Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.670
Filtrar
1.
Iran J Med Sci ; 49(5): 275-285, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751873

RESUMEN

Background: The RNA-dependent RNA polymerase (RdRp) inhibitors, molnupiravir and VV116, have the potential to maximize clinical benefits in the oral treatment of COVID-19. Subjects who consume these drugs may experience an increased incidence of adverse events. This study aimed to evaluate the safety profile of molnupiravir and VV116. Methods: A comprehensive search of scientific and medical databases, such as PubMed Central/Medline, Embase, Web of Science, and Cochrane Library, was conducted to find relevant articles in English from January 2020 to June 2023. Any kind of adverse events reported in the study were pooled and analyzed in the drug group versus the control group. Estimates of risk effects were summarized through the random effects model using Review Manager version 5.2, and sensitivity analysis was performed by Stata 17.0 software. Results: Fifteen studies involving 32,796 subjects were included. Eleven studies were placebo-controlled, and four were Paxlovid-controlled. Twelve studies reported adverse events for molnupiravir, and three studies described adverse events for VV116. The total odds ratio (OR) for adverse events in the RdRp inhibitor versus the placebo-controlled group was 1.01 (95% CI=0.84-1.22; I2=26%), P=0.88. The total OR for adverse events in the RdRp inhibitor versus the Paxlovid-controlled group was 0.32 (95% CI=0.16-0.65; I2=87%), P=0.002. Individual drug subgroup analysis in the placebo-controlled study showed that compared with the placebo group, a total OR for adverse events was 0.97 (95% CI, 0.85-1.10; I2=0%) in the molnupiravir group and 3.77 (95% CI=0.08-175.77; I2=85%) in the VV116 group. Conclusion: The RdRp inhibitors molnupiravir and VV116 are safe for oral treatment of COVID-19. Further evidence is necessary that RdRp inhibitors have a higher safety profile than Paxlovid.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Citidina , Hidroxilaminas , ARN Polimerasa Dependiente del ARN , Humanos , Hidroxilaminas/uso terapéutico , Hidroxilaminas/farmacología , Citidina/análogos & derivados , Citidina/uso terapéutico , Citidina/farmacología , Antivirales/uso terapéutico , Antivirales/efectos adversos , Antivirales/farmacología , Administración Oral , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2 , Adenosina/análogos & derivados
2.
J Med Virol ; 96(5): e29642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38708812

RESUMEN

Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Citidina/análogos & derivados , Genoma Viral , Hidroxilaminas , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , Antivirales/uso terapéutico , Antivirales/farmacología , Hidroxilaminas/farmacología , Hidroxilaminas/uso terapéutico , Masculino , Femenino , Estudios de Casos y Controles , Persona de Mediana Edad , Citidina/uso terapéutico , Citidina/farmacología , Anciano , Adulto , Secuenciación Completa del Genoma , Variación Genética , Uridina/farmacología , COVID-19/virología , Mutación
3.
Bioorg Med Chem Lett ; 106: 129731, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621594

RESUMEN

The inhibition of kynurenine production is considered a promising target for cancer immunotherapy. In this study, an amino acid derivative, compound 1 was discovered using a cell-based assay with our screening library. Compound 1 suppressed kynurenine production without inhibiting indoleamine 2,3-dioxygenase 1 (IDO1) activity. The activity of 1 was derived from the inhibition of IDO1 by a metabolite of 1, O-benzylhydroxylamine (OBHA, 2a). A series of N-substituted 2a derivatives that exhibit potent activity in cell-based assays may represent effective prodrugs. Therefore, we synthesized and evaluated novel N,O-substituted hydroxylamine derivatives. The structure-activity relationships revealed that N,O-substituted hydroxylamine 2c inhibits kynurenine production in a cell-based assay. We conducted an in vivo experiment with 2c, although the effectiveness of O-substituted hydroxylamine derivatives in vivo has not been previously reported. The results indicate that N,O-substituted hydroxylamine derivatives are promising IDO1 inhibitors.


Asunto(s)
Hidroxilamina , Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Quinurenina/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Relación Estructura-Actividad , Humanos , Hidroxilamina/química , Hidroxilamina/farmacología , Hidroxilaminas/química , Hidroxilaminas/farmacología , Estructura Molecular , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ratones , Relación Dosis-Respuesta a Droga
4.
Bioorg Chem ; 147: 107379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643567

RESUMEN

Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. It belongs to the 'Coronaviridae family', responsible for various diseases, including the common cold, SARS, and MERS. The COVID-19 pandemic, which began in March 2020, has affected 209 countries, infected over a million people, and claimed over 50,000 lives. Significant efforts have been made by repurposing several approved drugs including antiviral, to combat the COVID-19 pandemic. Molnupiravir is found to be the first orally acting efficacious drug to treat COVID-19 cases. It was approved for medical use in the UK in November 2021 and other countries, including USFDA, which granted approval an emergency use authorization (EUA) for treating adults with mild to moderate COVID-19 patients. Considering the importance of molnupiravir, the present review deals with its various synthetic strategies, pharmacokinetics, bio-efficacy, toxicity, and safety profiles. The comprehensive information along with critical analysis will be very handy for a wide range of audience including medicinal chemists in the arena of antiviral drug discovery especially anti-viral drugs against any variant of COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Citidina , Hidroxilaminas , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Antivirales/uso terapéutico , Antivirales/síntesis química , Hidroxilaminas/uso terapéutico , Hidroxilaminas/química , Hidroxilaminas/farmacología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Citidina/análogos & derivados , Citidina/uso terapéutico , Citidina/farmacología , Citidina/química , Citidina/síntesis química , Uridina/farmacología , Uridina/análogos & derivados , Uridina/síntesis química , Uridina/química , Uridina/uso terapéutico , Pandemias , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico
5.
Lancet Microbe ; 5(5): e452-e458, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527471

RESUMEN

INTRODUCTION: Continued SARS-CoV-2 infection among immunocompromised individuals is likely to play a role in generating genomic diversity and the emergence of novel variants. Antiviral treatments such as molnupiravir are used to mitigate severe COVID-19 outcomes, but the extended effects of these drugs on viral evolution in patients with chronic infections remain uncertain. This study investigates how molnupiravir affects SARS-CoV-2 evolution in immunocompromised patients with prolonged infections. METHODS: The study included five immunocompromised patients treated with molnupiravir and four patients not treated with molnupiravir (two immunocompromised and two non-immunocompromised). We selected patients who had been infected by similar SARS-CoV-2 variants and with high-quality genomes across timepoints to allow comparison between groups. Throat and nasopharyngeal samples were collected in patients up to 44 days post treatment and were sequenced using tiled amplicon sequencing followed by variant calling. The UShER pipeline and University of California Santa Cruz genome viewer provided insights into the global context of variants. Treated and untreated patients were compared, and mutation profiles were visualised to understand the impact of molnupiravir on viral evolution. FINDINGS: Patients treated with molnupiravir showed a large increase in low-to-mid-frequency variants in as little as 10 days after treatment, whereas no such change was observed in untreated patients. Some of these variants became fixed in the viral population, including non-synonymous mutations in the spike protein. The variants were distributed across the genome and included unique mutations not commonly found in global omicron genomes. Notably, G-to-A and C-to-T mutations dominated the mutational profile of treated patients, persisting up to 44 days post treatment. INTERPRETATION: Molnupiravir treatment in immunocompromised patients led to the accumulation of a distinctive pattern of mutations beyond the recommended 5 days of treatment. Treated patients maintained persistent PCR positivity for the duration of monitoring, indicating clear potential for transmission and subsequent emergence of novel variants. FUNDING: Australian Research Council.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Citidina , Hidroxilaminas , Huésped Inmunocomprometido , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Estudios Retrospectivos , Antivirales/uso terapéutico , Antivirales/farmacología , Hidroxilaminas/uso terapéutico , Hidroxilaminas/farmacología , Masculino , Citidina/análogos & derivados , Citidina/uso terapéutico , Citidina/farmacología , Femenino , Persona de Mediana Edad , Mutación , Anciano , COVID-19/inmunología , COVID-19/virología , Evolución Molecular , Adulto , Genoma Viral/genética
6.
Microbes Environ ; 38(4)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38092410

RESUMEN

Nitrification is a key process in the biogeochemical nitrogen cycle and a major emission source of the greenhouse gas nitrous oxide (N2O). The periplasmic enzyme hydroxylamine oxidoreductase (HAO) is involved in the oxidation of hydroxylamine to nitric oxide in the second step of nitrification, producing N2O as a byproduct. Its three-dimensional structure demonstrates that slight differences in HAO active site residues have inhibitor effects. Therefore, a more detailed understanding of the diversity of HAO active site residues in soil microorganisms is important for the development of novel nitrification inhibitors using structure-guided drug design. However, this has not yet been examined. In the present study, we investigated hao gene diversity in beta-proteobacterial ammonia-oxidizing bacteria (ß-AOB) and complete ammonia-oxidizing (comammox; Nitrospira spp.) bacteria in agricultural fields using a clone library ana-lysis. A total of 1,949 hao gene sequences revealed that hao gene diversity in ß-AOB and comammox bacteria was affected by the fertilizer treatment and field type, respectively. Moreover, hao sequences showed the almost complete conservation of the six HAO active site residues in both ß-AOB and comammox bacteria. The diversity of nitrifying bacteria showed similarity between hao and amoA genes. The nxrB amplicon sequence revealed the dominance of Nitrospira cluster II in tea field soils. The present study is the first to reveal hao gene diversity in agricultural soils, which will accelerate the efficient screening of HAO inhibitors and evaluations of their suppressive effects on nitrification in agricultural soils.


Asunto(s)
Archaea , Betaproteobacteria , Archaea/genética , Suelo/química , Amoníaco , Hidroxilamina , Dominio Catalítico , Bacterias/genética , Nitrificación , Oxidación-Reducción , Hidroxilaminas/farmacología , Microbiología del Suelo , Filogenia
7.
Nature ; 623(7987): 594-600, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37748513

RESUMEN

Molnupiravir, an antiviral medication widely used against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus and many will be lethal; thus, molnupiravir-induced elevated mutation rates reduce viral load1,2. However, if some patients treated with molnupiravir do not fully clear the SARS-CoV-2 infections, there could be the potential for onward transmission of molnupiravir-mutated viruses. Here we show that SARS-CoV-2 sequencing databases contain extensive evidence of molnupiravir mutagenesis. Using a systematic approach, we find that a specific class of long phylogenetic branches, distinguished by a high proportion of G-to-A and C-to-T mutations, are found almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and age groups with widespread use of the drug. We identify a mutational spectrum, with preferred nucleotide contexts, from viruses in patients known to have been treated with molnupiravir and show that its signature matches that seen in these long branches, in some cases with onward transmission of molnupiravir-derived lineages. Finally, we analyse treatment records to confirm a direct association between these high G-to-A branches and the use of molnupiravir.


Asunto(s)
Antivirales , COVID-19 , Citidina , Hidroxilaminas , Mutagénesis , Mutación , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Citidina/análogos & derivados , Citidina/farmacología , Citidina/uso terapéutico , Genoma Viral/efectos de los fármacos , Genoma Viral/genética , Hidroxilaminas/farmacología , Hidroxilaminas/uso terapéutico , Mutación/efectos de los fármacos , Filogenia , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Carga Viral , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Evolución Molecular , Mutagénesis/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
8.
Reprod Toxicol ; 121: 108475, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37748715

RESUMEN

Molnupiravir is a nucleoside analog antiviral that is authorized for use in the treatment of COVID-19. For its therapeutic action, molnupiravir is converted after ingestion to the active metabolite N4-hydroxycytidine, which is incorporated into the viral genome to cause lethal mutagenesis. Molnupiravir is not recommended for use during pregnancy, because preclinical animal studies suggest that it is hazardous to developing embryos. However, the mechanisms underlying the embryotoxicity of molnupiravir are currently unknown. To gain mechanistic insights into its embryotoxic action, the effects of molnupiravir and N4-hydroxycytidine were examined on the in vitro development of mouse preimplantation embryos. Molnupiravir did not prevent blastocyst formation even at concentrations that were much higher than the therapeutic plasma levels. By contrast, N4-hyroxycytidine exhibited potent toxicity, as it interfered with blastocyst formation and caused extensive cell death at concentrations below the therapeutic plasma levels. The adverse effects of N4-hydroxycytidine were dependent on the timing of exposure, such that treatment after the 8-cell stage, but not before it, caused embryotoxicity. Transcriptomic analysis of N4-hydroxycytidine-exposed embryos, together with the examination of eIF-2a protein phosphorylation level, suggested that N4-hydroxycytidine induced the integrated stress response. The adverse effects of N4-hydroxycytidine were significantly alleviated by the co-treatment with S-(4-nitrobenzyl)-6-thioinosine, suggesting that the embryotoxic potential of N4-hydroxycytidine requires the activity of nucleoside transporters. These findings show that the active metabolite of molnupiravir impairs preimplantation development at clinically relevant concentrations, providing mechanistic foundation for further studies on the embryotoxic potential of molnupiravir and other related nucleoside antivirals.


Asunto(s)
COVID-19 , Nucleósidos , Embarazo , Femenino , Ratones , Animales , Nucleósidos/metabolismo , Nucleósidos/farmacología , Blastocisto , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacología , Antivirales/toxicidad
9.
Viruses ; 15(6)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37376616

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a swine coronavirus that is highly infectious and prone to variation. Vaccines derived from traditional PEDV strains provide less protection against PEDV-variant strains. Furthermore; there is a complex diversity of sequences among various PEDV-variant strains. Therefore; there is an urgent need to develop alternative antiviral strategies to defend against PEDV. Molnupiravir is a nucleotide analogue that could replace natural nucleosides to restrain viral RNA replication. Our study provided evidence for the dose-dependent inhibition of PEDV replication by molnupiravir in Vero cells. Molnupiravir also exhibited a strong inhibitory effect on viral RNA and protein production. Our results demonstrated that molnupiravir inhibits PEDV RNA-dependent RNA polymerase (RdRp) activity and induces a high frequency of mutations in the PEDV genome. Further studies revealed that molnupiravir can reverse changes in the transcriptome caused by viral infection. In conclusion, our results indicated that molnupiravir has the potential to be an effective treatment for PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Chlorocebus aethiops , Animales , Porcinos , Células Vero , Virus de la Diarrea Epidémica Porcina/genética , Hidroxilaminas/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Enfermedades de los Porcinos/prevención & control
10.
J Infect Dis ; 227(9): 1068-1072, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36461940

RESUMEN

Molnupiravir is an antiviral agent recently used for treating coronavirus disease 2019 (COVID-19). Here, we demonstrate that N4-hydroxycytidine (NHC), a molnupiravir metabolite, treated with cytidine deaminase (CDA) induced Cu(II)-mediated oxidative DNA damage in isolated DNA. A colorimetric assay revealed hydroxylamine generation from CDA-treated NHC. The site specificity of DNA damage also suggested involvement of hydroxylamine in the damage. Furthermore, Cu(I) and H2O2 play an important role in the DNA damage. We propose oxidative DNA damage via CDA-mediated metabolism as a possible mutagenic mechanism of NHC, highlighting the need for careful risk assessment of molnupiravir use in therapies for viral diseases, including COVID-19.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2 , Peróxido de Hidrógeno , Hidroxilaminas/farmacología , Estrés Oxidativo , Daño del ADN
11.
J Antibiot (Tokyo) ; 75(8): 472-479, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35650279

RESUMEN

D-amino acids play an important role in cell wall peptidoglycan biosynthesis. Mycobacterium tuberculosis D-amino acid oxidase deletion led to reduced biofilm-forming ability. Other recent studies also suggest that the accumulation of D-amino acids blocks biofilm formation and could also disperse pre-formed biofilm. Biofilms are communities of bacterial cells protected by extracellular matrix and harbor drug-tolerant as well as persistent bacteria. In Mycobacterium tuberculosis, biofilm formation or its inhibition by D-amino acids is yet to be tested. In the present study, we used selected D-amino acids to study their role in the prevention of biofilm formation and also if D-cycloserine's activity was due to presence of D-Serine as a metabolite. It was observed that D-serine limits biofilm formation in Mycobacterium tuberculosis H37Ra (Mtb-Ra), but it shows no effect on pre-formed biofilm. Also, D-cycloserine and its metabolic product, hydroxylamine, individually and in combination, with D-Serine, limit biofilm formation in Mtb-Ra and also disrupts existing biofilm. In summary, we demonstrated that D-alanine, D-valine, D-phenylalanine, D-serine, and D-threonine had no disruptive effect on pre-formed biofilm of Mtb-Ra, either individually or in combination, and D-cycloserine and its metabolite hydroxylamine have potent anti-biofilm activity.


Asunto(s)
Mycobacterium tuberculosis , Aminoácidos/metabolismo , Aminoácidos/farmacología , Biopelículas , Cicloserina/farmacología , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacología , Peptidoglicano/metabolismo
12.
Drug Des Devel Ther ; 16: 685-715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321497

RESUMEN

The rising outbreak of SARS-CoV-2 continues to unfold all over the world. The development of novel effective antiviral drugs to fight against SARS-CoV-2 is a time cost. As a result, some specific FDA-approved drugs have already been repurposed and authorized for COVID-19 treatment. The repurposed drugs used were either antiviral or non-antiviral drugs. Accordingly, the present review thoroughly focuses on the repurposing efficacy of these drugs including clinical trials experienced, the combination therapies used, the novel methods followed for treatment, and their future perspective. Therefore, drug repurposing was regarded as an effective avenue for COVID-19 treatment. Recently, molnupiravir is a prodrug antiviral medication that was approved in the United Kingdom in November 2021 for the treatment of COVID-19. On the other hand, PF-07321332 is an oral antiviral drug developed by Pfizer. For the treatment of COVID-19, the PF-07321332/ritonavir combination medication is used in Phase III studies and was marketed as Paxlovid. Herein, we represented the almost history of combating COVID-19 from repurposing to the recently available oral anti-SARS-CoV-2 candidates, as a new hope to end the current pandemic.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Citidina/análogos & derivados , Aprobación de Drogas , Hidroxilaminas/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Citidina/química , Citidina/farmacología , Reposicionamiento de Medicamentos , Humanos , Hidroxilaminas/química , Pruebas de Sensibilidad Microbiana
13.
Drugs ; 82(4): 455-460, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35184266

RESUMEN

Molnupiravir (Lagevrio®) is an orally-administered antiviral prodrug that inhibits replication of RNA viruses through viral error induction. It is being developed by Merck and Ridgeback Biotherapeutics for the prevention and treatment of Coronavirus disease 2019 (COVID-19). Molnupiravir received its first approval on 4 November 2021 in the UK for the treatment of mild to moderate COVID-19 in adults with a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic test and who have at least one risk factor for developing severe illness. Molnupiravir is filed for approval and has emergency use authorization for the treatment of COVID-19 in several countries, including the USA, Japan and those in the EU. This article summarizes the milestones in the development of molnupiravir leading to this first approval for COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adulto , Antivirales/farmacología , Antivirales/uso terapéutico , Citidina/análogos & derivados , Citidina/farmacología , Citidina/uso terapéutico , Humanos , Hidroxilaminas/farmacología , Hidroxilaminas/uso terapéutico , SARS-CoV-2
15.
Nature ; 601(7894): 496, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35064230

Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Desarrollo de Medicamentos/tendencias , Farmacorresistencia Viral , Investigadores , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Administración Oral , Alanina/administración & dosificación , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Antivirales/administración & dosificación , Antivirales/farmacología , Antivirales/provisión & distribución , COVID-19/mortalidad , COVID-19/prevención & control , Vacunas contra la COVID-19/provisión & distribución , Citidina/administración & dosificación , Citidina/análogos & derivados , Citidina/farmacología , Citidina/uso terapéutico , Aprobación de Drogas , Combinación de Medicamentos , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Quimioterapia Combinada , Hospitalización/estadística & datos numéricos , Humanos , Hidroxilaminas/administración & dosificación , Hidroxilaminas/farmacología , Hidroxilaminas/uso terapéutico , Lactamas/administración & dosificación , Lactamas/farmacología , Lactamas/uso terapéutico , Leucina/administración & dosificación , Leucina/farmacología , Leucina/uso terapéutico , Cumplimiento de la Medicación , Terapia Molecular Dirigida , Mutagénesis , Nitrilos/administración & dosificación , Nitrilos/farmacología , Nitrilos/uso terapéutico , Prolina/administración & dosificación , Prolina/farmacología , Prolina/uso terapéutico , Asociación entre el Sector Público-Privado/economía , Ritonavir/administración & dosificación , Ritonavir/farmacología , Ritonavir/uso terapéutico , SARS-CoV-2/enzimología , SARS-CoV-2/genética
16.
Biomed Pharmacother ; 146: 112517, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34902743

RESUMEN

Rapid changes in the viral genome allow viruses to evade threats posed by the host immune response or antiviral drugs, and can lead to viral persistence in the host cells. RNA-dependent RNA polymerase (RdRp) is an essential enzyme in RNA viruses, which is involved in RNA synthesis through the formation of phosphodiester bonds. Therefore, in RNA viral infections such as SARS-CoV-2, RdRp could be a crucial therapeutic target. The present review discusses the promising application of RdRp inhibitors, previously approved or currently being tested in human clinical trials, in the treatment of RNA virus infections. Nucleoside inhibitors (NIs) bind to the active site of RdRp, while nonnucleoside inhibitors (NNIs) bind to allosteric sites. Given the absence of highly effective drugs for the treatment of COVID-19, the discovery of an efficient treatment for this pandemic is an urgent concern for researchers around the world. We review the evidence for molnupiravir (MK-4482, EIDD-2801), an antiviral drug originally designed for Alphavirus infections, as a potential preventive and therapeutic agent for the management of COVID-19. At the beginning of this pandemic, molnupiravir was in preclinical development for seasonal influenza. When COVID-19 spread dramatically, the timeline for development was accelerated to focus on the treatment of this pandemic. Real time consultation with regulators took place to expedite this program. We summarize the therapeutic potential of RdRp inhibitors, and highlight molnupiravir as a new small molecule drug for COVID-19 treatment.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/enzimología , Citidina/análogos & derivados , Hidroxilaminas/uso terapéutico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Animales , Antivirales/farmacología , Ensayos Clínicos como Asunto/métodos , Citidina/farmacología , Citidina/uso terapéutico , Humanos , Hidroxilaminas/farmacología , ARN Polimerasa Dependiente del ARN/metabolismo
18.
Virology ; 564: 33-38, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619630

RESUMEN

Endemic seasonal coronaviruses cause morbidity and mortality in a subset of patients, but no specific treatment is available. Molnupiravir is a promising pipeline antiviral drug for treating SARS-CoV-2 infection potentially by targeting RNA-dependent RNA polymerase (RdRp). This study aims to evaluate the potential of repurposing molnupiravir for treating seasonal human coronavirus (HCoV) infections. Molecular docking revealed that the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC), has similar binding affinity to RdRp of SARS-CoV-2 and seasonal HCoV-NL63, HCoV-OC43 and HCoV-229E. In cell culture models, treatment of molnupiravir effectively inhibited viral replication and production of infectious viruses of the three seasonal coronaviruses. A time-of-drug-addition experiment indicates the specificity of molnupiravir in inhibiting viral components. Furthermore, combining molnupiravir with the protease inhibitor GC376 resulted in enhanced antiviral activity. Our findings highlight that the great potential of repurposing molnupiravir for treating seasonal coronavirus infected patients.


Asunto(s)
Coronavirus Humano 229E/genética , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Humano NL63/genética , Coronavirus Humano OC43/genética , Citidina/análogos & derivados , Hidroxilaminas/farmacología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Resfriado Común/tratamiento farmacológico , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano NL63/fisiología , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/fisiología , Citidina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Pirrolidinas/farmacología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Estaciones del Año , Ácidos Sulfónicos/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
EBioMedicine ; 72: 103595, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34571361

RESUMEN

BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment.


Asunto(s)
Amidas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Citidina/análogos & derivados , Hidroxilaminas/uso terapéutico , Pulmón/virología , Pirazinas/uso terapéutico , Amidas/farmacología , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/transmisión , Citidina/farmacología , Citidina/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Hidroxilaminas/farmacología , Mesocricetus , Pirazinas/farmacología , ARN Viral , Resultado del Tratamiento , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...