Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557355

RESUMEN

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Asunto(s)
Humor Acuoso , Digoxina , Presión Intraocular , Macaca fascicularis , Hipertensión Ocular , Animales , Presión Intraocular/efectos de los fármacos , Digoxina/farmacología , Humor Acuoso/metabolismo , Humor Acuoso/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/fisiopatología , Hipertensión Ocular/metabolismo , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatología , Conejos , Humanos , Cuerpo Ciliar/efectos de los fármacos , Cuerpo Ciliar/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Masculino , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo
2.
J Neuroinflammation ; 21(1): 105, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649885

RESUMEN

BACKGROUND: NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS: Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS: We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS: Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.


Asunto(s)
Barrera Hematorretinal , Presión Intraocular , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , Enfermedades Neuroinflamatorias , Animales , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Ratones , Barrera Hematorretinal/patología , Barrera Hematorretinal/metabolismo , Presión Intraocular/fisiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones Noqueados , Proliferación Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Neuroglía/metabolismo , Neuroglía/patología , Hipertensión Ocular/patología , Hipertensión Ocular/metabolismo , Glaucoma/patología , Glaucoma/metabolismo , Estrés Oxidativo/fisiología
3.
Ophthalmic Res ; 67(1): 232-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38447539

RESUMEN

INTRODUCTION: Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells. Recent research suggests immunological changes such as cytokine imbalance may affect its pathophysiology. This implies that immunomodulation, like that of mesenchymal cells, could be a potential therapeutic avenue for this disease. However, the effects of intravitreal injections of human Wharton's jelly-derived mesenchymal stromal cells (hWJ-MSCs) on intraocular immune response have not been assessed in ocular hypertension (OH) models. METHODS: We explored this by measuring cytokine levels and expression of other markers, such as glial fibrillary acidic protein (GFAP) and T cells, in 15 randomly divided New Zealand rabbits: G1: OH, G2: hWJ-MSCs, and G3: OH+hWJ-MSCs. We analyzed the aqueous humor (IL-6, IL-8, and TNF-α) and vitreous humor (IFN-γ, IL-10, and TGF-ß) using ELISA and flow cytometry (cell populations), as well as TCD3+, TCD3+/TCD4+, and TCD3+/TCD8+ lymphocytes, and GFAP in the retina and optic nerve through immunohistochemistry. RESULTS: We found a decrease in TNF-α, IL-6, IFN-γ, IL-10, and IL-8 in G3 compared to G1 and an increase in TGF-ß in both G2 and G3. TCD3+ retinal infiltration in all groups was primarily TCD8+ rather than TCD4+ cells, and strong GFAP expression was observed in both the retina and optic nerves in all groups. CONCLUSION: Our results suggest that cellular and humoral immune responses may play a role in glaucomatous optic neuropathy and that intravitreal hWJ-MSCs can induce an immunosuppressive environment by inhibiting proinflammatory cytokines and enhancing regulatory cytokines.


Asunto(s)
Citocinas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células Madre Mesenquimatosas , Hipertensión Ocular , Gelatina de Wharton , Animales , Conejos , Gelatina de Wharton/citología , Humanos , Hipertensión Ocular/metabolismo , Citocinas/metabolismo , Humor Acuoso/metabolismo , Presión Intraocular/fisiología , Citometría de Flujo , Trasplante de Células Madre Mesenquimatosas/métodos , Inyecciones Intravítreas , Inmunohistoquímica , Células Ganglionares de la Retina/patología , Glucocorticoides , Nervio Óptico/patología
4.
Exp Eye Res ; 241: 109853, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453038

RESUMEN

High myopia is a risk factor for primary open angle glaucoma (POAG). The pathological mechanism of high myopia induced POAG occurrence is not fully understood. In this study, we successfully established the guinea pig model of ocular hypertension with high myopia, and demonstrated the susceptibility of high myopia for the occurrence of microbead-induced glaucoma compared with non-myopia group and the effect of YAP/TGF-ß signaling pathway in TM pathogenesis induced by high myopia. Moreover, we performed stretching treatment on primary trabecular meshwork (TM) cells to simulate the mechanical environment of high myopia. It was found that stretching treatment disrupted the cytoskeleton, decreased phagocytic function, enhanced ECM remodeling, and promoted cell apoptosis. The experiments of mechanics-induced human TM cell lines appeared the similar trend. Mechanically, the differential expressed genes of TM cells caused by stretch treatment enriched YAP/TGF-ß signaling pathway. To inhibit YAP/TGF-ß signaling pathway effectively reversed mechanics-induced TM damage. Together, this study enriches mechanistic insights of high myopia induced POAG susceptibility and provides a potential target for the prevention of POAG with high myopia.


Asunto(s)
Glaucoma de Ángulo Abierto , Hipertensión Ocular , Humanos , Animales , Cobayas , Factor de Crecimiento Transformador beta/metabolismo , Malla Trabecular/metabolismo , Glaucoma de Ángulo Abierto/prevención & control , Glaucoma de Ángulo Abierto/genética , Hipertensión Ocular/metabolismo , Factores de Riesgo , Células Cultivadas
5.
Acta Neuropathol Commun ; 12(1): 44, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504301

RESUMEN

Microglia-mediated neuroinflammatory responses are recognized as a predominant factor during high intraocular pressure (IOP)-induced retinal and optic nerve injury along with potential therapeutic targets for the disease. Our previous research indicated that mesenchymal stem cell (MSC) treatment could reduce high IOP-induced neuroinflammatory responses through the TLR4 pathway in a rat model without apparent cell replacement and differentiation, suggesting that the anti-neuroinflammatory properties of MSCs are potentially mediated by paracrine signaling. This study aimed to evaluate the anti-neuroinflammatory effect of human adipose tissue-derived extracellular vesicles (ADSC-EVs) in microbead-induced ocular hypertension (OHT) animals and to explore the underlying mechanism since extracellular vesicles (EVs) are the primary transporters for cell secretory action. The anti-neuroinflammatory effect of ADSC-EVs on LPS-stimulated BV-2 cells in vitro and OHT-induced retinal and optic nerve injury in vivo was investigated. According to the in vitro research, ADSC-EV treatment reduced LPS-induced microglial activation and the TLR4/NF-κB proinflammatory cascade response axis in BV-2 cells, such as CD68, iNOS, TNF-α, IL-6, and IL-1ß, TLR4, p-38 MAPK, NF-κB. According to the in vivo data, intravitreal injection of ADSC-EVs promoted RGC survival and function, reduced microglial activation, microglial-derived neuroinflammatory responses, and TLR4/MAPK/NF-κB proinflammatory cascade response axis in the OHT mice. Our findings provide preliminary evidence for the RGC protective and microglia-associated neuroinflammatory reduction effects of ADSC-EVs by inhibiting the TLR4/MAPK/NF-κB proinflammatory cascade response in OHT mice, indicating the therapeutic potential ADSC-EVs or adjunctive therapy for glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Traumatismos del Nervio Óptico , Humanos , Ratas , Ratones , Animales , FN-kappa B/metabolismo , Microglía/metabolismo , Receptor Toll-Like 4/metabolismo , Células Ganglionares de la Retina/metabolismo , Lipopolisacáridos/farmacología , Hipertensión Ocular/metabolismo , Inflamación/metabolismo , Células Madre/metabolismo
6.
Genes (Basel) ; 14(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38002955

RESUMEN

Glucocorticoids (GCs) are known to regulate several physiological processes and are the mainstay in the management of inflammatory eye diseases. The long-term use of GC causes raised intraocular pressure (IOP) or ocular hypertension (OHT) in about 30-50% of the susceptible individuals depending on the route of administration, and can lead to steroid-induced secondary glaucoma. The present study aims to understand the role of microRNAs (miRNAs) in differential glucocorticoid (GC) responsiveness in human trabecular meshwork (HTM) cells using small RNA sequencing. The human organ-cultured anterior segment (HOCAS) model was used to identify whether donor eyes were from GC-responders (GC-R; n = 4) or GC-non-responders (GC-NR; n = 4) following treatment with either 100 nM dexamethasone (DEX) or ethanol (ETH) for 7 days. The total RNA was extracted from cultured HTM cells with known GC responsiveness, and the differentially expressed miRNAs (DEMIRs) were compared among the following five groups: Group #1: ETH vs. DEX-treated GC-R; #2: ETH vs. DEX-treated GC-NR; #3: overlapping DEGs between Group #1 and #2; #4: Unique DEMIRs of GC-R; #5: Unique DEMIRs of GC-NR; and validated by RT-qPCR. There were 13 and 21 DEMIRs identified in Group #1 and Group #2, respectively. Seven miRNAs were common miRNAs dysregulated in both GC-R and GC-NR (Group #3). This analysis allowed the identification of DEMIRs that were unique to GC-R (6 miRNAs) and GC-NR (14 miRNAs) HTM cells, respectively. Ingenuity Pathway Analysis identified enriched pathways and biological processes associated with differential GC responsiveness in HTM cells. This is the first study to reveal a unique miRNA signature between GC-R and GC-NR HTM cells, which raises the possibility of developing new molecular targets for the management of steroid-OHT/glaucoma.


Asunto(s)
Glaucoma , MicroARNs , Hipertensión Ocular , Humanos , Glucocorticoides/farmacología , Malla Trabecular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hipertensión Ocular/inducido químicamente , Hipertensión Ocular/metabolismo , Glaucoma/genética , Dexametasona/farmacología , Análisis de Secuencia de ARN , Esteroides/metabolismo
7.
Cells ; 12(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37998361

RESUMEN

The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1ß (IL-1ß) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.


Asunto(s)
Glaucoma , Hipertensión Ocular , Animales , Presión Intraocular , Células Ganglionares de la Retina/metabolismo , Inflamasomas/metabolismo , Hipertensión Ocular/metabolismo , Glaucoma/metabolismo
8.
Aging (Albany NY) ; 15(19): 10705-10731, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37819813

RESUMEN

Glaucoma is a leading cause of irreversible vision loss characterized by retinal neurodegeneration. Circular RNAs (circRNAs) have emerged as the potential biomarkers and therapeutic targets for neurodegenerative diseases. However, the expression profiling of circRNAs in glaucomatous neurodegeneration has not been fully understood. In this study, we built a glaucomatous neurodegeneration model via the injection of microbeads into anterior chamber. circRNA expression profile and bioinformatics analysis revealed that compared with normal retinas, 171 circRNAs were dysregulated in the glaucomatous retinas, including 101 up-regulated circRNAs and 70 down-regulated circRNAs. Detecting the level of circular RNA-glycine receptor α2 subunit gene (cGlra2) in aqueous humor made it possible to distinguish glaucoma patients from cataract patients. Silencing of cGlra2 protected against oxidative stress- or hydrostatic pressure-induced retinal ganglion cell (RGC) injury in vitro. Moreover, silencing of cGlra2 retarded ocular hypertension-induced retinal neurodegeneration in vivo as shown by increased TUJ1 staining, reduced reactive gliosis, decreased retinal cell apoptosis, enhanced visual acuity, and improved retinal function. cGlra2 acted as a miRNA sponge to regulate RGC function through cGlra2/miR-144/BCL2L11 signaling axis. Collectively, this study provides novel insights into the underlying mechanism of retinal neurodegeneration and highlights the potential of cGlra2 as a target for the diagnosis and treatment of glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Humanos , Animales , ARN Circular/genética , ARN Circular/metabolismo , Retina/metabolismo , Hipertensión Ocular/genética , Hipertensión Ocular/metabolismo , Células Ganglionares de la Retina , Modelos Animales de Enfermedad
9.
Cells ; 12(20)2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37887296

RESUMEN

The glucocorticoid receptor (GR), including both alternative spliced isoforms (GRα and GRß), has been implicated in the development of primary open-angle glaucoma (POAG) and iatrogenic glucocorticoid-induced glaucoma (GIG). POAG is the most common form of glaucoma, which is the leading cause of irreversible vision loss and blindness in the world. Glucocorticoids (GCs) are commonly used therapeutically for ocular and numerous other diseases/conditions. One serious side effect of prolonged GC therapy is the development of iatrogenic secondary ocular hypertension (OHT) and OAG (i.e., GC-induced glaucoma (GIG)) that clinically and pathologically mimics POAG. GC-induced OHT is caused by pathogenic damage to the trabecular meshwork (TM), a tissue involved in regulating aqueous humor outflow and intraocular pressure. TM cells derived from POAG eyes (GTM cells) have a lower expression of GRß, a dominant negative regulator of GC activity, compared to TM cells from age-matched control eyes. Therefore, GTM cells have a greater pathogenic response to GCs. Almost all POAG patients develop GC-OHT when treated with GCs, in contrast to a GC responder rate of 40% in the normal population. An increased expression of GRß can block GC-induced pathogenic changes in TM cells and reverse GC-OHT in mice. The endogenous expression of GRß in the TM may relate to differences in the development of GC-OHT in the normal population. A number of studies have suggested increased levels of endogenous cortisol in POAG patients as well as differences in cortisol metabolism, suggesting that GCs may be involved in the development of POAG. Additional studies are warranted to better understand the molecular mechanisms involved in POAG and GIG in order to develop new disease-modifying therapies to better treat these two sight threatening forms of glaucoma. The purpose of this timely review is to highlight the pathological and clinical features of GC-OHT and GIG, mechanisms responsible for GC responsiveness, potential therapeutic options, as well as to compare the similar features of GIG with POAG.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Hipertensión Ocular , Humanos , Ratones , Animales , Glucocorticoides/farmacología , Receptores de Glucocorticoides/metabolismo , Glaucoma de Ángulo Abierto/inducido químicamente , Glaucoma de Ángulo Abierto/patología , Hidrocortisona , Glaucoma/metabolismo , Hipertensión Ocular/metabolismo , Enfermedad Iatrogénica
10.
Discov Med ; 35(178): 796-804, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811617

RESUMEN

BACKGROUND: This study aims to investigate the protective effect of Toll-like receptor 4 (TLR4) inhibitor Resatorvid (TAK-242) on retinal ganglion cells (RGCs) in a chronic ocular hypertension (COH) rat model, as well as to explore the potential involved mechanisms. METHODS: COH model was built up in rats with a single intracameral administration of cross-linking hydrogel. The expression levels of TLR4, NLR family pyrin domain containing 3 (NLRP3), microglial activation and pro-inflammatory cytokines were evaluated in COH retinas and COH retinas treated with TAK-242 using immunofluorescence staining and Western blot. Additionally, retrograde labeling and neuronal nuclear protein (NeuN) staining were performed to count RGCs. RESULTS: Activated microglia and increased TLR4 expression were observed in the retinas of COH rats. This was accompanied by upregulated expressions of NLRP3, tumor necrosis factor alpha (TNF-α), cytokine interleukin-1ß (IL-1ß) and Interleukin-6 (IL-6). Intravitreal injection of TAK-242 promoted the survival of RGCs by attenuating microglial activation, interfering with the TLR4-NLRP3 pathway and regulating pro-inflammatory cytokines. CONCLUSIONS: Targeting TLR4 inhibition could be a potential therapeutic strategy to protect RGCs from COH damage.


Asunto(s)
Hipertensión Ocular , Células Ganglionares de la Retina , Ratas , Animales , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Receptor Toll-Like 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Hipertensión Ocular/patología , Citocinas/metabolismo
11.
Mol Cell Proteomics ; 22(11): 100654, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37793503

RESUMEN

The pathogenesis of glaucoma is still unknown. There are few studies on the dynamic change of tissue-specific and time-specific molecular pathophysiology caused by ocular hypertension (OHT). This study aimed to identify the early proteomic alterations in the retina, optic nerve head (ONH), and optic nerve (ON). After establishing a rat model of OHT, we harvested the tissues from control and glaucomatous eyes and analyzed the changes in protein expression using a multiplexed quantitative proteomics approach (TMT-MS3). Our study identified 6403 proteins after 1-day OHT and 4399 proteins after 7-days OHT in the retina, 5493 proteins after 1-day OHT and 4544 proteins after 7-days OHT in ONH, and 5455 proteins after 1-day OHT and 3835 proteins after 7-days OHT in the ON. Of these, 560 and 489 differential proteins were identified on day 1 and 7 after OHT in the retina, 428 and 761 differential proteins were identified on day 1 and 7 after OHT in the ONH, and 257 and 205 differential proteins on days 1 and 7 after OHT in the ON. Computational analysis on day 1 and 7 of OHT revealed that alpha-2 macroglobulin was upregulated across two time points and three tissues stably. The differentially expressed proteins between day 1 and 7 after OHT in the retina, ONH, and ON were associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, oxidative stress, microtubule, and crystallin. And the most significant change in retina are crystallins. We validated this proteomic result with the Western blot of crystallin proteins and found that upregulated on day 1 but recovered on day 7 after OHT, which are promising as therapeutic targets. These findings provide insights into the time- and region-order mechanisms that are specifically affected in the retina, ONH, and ON in response to elevated IOP during the early stages.


Asunto(s)
Cristalinas , Glaucoma , Hipertensión Ocular , Disco Óptico , Ratas , Animales , Disco Óptico/metabolismo , Disco Óptico/patología , Proteómica , Presión Intraocular , Glaucoma/metabolismo , Retina/metabolismo , Retina/patología , Hipertensión Ocular/metabolismo , Hipertensión Ocular/patología , Nervio Óptico/patología , Cristalinas/metabolismo
12.
Methods Mol Biol ; 2708: 77-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37558962

RESUMEN

Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.


Asunto(s)
Glaucoma , Hipertensión Ocular , Ratones , Animales , Hipertensión Ocular/genética , Hipertensión Ocular/metabolismo , Presión Intraocular , Malla Trabecular/metabolismo , Humor Acuoso/metabolismo
13.
Cell Signal ; 109: 110781, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354963

RESUMEN

Extraordinary excitability (hyperexcitability) is closely related to retinal ganglion cell (RGC) injury in glaucoma. Dopamine (DA) and its receptors are involved in modulating RGC excitability. We investigated how DA system affects RGC injury in chronic ocular hypertension (COH) experimental glaucoma model. Western blotting and immunohistochemistry results revealed that expression of DA D2-like receptor (D2R) in RGCs was increased in COH retinas. Patch-clamp recordings showed that outward K+ currents were downregulated, while Na+ currents and NaV1.6 expression were upregulated in RGCs of COH retinas, which could be reversed by intravitreal pre-injection of the D2R antagonist sulpiride, but not by the D1-like receptor (D1R) antagonist SCH23390. However, pre-injection of the D1R agonist SKF81297 could partially reverse the increased expression of NaV1.6 proteins. Consistently, the numbers of evoked action potentials induced by current injections were increased in RGCs of COH retinas, indicating that RGCs may be in a condition of hyperexcitability. The increased frequency of evoked action potentials could be partially block by pre-injection of sulpiride, SKF81297 or DA, respectively. Furthermore, the increased number of TUNEL-positive RGCs in COH retinas could be partially reduced by intravitreal pre-injection of sulpiride, but not by pre-injection of SCH23390. Moreover, pre-injection of SKF81297 or DA could reduce the number of TUNEL-positive RGCs in COH retinas. All these results indicate that in COH retina, activation of D2R enhances RGC hyperexcitability and injury, while activation of D1R results in the opposite effects. Selective inhibition of D2R or activation of D1R may be an effective strategy for treatment of glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Ratas , Animales , Células Ganglionares de la Retina/metabolismo , Sulpirida/metabolismo , Sulpirida/farmacología , Ratas Sprague-Dawley , Glaucoma/metabolismo , Hipertensión Ocular/metabolismo , Receptores de Dopamina D1/metabolismo , Modelos Animales de Enfermedad
14.
FASEB J ; 37(4): e22873, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929360

RESUMEN

Trabecular meshwork (TM) cell dysfunction is the leading cause of elevated intraocular pressure (IOP) and glaucoma. The long non-coding RNA (lncRNA) small nucleolar RNA host gene 11 (SNHG11) is associated with cell proliferation and apoptosis, but its biological functions and role in glaucoma pathogenesis remain unclear. In the present study, we investigated the role of SNHG11 in TM cells using immortalized human TM and glaucomatous human TM (GTM3 ) cells and an acute ocular hypertension mouse model. SNHG11 expression was depleted using siRNA targeting SNHG11. Transwell assays, quantitative real-time PCR analysis (qRT-PCR), western blotting, and CCK-8 assay were used to evaluate cell migration, apoptosis, autophagy, and proliferation. Wnt/ß-catenin pathway activity was inferred from qRT-PCR, western blotting, immunofluorescence, and luciferase reporter and TOPFlash reporter assays. The expression of Rho kinases (ROCKs) was detected using qRT-PCR and western blotting. SNHG11 was downregulated in GTM3 cells and mice with acute ocular hypertension. In TM cells, SNHG11 knockdown inhibited cell proliferation and migration, activated autophagy, and apoptosis, repressing the Wnt/ß-catenin signaling pathway, and activated Rho/ROCK. Wnt/ß-catenin signaling pathway activity increased in TM cells treated with ROCK inhibitor. SNHG11 regulated Wnt/ß-catenin signaling through Rho/ROCK by increasing GSK-3ß expression and ß-catenin phosphorylation at Ser33/37/Thr41 while decreasing ß-catenin phosphorylation at Ser675. We demonstrate that the lncRNA SNHG11 regulates Wnt/ß-catenin signaling through Rho/ROCK via ß-catenin phosphorylation at Ser675 or GSK-3ß-mediated phosphorylation at Ser33/37/Thr41, affecting cell proliferation, migration, apoptosis, and autophagy. Through its effects on Wnt/ß-catenin signaling, SNHG11 is implicated in glaucoma pathogenesis and is a potential therapeutic target.


Asunto(s)
Glaucoma , Hipertensión Ocular , ARN Largo no Codificante , Humanos , Animales , Ratones , Vía de Señalización Wnt/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Malla Trabecular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proliferación Celular/genética , Glaucoma/genética , Glaucoma/metabolismo , Hipertensión Ocular/metabolismo , Línea Celular Tumoral
15.
Glia ; 71(6): 1502-1521, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794533

RESUMEN

Connexin43 (Cx43) is a major gap junction protein in glial cells. Mutations have been found in the gap-junction alpha 1 gene encoding Cx43 in glaucomatous human retinas, suggestive of the involvement of Cx43 in the pathogenesis of glaucoma. However, how Cx43 is involved in glaucoma is still unknown. We showed that increased intraocular pressure in a glaucoma mouse model of chronic ocular hypertension (COH) downregulated Cx43, which was mainly expressed in retinal astrocytes. Astrocytes in the optic nerve head where they gather and wrap the axons (optic nerve) of retinal ganglion cells (RGCs) were activated earlier than neurons in COH retinas and the alterations in astrocytes plasticity in the optic nerve caused a reduction in Cx43 expression. A time course showed that reductions of Cx43 expression were correlated with the activation of Rac1, a member of the Rho family. Co-immunoprecipitation assays showed that active Rac1, or the downstream signaling effector PAK1, negatively regulated Cx43 expression, Cx43 hemichannel opening and astrocyte activation. Pharmacological inhibition of Rac1 stimulated Cx43 hemichannel opening and ATP release, and astrocytes were identified to be one of the main sources of ATP. Furthermore, conditional knockout of Rac1 in astrocytes enhanced Cx43 expression and ATP release, and promoted RGC survival by upregulating the adenosine A3 receptor in RGCs. Our study provides new insight into the relationship between Cx43 and glaucoma, and suggests that regulating the interaction between astrocytes and RGCs via the Rac1/PAK1/Cx43/ATP pathway may be used as part of a therapeutic strategy for managing glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Glaucoma/metabolismo , Glaucoma/patología , Hipertensión Ocular/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Células Ganglionares de la Retina/metabolismo
16.
Exp Eye Res ; 229: 109415, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803996

RESUMEN

Prostaglandin (PG) receptors represent important druggable targets due to the many diverse actions of PGs in the body. From an ocular perspective, the discovery, development, and health agency approvals of prostaglandin F (FP) receptor agonists (FPAs) have revolutionized the medical treatment of ocular hypertension (OHT) and glaucoma. FPAs, such as latanoprost, travoprost, bimatoprost, and tafluprost, powerfully lower and control intraocular pressure (IOP), and became first-line therapeutics to treat this leading cause of blindness in the late 1990s to early 2000s. More recently, a latanoprost-nitric oxide (NO) donor conjugate, latanoprostene bunod, and a novel FP/EP3 receptor dual agonist, sepetaprost (ONO-9054 or DE-126), have also demonstrated robust IOP-reducing activity. Moreover, a selective non-PG prostanoid EP2 receptor agonist, omidenepag isopropyl (OMDI), was discovered, characterized, and has been approved in the United States, Japan and several other Asian countries for treating OHT/glaucoma. FPAs primarily enhance uveoscleral (UVSC) outflow of aqueous humor (AQH) to reduce IOP, but cause darkening of the iris and periorbital skin, uneven thickening and elongation of eyelashes, and deepening of the upper eyelid sulcus during chronic treatment. In contrast, OMDI lowers and controls IOP by activation of both the UVSC and trabecular meshwork outflow pathways, and it has a lower propensity to induce the aforementioned FPA-induced ocular side effects. Another means to address OHT is to physically promote the drainage of the AQH from the anterior chamber of the eye of patients with OHT/glaucoma. This has successfully been achieved by the recent approval and introduction of miniature devices into the anterior chamber by minimally invasive glaucoma surgeries. This review covers the three major aspects mentioned above to highlight the etiology of OHT/glaucoma, and the pharmacotherapeutics and devices that can be used to combat this blinding ocular disease.


Asunto(s)
Glaucoma , Hipertensión Ocular , Humanos , Latanoprost , Humor Acuoso/metabolismo , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Presión Intraocular , Antihipertensivos/uso terapéutico
17.
Exp Eye Res ; 227: 109350, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566010

RESUMEN

Elevation of intraocular pressure (IOP) is a major, controllable risk factor of primary open-angle glaucoma (POAG). Transforming growth factor-ß2 (TGF-ß2)-induced excessive accumulation of extracellular matrix (ECM) in the trabecular meshwork (TM) has been demonstrated to contribute significantly to the development of high IOP. We previously showed that treatment with salidroside (Sal), a plant-derived glucoside, can ameliorate the TGF-ß2-induced ECM expression in cultured human TM cells and reduce TGF-ß2-induced ocular hypertension in mice. In the current study, its underlying molecular mechanism associated with microRNA-210-3p (miR-210-3p) was characterized. We discovered that, in TM tissues of POAG patients, there was an increase in miR-210-3p. And miR-210-3p mediated a portion of the pathological effects of TGF-ß2 in vitro (excessive accumulation of ECM in cultured human TM cells) and in vivo (mouse ocular hypertension and ECM accumulation in the TM). Most interestingly, miR-210-3p was down-regulated by Sal, which appeared to mediate a significant portion of its IOP-lowering effect. Thus, these results shed light on the probable molecular mechanisms of TGF-ß2 and Sal and indicate that manipulation of miR-210-3p level/activity represents a potential new therapeutic strategy for POAG.


Asunto(s)
Glaucoma de Ángulo Abierto , MicroARNs , Hipertensión Ocular , Humanos , Animales , Ratones , Factor de Crecimiento Transformador beta2/metabolismo , Malla Trabecular/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Matriz Extracelular/metabolismo , Hipertensión Ocular/metabolismo , Presión Intraocular , Células Cultivadas , MicroARNs/metabolismo
18.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555536

RESUMEN

Previously, we developed a simple procedure of intracameral injection of silicone oil (SO) into mouse eyes and established the mouse SOHU (SO-induced ocular hypertension under-detected) glaucoma model with reversible intraocular pressure (IOP) elevation and significant glaucomatous neurodegeneration. Because the anatomy of the non-human primate (NHP) visual system closely resembles that of humans, it is the most likely to predict human responses to diseases and therapies. Here we tried to replicate the mouse SOHU glaucoma model in rhesus macaque monkeys. All six animals that we tested showed significant retinal ganglion cell (RGC) death, optic nerve (ON) degeneration, and visual functional deficits at both 3 and 6 months. In contrast to the mouse SOHU model, however, IOP changed dynamically in these animals, probably due to individual differences in ciliary body tolerance capability. Further optimization of this model is needed to achieve consistent IOP elevation without permanent damage of the ciliary body. The current form of the NHP SOHU model recapitulates the severe degeneration of acute human glaucoma, and is therefore suitable for assessing experimental therapies for neuroprotection and regeneration, and therefore for translating relevant findings into novel and effective treatments for patients with glaucoma and other neurodegenerations.


Asunto(s)
Glaucoma , Hipertensión Ocular , Humanos , Ratones , Animales , Macaca mulatta , Aceites de Silicona , Glaucoma/metabolismo , Hipertensión Ocular/inducido químicamente , Hipertensión Ocular/metabolismo , Presión Intraocular , Modelos Animales de Enfermedad
19.
Cells ; 11(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36497016

RESUMEN

Müller glia (MG), the principal glial cell of the retina, have a metabolism that defies categorization into glycolytic versus oxidative. We showed that MG mount a strong hypoxia response to ocular hypertension, raising the question of their relative reliance on mitochondria for function. To explore the role of oxidative phosphorylation (OXPHOS) in MG energy production in vivo, we generated and characterized adult mice in which MG have impaired cytochrome c oxidase (COXIV) activity through knockout of the COXIV constituent COX10. Histochemistry and protein analysis showed that COXIV protein levels were significantly lower in knockout mouse retina compared to control. Loss of COXIV activity in MG did not induce structural abnormalities, though oxidative stress was increased. Electroretinography assessment showed that knocking out COX10 significantly impaired scotopic a- and b-wave responses. Inhibiting mitochondrial respiration in MG also altered the retinal glycolytic profile. However, blocking OXPHOS in MG did not significantly exacerbate retinal ganglion cell (RGC) loss or photopic negative response after ocular hypertension (OHT). These results suggest that MG were able to compensate for reduced COXIV stability by maintaining fundamental processes, but changes in retinal physiology and metabolism-associated proteins indicate subtle changes in MG function.


Asunto(s)
Complejo IV de Transporte de Electrones , Glaucoma , Hipertensión Ocular , Animales , Ratones , Transferasas Alquil y Aril/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Electrorretinografía , Glaucoma/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Neuroglía/metabolismo , Hipertensión Ocular/metabolismo , Retina/metabolismo
20.
Cell Death Dis ; 13(11): 958, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379926

RESUMEN

Ocular hypertension is a significant risk factor for vision loss in glaucoma due to the death of retinal ganglion cells (RGCs). This study investigated the effects of the antiapoptotic peptides peptain-1 and peptain-3a on RGC death in vitro in rat primary RGCs and in mouse models of ocular hypertension. Apoptosis was induced in primary rat RGCs by trophic factor deprivation for 48 h in the presence or absence of peptains. The effects of intravitreally injected peptains on RGC death were investigated in mice subjected to retinal ischemic/reperfusion (I/R) injury and elevated intraocular pressure (IOP). I/R injury was induced in mice by elevating the IOP to 120 mm Hg for 1 h, followed by rapid reperfusion. Ocular hypertension was induced in mice by injecting microbeads (MB) or silicone oil (SO) into the anterior chamber of the eye. Retinal flatmounts were immunostained with RGC and activated glial markers. Effects on anterograde axonal transport were determined by intravitreal injection of cholera toxin-B. Peptain-1 and peptain-3a inhibited neurotrophic factor deprivation-mediated RGC apoptosis by 29% and 35%, respectively. I/R injury caused 52% RGC loss, but peptain-1 and peptain-3a restricted RGC loss to 13% and 16%, respectively. MB and SO injections resulted in 31% and 36% loss in RGCs following 6 weeks and 4 weeks of IOP elevation, respectively. Peptain-1 and peptain-3a inhibited RGC death; the loss was only 4% and 12% in MB-injected eyes and 16% and 15% in SO-injected eyes, respectively. Anterograde transport was defective in eyes with ocular hypertension, but this defect was substantially ameliorated in peptain-injected eyes. Peptains suppressed ocular hypertension-mediated retinal glial activation. In summary, our results showed that peptains block RGC somal and axonal damage and neuroinflammation in animal models of glaucoma. We propose that peptains have the potential to be developed as therapeutics against neurodegeneration in glaucoma.


Asunto(s)
Glaucoma , Hipertensión Ocular , Ratas , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Neuroprotección , Presión Intraocular , Hipertensión Ocular/complicaciones , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/metabolismo , Glaucoma/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...