphilium sp. SJH, able to use different carbon sources and to synthesise a technologically relevant polymer (PHB), while removing metals from sand without the need to introduce modifications in the process set up.


Asunto(s)
Acidiphilium , Hierro , Oxidación-Reducción , Hierro/metabolismo , Acidiphilium/metabolismo , Acidiphilium/crecimiento & desarrollo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Polímeros/metabolismo , Medios de Cultivo/química , Biomasa , Polihidroxibutiratos
2.
Antonie Van Leeuwenhoek ; 117(1): 75, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700529

RESUMEN

Biogenic nanoparticles (NPs) have emerged as promising therapeutic formulations in effective drug delivery. Despite of various positive attributes, these NPs are often conjugated with various cytotoxic organic fluorophores for bioimaging, thereby reducing its effectiveness as a potential carrier. Herein, we aim to formulate biogenic fluorescent pigmented polyhydroxybutyrate (PHB) NPs from Rhodanobacter sp. strain KT31 (OK001852) for drug delivery. The bacterial strain produced 0.5 g L-1 of polyhydroxyalkanoates (PHAs) from 2.04 g L-1 of dry cell weight (DCW) under optimised conditions via submerged fermentation. Further, structural, thermal, and morphological charactersiation of the extracted PHAs was conducted using advance analytical technologies. IR spectra at 1719.25 cm-1 confirmed presence of C = O functional group PHB. NMR and XRD analysis validated the chemical structure and crystallinity of PHB. TG-DTA revealed Tm (168 °C), Td (292 °C), and Xc (35%) of the PHB. FE-SEM imaging indicated rough surface of the PHB film and the biodegradability was confirmed from open windro composting. WST1 assay showed no significant cell death (> 50%) from 100 to 500 µg/mL, endorsing non-cytotoxic nature of PHB. PHB NPs were uniform, smooth and spherical with size distribution and mean zeta potential 44.73 nm and 0.5 mV. IR and XRD peaks obtained at 1721.75 cm-1 and 48.42 Å denoted C = O and crystalline nature of PHB. Cell proliferation rate of PHB NPs was quite significant at 50 µg/mL, establishing the non-cytotoxic nature of NPs. Further, in vitro efficacy of the PHB NPs needs to be evaluated prior to the biomedical applications.


Asunto(s)
Nanopartículas , Polihidroxialcanoatos , Prohibitinas , Nanopartículas/química , Polihidroxialcanoatos/química , Polihidroxialcanoatos/metabolismo , Sistemas de Liberación de Medicamentos , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Humanos , Rhodospirillaceae/metabolismo , Rhodospirillaceae/química , Portadores de Fármacos/química
3.
Nat Commun ; 15(1): 3267, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627361

RESUMEN

In vitro biotransformation (ivBT) facilitated by in vitro synthetic enzymatic biosystems (ivSEBs) has emerged as a highly promising biosynthetic platform. Several ivSEBs have been constructed to produce poly-3-hydroxybutyrate (PHB) via acetyl-coenzyme A (acetyl-CoA). However, some systems are hindered by their reliance on costly ATP, limiting their practicality. This study presents the design of an ATP-free ivSEB for one-pot PHB biosynthesis via acetyl-CoA utilizing starch-derived maltodextrin as the sole substrate. Stoichiometric analysis indicates this ivSEB can self-maintain NADP+/NADPH balance and achieve a theoretical molar yield of 133.3%. Leveraging simple one-pot reactions, our ivSEBs achieved a near-theoretical molar yield of 125.5%, the highest PHB titer (208.3 mM, approximately 17.9 g/L) and the fastest PHB production rate (9.4 mM/h, approximately 0.8 g/L/h) among all the reported ivSEBs to date, and demonstrated easy scalability. This study unveils the promising potential of ivBT for the industrial-scale production of PHB and other acetyl-CoA-derived chemicals from starch.


Asunto(s)
Hidroxibutiratos , Polihidroxibutiratos , Polisacáridos , Almidón , Acetilcoenzima A/metabolismo , Almidón/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , NADP/metabolismo , Biotransformación
4.
Biochem Soc Trans ; 52(2): 671-679, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38630434

RESUMEN

Inorganic polyphosphate (polyP) is widely recognized for playing important roles and processes involved in energy and phosphate storage, regulation of gene expression, and calcium signaling. The less well-known role of polyP is as a direct mediator of ion transport across biological membranes. Here, we will briefly summarize current knowledge of the molecular mechanisms of how polyP can be involved in membrane ion transport. We discuss three types of mechanisms that might involve polyP: (1) formation of non-protein channel complex that includes calcium, polyP, and polyhydroxybutyrate (PHB); (2) modulation of the channel activity of PHBlated protein channels; and (3) direct effects of polyP on the function of the voltage-gated ion channels in the process that do not involve PHB.


Asunto(s)
Transporte Iónico , Polifosfatos , Polifosfatos/metabolismo , Humanos , Membrana Celular/metabolismo , Prohibitinas , Animales , Calcio/metabolismo , Hidroxibutiratos/metabolismo , Canales Iónicos/metabolismo
5.
Appl Microbiol Biotechnol ; 108(1): 310, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662130

RESUMEN

Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.


Asunto(s)
Halomonas , Hidroxibutiratos , Nitrógeno , Poliésteres , Polihidroxibutiratos , Halomonas/metabolismo , Halomonas/genética , Halomonas/crecimiento & desarrollo , Nitrógeno/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Redes y Vías Metabólicas/genética , Biomasa , Glucosa/metabolismo
6.
J Hazard Mater ; 471: 134348, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38653138

RESUMEN

This study ventures into the exploration of potential poly-3-hydroxybutyrate (PHB) degradation in alpine environments. PHB-degrading bacteria were identified in both campus soil, representing a residential area, and Mt. Kurodake soil, an alpine region in Hokkaido, Japan. Next-generation sequencing analysis indicated that the campus soil exhibited higher microbial diversity, while Ralstonia insidiosa C1, isolated from Mt. Kurodake soil, displayed the highest proficiency in PHB degradation. R. insidiosa C1 efficiently degraded up to 3% (w/v) of PHB and various films composed of other biopolymers at 14 °C. This bacterium synthesized homopolymers using substrates such as 3-hydroxybutyric acid, sugars, and acetic acid, while also produced copolymers using a mixture of fatty acids. The analysis results confirmed that the biopolymer synthesized by strain C1 using glucose was PHB, with physical properties comparable to commercial products. The unique capabilities of R. insidiosa C1, encompassing both the production and degradation of bioplastics, highlight its potential to establish a novel material circulation model.


Asunto(s)
Biodegradación Ambiental , Hidroxibutiratos , Polihidroxialcanoatos , Ralstonia , Microbiología del Suelo , Ralstonia/metabolismo , Ralstonia/genética , Polihidroxialcanoatos/metabolismo , Hidroxibutiratos/metabolismo , Hidroxibutiratos/química , Poliésteres/metabolismo , Poliésteres/química , Japón , Polihidroxibutiratos
7.
J Biotechnol ; 388: 83-95, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621427

RESUMEN

Due to the rapid increase in the world's population, many developing countries are facing malnutrition problems, including famine and food insecurity. Particularly, the deficiency of protein sources becomes a serious problem for human and animal nutrition. In this context, Single Cell Proteins, could be exploited as an alternative source of unconventional proteins. The aim of the study was to investigate SCP production and composition by Cupriavidus necator under various environmental conditions, temperature and pH values. A mono-factorial approach was implemented using batch bioreactor cultures under well-controlled conditions. Results were compared in terms of bacterial growth and SCP composition (proteins, nucleic acids, amino acids and elemental formula). Complementary analyses were performed by flow cytometry to study cell morphology, membrane permeability and the presence of Poly(3-hydroxybutyrate) (PHB) production. Our data confirmed the ability of C. necator to produce high amount of proteins (69 %DW at 30 °C and pH7). The results showed that temperature and pH independently impact SCP production and composition. This impact was particularly observed at the highest temperature (40 °C) and also the lowest pH value (pH5) providing lower growth rates, cell elongation, changes in granularity and lower amounts of proteins (down to 44 %DW at pH5) and nucleic acids. These low percentages were related to the production of PHB production (up to 44 %DW at 40 °C) which is the first report of a PHB accumulation in C. necator under nutrient unlimited conditions.


Asunto(s)
Reactores Biológicos , Cupriavidus necator , Poliésteres , Temperatura , Cupriavidus necator/metabolismo , Cupriavidus necator/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Reactores Biológicos/microbiología , Poliésteres/metabolismo , Proteínas Bacterianas/metabolismo , Hidroxibutiratos/metabolismo , Prohibitinas , Aminoácidos/metabolismo , Polihidroxibutiratos , Proteínas en la Dieta
8.
Biotechnol Adv ; 72: 108340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38537879

RESUMEN

As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.


Asunto(s)
Polihidroxibutiratos , Polímeros , Polímeros/química , Fermentación , Carbohidratos , Carbono/química , Hidroxibutiratos/análisis , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo
9.
Int J Biol Macromol ; 266(Pt 1): 130990, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508553

RESUMEN

This study investigated the effect of polymer blending of microbially produced poly[(R)-lactate-co-(R)-3-hydroxybutyrate] copolymers (LAHB) with poly(lactate) (PLA) on their mechanical, thermal, and biodegradable properties. Blending of high lactate (LA) content and high molecular weight LAHB significantly improved the tensile elongation of PLA up to more than 250 % at optimal LAHB composition of 20-30 wt%. Temperature-modulated differential scanning calorimetry and dynamic mechanical analysis revealed that PLA and LAHB were immiscible but interacted with each other, as indicated by the mutual plasticization effect. Detailed morphological characterization using scanning probe microscopy, small-angle X-ray scattering, and solid-state NMR confirmed that PLA and LAHB formed a two-phase structure with a characteristic length scale as small as 20 nm. Because of mixing in this order, the polymer blends were optically transparent. The biological oxygen demand test of the polymer blends in seawater indicated an enhancement of PLA biodegradation during biodegradation of the polymer blends.


Asunto(s)
Poliésteres , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Polímeros/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Temperatura , Peso Molecular , Biodegradación Ambiental
10.
Microb Cell Fact ; 23(1): 56, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368375

RESUMEN

BACKGROUND: Polyhydroxybutyrate (PHB) has emerged as a promising eco-friendly alternative to traditional petrochemical-based plastics. In the present study, we isolated and characterized a new strain of Salinicola salarius, a halophilic bacterium, from the New Suez Canal in Egypt and characterized exclusively as a potential PHB producer. Further genome analysis of the isolated strain, ES021, was conducted to identify and elucidate the genes involved in PHB production. RESULTS: Different PHB-producing marine bacteria were isolated from the New Suez Canal and characterized as PHB producers. Among the 17 bacterial isolates, Salinicola salarius ES021 strain showed the capability to accumulate the highest amount of PHB. Whole genome analysis was implemented to identify the PHB-related genes in Salinicola salarius ES021 strain. Putative genes were identified that can function as phaCAB genes to produce PHB in this strain. These genes include fadA, fabG, and P3W43_16340 (encoding acyl-CoA thioesterase II) for PHB production from glucose. Additionally, phaJ and fadB were identified as key genes involved in PHB production from fatty acids. Optimization of environmental factors such as shaking rate and incubation temperature, resulted in the highest PHB productivity when growing Salinicola salarius ES021 strain at 30°C on a shaker incubator (110 rpm) for 48 h. To maximize PHB production economically, different raw materials i.e., salted whey and sugarcane molasses were examined as cost-effective carbon sources. The PHB productivity increased two-fold (13.34 g/L) when using molasses (5% sucrose) as a fermentation media. This molasses medium was used to upscale PHB production in a 20 L stirred-tank bioreactor yielding a biomass of 25.12 g/L, and PHB of 12.88 g/L. Furthermore, the produced polymer was confirmed as PHB using Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses. CONCLUSIONS: Herein, Salinicola salarius ES021 strain was demonstrated as a robust natural producer of PHB from agro-industrial wastes. The detailed genome characterization of the ES021 strain presented in this study identifies potential PHB-related genes. However, further metabolic engineering is warranted to confirm the gene networks required for PHB production in this strain. Overall, this study contributes to the development of sustainable and cost-effective PHB production strategies.


Asunto(s)
Halomonadaceae , Residuos Industriales , Polihidroxibutiratos , Plásticos , Polímeros , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
11.
Appl Environ Microbiol ; 90(2): e0155723, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299815

RESUMEN

Using dissolved inorganic carbon (DIC) as a major carbon source, as autotrophs do, is complicated by the bedeviling nature of this substance. Autotrophs using the Calvin-Benson-Bassham cycle (CBB) are known to make use of a toolkit comprised of DIC transporters and carbonic anhydrase enzymes (CA) to facilitate DIC fixation. This minireview provides a brief overview of the current understanding of how toolkit function facilitates DIC fixation in Cyanobacteria and some Proteobacteria using the CBB and continues with a survey of the DIC toolkit gene presence in organisms using different versions of the CBB and other autotrophic pathways (reductive citric acid cycle, Wood-Ljungdahl pathway, hydroxypropionate bicycle, hydroxypropionate-hydroxybutyrate cycle, and dicarboxylate-hydroxybutyrate cycle). The potential function of toolkit gene products in these organisms is discussed in terms of CO2 and HCO3- supply from the environment and demand by the autotrophic pathway. The presence of DIC toolkit genes in autotrophic organisms beyond those using the CBB suggests the relevance of DIC metabolism to these organisms and provides a basis for better engineering of these organisms for industrial and agricultural purposes.


Asunto(s)
Archaea , Bacterias , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Procesos Autotróficos/genética , Carbono/metabolismo , Hidroxibutiratos/metabolismo , Dióxido de Carbono/metabolismo , Ciclo del Carbono/genética
12.
Int J Biol Macromol ; 261(Pt 2): 129838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307428

RESUMEN

A novel α-amylase Amy03713 was screened and cloned from the starch utilization strain Vibrio alginolyticus LHF01. When heterologously expressed in Escherichia coli, Amy03713 exhibited the highest enzyme activity at 45 °C and pH 7, maintained >50 % of the enzyme activity in the range of 25-75 °C and pH 5-9, and sustained >80 % of the enzyme activity in 25 % (w/v) of NaCl solution, thus showing a wide range of adapted temperatures, pH, and salt concentrations. Halomonas bluephagenesis harboring amy03713 gene was able to directly utilize starch. With optimized amylase expression, H. bluephagenesis could produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). When cultured for PHB production, recombinant H. bluephagenesis was able to grow up to a cell dry weight of 11.26 g/L, achieving a PHB titer of 6.32 g/L, which is the highest titer that has been reported for PHB production from starch in shake flasks. This study suggests that Amy03713 is an ideal amylase for PHA production using starch as the carbon source in H. bluephagenesis.


Asunto(s)
Halomonas , Ácidos Pentanoicos , Polihidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Carbono/metabolismo , Almidón/metabolismo , Hidroxibutiratos/metabolismo , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Poliésteres/metabolismo
13.
Microb Cell Fact ; 23(1): 52, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360657

RESUMEN

BACKGROUND: Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaCBP-M-CPF4) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaCBP-M-CPF4 through N-terminal truncation. RESULTS: The N-terminal truncated mutants of PhaCBP-M-CPF4 were constructed based on the information of the predicted secondary and tertiary structures using PSIPRED server and AlphaFold2 program, respectively. The N-terminal truncated PhaCBP-M-CPF4 mutants were evaluated in C. necator mutant PHB-4 based on the cell dry weight, PHA content, 3HHx molar composition, molecular weights, and granule morphology of the PHA granules. The results showed that most transformants harbouring the N-terminal truncated PhaCBP-M-CPF4 showed a reduction in PHA content and cell dry weight except for PhaCBP-M-CPF4 G8. PhaCBP-M-CPF4 G8 and A27 showed an improved weight-average molecular weight (Mw) of PHA produced due to lower expression of the truncated PhaCBP-M-CPF4. Transformants harbouring PhaCBP-M-CPF4 G8, A27, and T74 showed a reduction in the number of granules. PhaCBP-M-CPF4 G8 produced higher Mw PHA in mostly single larger PHA granules with comparable production as the full-length PhaCBP-M-CPF4. CONCLUSION: This research showed that N-terminal truncation had effects on PHA accumulation, substrate specificity, Mw, and granule morphology. This study also showed that N-terminal truncation of the amino acids that did not adopt any secondary structure can be an alternative to improve PhaCs for the production of PHA with higher Mw in mostly single larger granules.


Asunto(s)
Cupriavidus necator , Polihidroxialcanoatos , Polihidroxialcanoatos/metabolismo , Ácido 3-Hidroxibutírico , Caproatos/metabolismo , Hidroxibutiratos/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Gránulos Citoplasmáticos , Cupriavidus necator/genética , Cupriavidus necator/metabolismo
14.
Environ Res ; 250: 118448, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360165

RESUMEN

The global consumption of plastics generates accelerated environmental pollution in landfills and marine ecosystems. Biopolymers are the materials with the greatest potential to replace synthetic polymers in the market due to their good biodegradability, however, there are still several disadvantages, mainly related to their production cost. Considering the above, the generation of biodegradable and biocompatible bioplastics stands out as an alternative solution, some of which are made from renewable raw materials, including polyhydroxyalkanoates PHAs. Although much research has been done on bacteria with the capacity for intracellular accumulation of PHAs, among others, it is also possible to produce PHAs using mixed microbial cultures instead of a single microorganism, using natural microbial consortia that have the capacity to store high amounts of PHAs. In this contribution, three methods for the extraction and purification of PHAs produced by fermentation using volatile fatty acids as a carbon source at different concentrations were evaluated, using the pure strain Burkholderia cepacia 2G-57 and the mixed cultures of the activated sludge from the El Salitre WWTP, in order to select the best method from the point of view of environmental sustainability as this will contribute to the scalability of the process. The mixed cultures were identified by sequencing of the 16S gene. A yield of 89% was obtained from the extraction and purification of PHA using acetic acid as a solvent, which according to its properties is "greener" than chloroform. The polymer obtained was identified as polyhydroxybutylated PHB.


Asunto(s)
Burkholderia cepacia , Ácidos Grasos Volátiles , Burkholderia cepacia/metabolismo , Ácidos Grasos Volátiles/metabolismo , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Fermentación , Polihidroxialcanoatos/química , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Hidroxibutiratos/metabolismo
15.
Appl Microbiol Biotechnol ; 108(1): 104, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38212969

RESUMEN

The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.


Asunto(s)
Diatomeas , Polihidroxibutiratos , Diatomeas/genética , Diatomeas/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica , Lípidos , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
16.
Int J Biol Macromol ; 257(Pt 2): 128709, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072340

RESUMEN

Due to its biodegradability and biocompatibility, polyhydroxybutyrate (PHB) has received attention as an alternative material for microbeads in personal care and cosmetic products (PCCPs). Here, PHB was produced from crude glycerol by an Escherichia coli JM109 strain harboring pUC19-23,119-phaCABA-04 without isopropyl ß-D-1-thiogalactopyranoside (IPTG), an inducing agent. Astaxanthin-loaded PHB microbeads were prepared through emulsification-solvent evaporation. Studies were performed to determine how the concentration of PHB and stirring rate influence the size, surface morphology, encapsulation efficiency (EE), and astaxanthin release profile. The astaxanthin-loaded PHB microbeads exhibited a rough surface, 98.1 ± 0.7 % EE, spherical shape and 179 ± 44 µm size. In addition, <50 % astaxanthin release was observed within 240 min. Stability studies revealed that astaxanthin-loaded microbeads retained over 85.3 ± 4.2 % of astaxanthin after 90 days at 4 °C and showed a 2-fold reduction in astaxanthin degradation compared to their unencapsulated counterparts; thus, astaxanthin-loaded microbeads show promise for PCCPs applications. A cytotoxicity assay revealed that astaxanthin-loaded PHB microbeads were nontoxic to the human epidermal keratinocyte cell line, PSVK1, and EpiSkin® cells. Skin irritation and sensitization were not observed during a human repeated insult patch test (HRIPT), according to clinical practice guidelines of the Japanese dermatological association.


Asunto(s)
Glicerol , Polihidroxibutiratos , Humanos , Microesferas , Solventes , Hidroxibutiratos/metabolismo , Xantófilas
17.
Int J Biol Macromol ; 255: 128067, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967596

RESUMEN

The present study aims to optimize the nutrients for maximization of cyanobacterial biomass with high content of polyhydroxybutyrate (PHB), a bioplastic, and recovery of biomass by auto-sedimentation under diurnal light mimic to sunlight. The multi-objective optimization with desirability approach was used to improve dry cell weight (DCW), PHB content (% w/w), and auto-sedimentation concentration factor (SCF) of biomass. Initially, NaNO3, K2HPO4, TRACE (micronutrient solution), Na2EDTA, and MgSO4.7H2O were screened as important media compositions. Screening was followed by the application of response surface methodology for the development of a model used in multi-objective optimization. The optimized media selected from many optimal solutions, a set of Pareto solutions generated by multi-objective optimization was validated in a flat panel photobioreactor. Using a single-stage cultivation strategy under diurnal light, Chlorogloea fritschii TISTR 8527 has shown capability to produce DCW of 1.23 g/l with PHB content of 31.78 % and SCF of 93.63 with optimal media. This leads to the enhancement of both PHB content (2.72 fold) and SCF (1.64 fold) were observed when compared to the non-optimal medium. This is the first multi-objective optimization study for media optimization using cyanobacteria reported till now under diurnal light mimic to sunlight for bioplastic production.


Asunto(s)
Cianobacterias , Hidroxibutiratos , Hidroxibutiratos/metabolismo , Polihidroxibutiratos , Cianobacterias/metabolismo , Biopolímeros/metabolismo , Biomasa
18.
Biodegradation ; 35(2): 209-224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37402058

RESUMEN

Biodegradation rates and mechanical properties of poly(3-hydroxybutyrate) (PHB) composites with green algae and cyanobacteria were investigated for the first time. To the authors knowledge, the addition of microbial biomass led to the biggest observed effect on biodegradation so far. The composites with microbial biomass showed an acceleration of the biodegradation rate and a higher cumulative biodegradation within 132 days compared to PHB or the biomass alone. In order to determine the causes for the faster biodegradation, the molecular weight, the crystallinity, the water uptake, the microbial biomass composition and scanning electron microscope images were assessed. The molecular weight of the PHB in the composites was lower than that of pure PHB while the crystallinity and microbial biomass composition were the same for all samples. A direct correlation of water uptake and crystallinity with biodegradation rate could not be observed. While the degradation of molecular weight of PHB during sample preparation contributed to the improvement of biodegradation, the main reason was attributed to biostimulation by the added biomass. The resulting enhancement of the biodegradation rate appears to be unique in the field of polymer biodegradation. The tensile strength was lowered, elongation at break remained constant and Young's modulus was increased compared to pure PHB.


Asunto(s)
Hidroxibutiratos , Poliésteres , Polihidroxibutiratos , Ácido 3-Hidroxibutírico , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Biomasa , Agua , Biodegradación Ambiental
19.
Biotechnol Bioeng ; 121(1): 139-156, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37638652

RESUMEN

Species of bacteria from the genus Cupriavidus are known, in part, for their ability to produce high amounts of poly-hydroxybutyrate (PHB) making them attractive candidates for bioplastic production. The native synthesis of PHB occurs during periods of metabolic stress, and the process regulating the initiation of PHB accumulation in these organisms is not fully understood. Screening an RB-TnSeq transposon library of Cupriavidus basilensis 4G11 allowed us to identify two genes of an apparent, uncharacterized two-component system, which when omitted from the genome enable increased PHB productivity in balanced, nonstress growth conditions. We observe average increases in PHB productivity of 56% and 41% relative to the wildtype parent strain upon deleting each gene individually from the genome. The increased PHB phenotype disappears, however, in nitrogen-free unbalanced growth conditions suggesting the phenotype is specific to fast-growing, replete, nonstress growth. Bioproduction modeling suggests this phenotype could be due to a decreased reliance on metabolic stress induced by nitrogen limitation to initiate PHB production in the mutant strains. Due to uncertainty in the two-component system's input signal and regulon, the mechanism by which these genes impart this phenotype remains unclear. Such strains may allow for the use of single-stage, continuous bioreactor systems, which are far simpler than many PHB bioproduction schemes used previously, given a similar product yield to batch systems in such a configuration. Bioproductivity modeling suggests that omitting this regulation in the cells may increase PHB productivity up to 24% relative to the wildtype organism when using single-stage continuous systems. This work expands our understanding of the regulation of PHB accumulation in Cupriavidus, in particular the initiation of this process upon transition into unbalanced growth regimes.


Asunto(s)
Cupriavidus necator , Cupriavidus , Hidroxibutiratos/metabolismo , Cupriavidus/genética , Reactores Biológicos , Nitrógeno/metabolismo , Poliésteres/metabolismo
20.
Int J Biol Macromol ; 254(Pt 1): 127475, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37863147

RESUMEN

Polyhydroxybutyrate (PHB) is a well-known biodegradable bioplastic synthesized by microorganisms and can be produced from volatile fatty acids (VFAs). Among VFAs acetate can be utilized by Halomonas sp. YLGW01 for growth and PHB production. In this study, Halomonas sp. JJY01 was developed through introducing acetyl-CoA acetyltransferase (atoAD) with LacIq-Ptrc promoter into Halomonas sp. YLGW01. The effect of expression of atoAD on acetate was investigated by comparison with acetate consumption and PHB production. Shake-flask study showed that Halomonas sp. JJY01 increased acetate consumption rate, PHB yield and PHB production (0.27 g/L/h, 0.075 g/g, 0.72 g/L) compared to the wild type strain (0.17 g/L/h, 0.016 g/g, 0.11 g/L). In 10 L fermenter scale fed-batch fermentation, the growth of Halomonas sp. JJY01 resulted in higher acetate consumption rate, PHB yield and PHB titer (0.55 g/L/h, 0.091 g/g, 4.6 g/L) than wild type strain (0.35 g/L/h, 0.067 h/h, 2.9 g/L). These findings demonstrate enhanced acetate utilization and PHB production through the introduction of atoAD in Halomonas strains.


Asunto(s)
Halomonas , Hidroxibutiratos , Hidroxibutiratos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Polihidroxibutiratos , Acetatos/metabolismo , Poliésteres/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...