Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Physiol Rep ; 12(15): e16177, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107243

RESUMEN

The compensatory reserve index (CRI), derived from machine learning algorithms from peripherally obtained photoplethysmography signals, provides a non-invasive assessment of cardiovascular stability, that may be useful clinically. Briefly, the CRI device provides a value between 0 and 1, with 1 reflecting full compensable capabilities and 0 reflecting little to no compensable capabilities. However, the CRI algorithm was developed in younger to middle aged adults, such that it is unknown if older age modulates CRI responses to cardiovascular challenges. In young and older subjects, we compared CRI responses to normothermic and hyperthermic progressive lower body negative pressure (LBNP), and volume loading with saline infusion. Eleven younger (20-36 years) and 10 older (61-75 years) healthy participants underwent (1) graded normothermic LBNP up to 30 mmHg, (2) graded hyperthermic (1.5°C increase in blood temperature) LBNP up to 30 mmHg, and (3) infusion of 15 mL/kg saline (volume loading) with hyperthermia maintained. CRI was obtained throughout each procedure. CRI at 30 mmHg LBNP was 0.18 and 0.24 units greater in the older group during normothermic and hyperthermic LBNP, respectively. However, CRI was not different between age groups at any other LBNP stage, nor did CRI change with volume loading regardless of age. In response to passive hyperthermia alone, regression analyses showed that heart rate was the strongest predictor of CRI. Blood temperature, rate pressure product, and stroke volume were also predictive of CRI but to a lesser extent. In conclusion, age attenuates the reduction in CRI during progressive normothermic and hyperthermic LBNP, but only at 30 mmHg. Second, the CRI was unchanged during volume loading in all subjects. Future studies should determine whether the age differences in CRI reflect age differences in LBNP tolerance.


Asunto(s)
Hipovolemia , Presión Negativa de la Región Corporal Inferior , Humanos , Adulto , Masculino , Femenino , Hipovolemia/fisiopatología , Persona de Mediana Edad , Proyectos Piloto , Presión Negativa de la Región Corporal Inferior/métodos , Anciano , Hipertermia/fisiopatología , Adulto Joven , Frecuencia Cardíaca/fisiología , Envejecimiento/fisiología , Fotopletismografía/métodos , Volumen Sanguíneo
2.
Clin Perinatol ; 51(3): 565-572, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39095096

RESUMEN

Therapeutic hypothermia is now well established to improve neurodevelopmental outcomes after hypoxic-ischemic encephalopathy (HIE). Although the overall principles of treatment are now well established, many smaller questions are unclear. The potential impact of reversal of hypothermia therapy and the effect of high temperatures on recovery of the neurovascular unit after therapeutic hypothermia for HIE has received relatively little attention. This article will address the effects of hypoxia-ischemia and rewarming and increased temperatures on the neurovascular unit in preclinical and clinical models.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Recalentamiento , Humanos , Hipoxia-Isquemia Encefálica/terapia , Recalentamiento/métodos , Recién Nacido , Hipotermia Inducida/métodos , Hipertermia/terapia , Animales
3.
Proc Inst Mech Eng H ; 238(7): 827-836, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39104260

RESUMEN

A real-time hypothermia and hyperthermia monitoring system with a simple body sensor based on a Convolutional Neural Network (CNN) is presented. The sensor is produced with 3D-printed thermochromic material. Due to the color change feature of thermochromic materials with temperature, 3D-printed thermochromic Polylactic Acid (PLA) material was used to monitor temperature changes visually. In this paper, we have used the transfer learning technique and fine-tuned the AlexNet CNN. Thirty images for each temperature class between 28-44°C and 510 image data were used in the algorithm. We used 80% and 20% of the data for training and validation. We achieved 96.1% accuracy of validation with a fine-tuned AlexNet CNN. The material's characteristics suggest that it could be employed in delicate temperature sensing and monitoring applications, particularly for hypothermia and hyperthermia.


Asunto(s)
Aprendizaje Profundo , Hipertermia , Hipotermia , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Hipotermia/fisiopatología , Humanos , Factores de Tiempo , Temperatura , Poliésteres/química , Impresión Tridimensional
4.
Int J Hyperthermia ; 41(1): 2376678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38991553

RESUMEN

PURPOSE: To investigate how passive hyperthermia affect the resting-state functional brain activity based on an acute mouse model after heat stress exposure. MATERIALS AND METHODS: Twenty-eight rs-fMRI data of C57BL/6J male mice which weighing about 24 ∼ 29 g and aged 12 ∼ 16 weeks were collected. The mice in the hyperthermia group (HT, 40 °C ± 0.5 °C, 40 min) were subjected to passive hyperthermia before the anesthesia preparation for scanning. While the normal control group (NC) was subjected to normothermia condition (NC, 20 °C ± 2 °C, 40 min). After data preprocessing, we performed independent component analysis (ICA) and region of interested (ROI)-ROI functional connectivity (FC) analyses on the data of both HT (n = 13) and NC (n = 15). RESULTS: The group ICA analysis showed that the HT and the NC both included 11 intrinsic connectivity networks (ICNs), and can be divided into four types of networks: the cortical network (CN), the subcortical network (SN), the default mode network (DMN), and cerebellar networks. CN and SN belongs to sensorimotor network. Compared with NC, the functional network organization of ICNs in the HT was altered and the overall functional intensity was decreased. Furthermore, 13 ROIs were selected in CN, SN, and DMN for further ROI-ROI FC analysis. The ROI-ROI FC analysis showed that passive hyperthermia exposure significantly reduced the FC strength in the overall brain represented by CN, SN, DMN of mice. CONCLUSION: Prolonged exposure to high temperature has a greater impact on the overall perception and cognitive level of mice, which might help understand the relationship between neuronal activities and physiological thermal sensation and regulation as well as behavioral changes.


Asunto(s)
Encéfalo , Hipertermia , Ratones Endogámicos C57BL , Animales , Ratones , Masculino , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Hipertermia/fisiopatología , Imagen por Resonancia Magnética/métodos
5.
Cells ; 13(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38994992

RESUMEN

Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.


Asunto(s)
Retículo Endoplásmico , Respuesta al Choque Térmico , Termogénesis , Humanos , Animales , Retículo Endoplásmico/metabolismo , Ratones , Respuesta de Proteína Desplegada , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Hipertermia/metabolismo , Hipertermia/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Electromagn Biol Med ; 43(3): 164-175, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38859623

RESUMEN

Mild whole-body hyperthermia has been shown to have anti-tumor effects through an immune-modulating mechanism. Before it is widely applied in the clinic, tremendous mechanistic research in animals is necessary to adhere to evidence-based principles. The radio frequency electromagnetic field (RF-EMF) based heating facility could be a good choice for hyperthermia treatment, but the heating characteristics of a facility, including structure design, electromagnetic and thermal dosimetry, and the biologic effects of hyperthermia, need to be well elucidated. Here, we reported the heating characteristic study on a resonant chamber (RC) excited by a 1800 MHz solid source. The EMF in the RC was stirred by 24 static reflectors, which resulted in the standard deviation of electric field intensity being below 3 dB in the EM homogeneity evaluation. For the exposure scenario, six free-moving mice were loaded into separate cases and exposed simultaneously in the RC. The EMF energy absorption and distribution in exposed mice were calculated with the 12-plane-waves method of numerical simulation. Different levels of core body temperature increment in exposed mice were achieved through regulation of the source output power. Overexpression of heat shock proteins (HSPs) was detected in the liver, lung and muscle, but not in the brain of the exposed mice. The levels of representative inflammatory cytokines in the serum, TNF-α and IL-10 increased post RC exposure. Based on the heating characteristic study and validation, the applied RC would be a qualified heating system for mild whole-body hyperthermia effect research in mice.


Mild whole-body hyperthermia has potential anti-tumor effects by modulating the immune system. A radio frequency electromagnetic field (RF-EMF)-based heating facility emerges as a suitable option for hyperthermia treatment. However, a qualified heating facility for scientific research must elucidate its heating characteristics and validate the biological effects associated with hyperthermia. In this study, we report the characteristics of a rodent heating chamber using EMF energy. The special structure of the chamber not only achieved efficient EMF usage but also ensured the homogeneity in EMF spatial distribution, animal EM absorption, and EMF-caused biological effects. Our work may offer insights for designing a low-cost yet reliable heating facility for scientific research.


Asunto(s)
Campos Electromagnéticos , Ondas de Radio , Animales , Ratones , Hipertermia/terapia , Hipertermia Inducida/métodos , Hipertermia Inducida/instrumentación , Calefacción , Masculino
7.
BMJ Paediatr Open ; 8(1)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823799

RESUMEN

OBJECTIVE: Body temperature for a known ambient temperature is not known for infants born at term. We aimed to determine the normal range and the incidences of hypothermia and hyperthermia during the first 24 hours of life in healthy term-born infants nursed according to WHO recommendations. DESIGN: Prospective observational study. SETTING: Norwegian single centre district hospital. Infants were observed during skin-to-skin care or when dressed in cots. PARTICIPANTS: Convenience sample of 951 healthy infants born at term. METHODS: Delivery room temperature was aimed at 26-30°C and rooming-in temperature at 24°C. We measured rectal and room temperatures at 2, 4, 8, 16 and 24 hours of age. MAIN OUTCOME MEASURES: Percentile curves for rectal temperature. Proportions and risk factors for hypothermia and hyperthermia. RESULTS: The mean (SD) room temperature was 24.0°C (1.1), 23.8°C (1.0), 23.8°C (1.0)., 23.7°C (0.9) and 23.8°C (0.9). The median (2.5, 97.5 percentile) rectal temperature was 36.9°C (35.7-37.9), 36.8°C (35.9-37.5), 36.9°C (36.1-37.5), 37.0°C (36.4-37.7) and 37.1°C (36.5-37.7). Hypothermia (<36.5°C) occurred in 28% of the infants, 82% of incidents during the first 8 hours. Risk factors for hypothermia were low birth weight (OR 3.1 (95% CI, 2.0 to 4.6), per kg), male sex, being born at night and nursed in a cot versus skin to skin. Hyperthermia (>37.5°C) occurred in 12% and most commonly in large infants after 8 hours of life. Risk factors for hyperthermia were high birth weight (OR 2.2 (95% CI, 1.4 to 3.5), per kg), being awake, nursed skin to skin and being born through heavily stained amniotic fluid. CONCLUSIONS: Term-born infants were at risk of hypothermia during the first hours after birth even when nursed in an assumed adequate thermal environment and at risk of hyperthermia after 8 hours of age.


Asunto(s)
Temperatura Corporal , Hipotermia , Humanos , Recién Nacido , Masculino , Femenino , Factores de Riesgo , Hipotermia/epidemiología , Hipotermia/etiología , Estudios Prospectivos , Hipertermia/epidemiología , Noruega/epidemiología , Valores de Referencia , Nacimiento a Término , Salas de Parto , Fiebre/epidemiología , Método Madre-Canguro
8.
Sci Rep ; 14(1): 14485, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914648

RESUMEN

Hyperthermia induced by phenethylamines, such as 3,4-methylenedioxymethamphetamine (MDMA), can lead to life-threatening complications and death. Activation of the sympathetic nervous system and subsequent release of norepinephrine and activation of uncoupling proteins have been demonstrated to be the key mediators of phenethylamine-induced hyperthermia (PIH). Recently, the gut microbiome was shown to also play a contributing role in PIH. Here, the hypothesis that bile acids (BAs) produced by the gut microbiome are essential to PIH was tested. Changes in the serum concentrations of unconjugated primary BAs cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BA deoxycholic acid (DCA) were measured following MDMA (20 mg/kg, sc) treatment in antibiotic treated and control rats. MDMA-induced a significant hyperthermic response and reduced the serum concentrations of three BAs 60 min post-treatment. Pretreatment with antibiotics (vancomycin, bacitracin and neomycin) in the drinking water for five days resulted in the depletion of BAs and a hypothermic response to MDMA. Gut bacterial communities in the antibiotic-treated group were distinct from the MDMA or saline treatment groups, with decreased microbiome diversity and alteration in taxa. Metagenomic functions inferred using the bioinformatic tool PICRUSt2 on 16S rRNA gene sequences indicated that bacterial genes associated to BA metabolism are less abundant in the antibiotic-MDMA treated group. Overall, these findings suggest that gut bacterial produced BAs might play an important role in MDMA-induced hyperthermia.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Hipertermia , N-Metil-3,4-metilenodioxianfetamina , Microbioma Gastrointestinal/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , Animales , Ratas , Masculino , Ácidos y Sales Biliares/metabolismo , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Ratas Sprague-Dawley , ARN Ribosómico 16S/genética , Ácido Desoxicólico/metabolismo
9.
Neuron ; 112(11): 1727-1729, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843778

RESUMEN

While effective analgesics, TRPV1 antagonists can dangerously alter thermoregulation. In this issue of Neuron, Huang et al.1 demonstrate that interaction with the S4-S5 linker of TRPV1 determines whether an antagonist affects core body temperature, with promising implications for analgesic development.


Asunto(s)
Regulación de la Temperatura Corporal , Hipertermia , Canales Catiónicos TRPV , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Hipertermia/inducido químicamente , Animales , Regulación de la Temperatura Corporal/efectos de los fármacos , Regulación de la Temperatura Corporal/fisiología , Humanos , Temperatura Corporal/efectos de los fármacos , Analgésicos/farmacología
10.
Sci Rep ; 14(1): 10635, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724575

RESUMEN

It is well known that hyperthermia greatly impairs neuromuscular function and dynamic balance. However, whether a greater level of hyperthermia could potentially alter the lower limb simulated muscle activation when crossing an obstacle in female participants remains unknown. Therefore we examined the effect of a systematic increase in oral temperature on lower limb simulated muscle activation when crossing an obstacle in female participants. Eighteen female participants were recruited where they underwent a control trial (Con) and two progressive passive heating trials with Δ 1°C and Δ 2°C increase of oral temperature (Toral) using a 45°C water bath. In each trial, we assessed lower limb simulated muscle activation when crossing an obstacle height of 10%, 20%, and 30% of the participant's leg length and toe-off, toe-above-obstacle and heel-strike events were identified and analyzed. In all events, the lower limb simulated muscle activation were greater in Δ2°C than Δ1°C and Con when both leading and trailing limbs crossed the obstacle height of 20% and 30% leg length (all p < 0.001). However, the lower limb simulated muscle activation were not different between Δ1°C and Con across all obstacle heights (p > 0.05). This study concluded that a greater level of hyperthermia resulted in a greater lower limb simulated muscle activation to ensure safety and stability when females cross an obstacle height of 20% leg length or higher.


Asunto(s)
Músculo Esquelético , Humanos , Femenino , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Adulto , Adulto Joven , Hipertermia/fisiopatología , Extremidad Inferior/fisiología
11.
J Physiol ; 602(10): 2227-2251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690610

RESUMEN

Passive whole-body hyperthermia increases limb blood flow and cardiac output ( Q ̇ $\dot Q$ ), but the interplay between peripheral and central thermo-haemodynamic mechanisms remains unclear. Here we tested the hypothesis that local hyperthermia-induced alterations in peripheral blood flow and blood kinetic energy modulate flow to the heart and Q ̇ $\dot Q$ . Body temperatures, regional (leg, arm, head) and systemic haemodynamics, and left ventricular (LV) volumes and functions were assessed in eight healthy males during: (1) 3 h control (normothermic condition); (2) 3 h of single-leg heating; (3) 3 h of two-leg heating; and (4) 2.5 h of whole-body heating. Leg, forearm, and extracranial blood flow increased in close association with local rises in temperature while brain perfusion remained unchanged. Increases in blood velocity with small to no changes in the conduit artery diameter underpinned the augmented limb and extracranial perfusion. In all heating conditions, Q ̇ $\dot Q$ increased in association with proportional elevations in systemic vascular conductance, related to enhanced blood flow, blood velocity, vascular conductance and kinetic energy in the limbs and head (all R2 ≥ 0.803; P < 0.001), but not in the brain. LV systolic (end-systolic elastance and twist) and diastolic functional profiles (untwisting rate), pulmonary ventilation and systemic aerobic metabolism were only altered in whole-body heating. These findings substantiate the idea that local hyperthermia-induced selective alterations in peripheral blood flow modulate the magnitude of flow to the heart and Q ̇ $\dot Q$ through changes in blood velocity and kinetic energy. Localised heat-activated events in the peripheral circulation therefore affect the human heart's output. KEY POINTS: Local and whole-body hyperthermia increases limb and systemic perfusion, but the underlying peripheral and central heat-sensitive mechanisms are not fully established. Here we investigated the regional (leg, arm and head) and systemic haemodynamics (cardiac output: Q ̇ $\dot Q$ ) during passive single-leg, two-leg and whole-body hyperthermia to determine the contribution of peripheral and central thermosensitive factors in the control of human circulation. Single-leg, two-leg, and whole-body hyperthermia induced graded increases in leg blood flow and Q ̇ $\dot Q$ . Brain blood flow, however, remained unchanged in all conditions. Ventilation, extracranial blood flow and cardiac systolic and diastolic functions only increased during whole-body hyperthermia. The augmented Q ̇ $\dot Q$ with hyperthermia was tightly related to increased limb and head blood velocity, flow and kinetic energy. The findings indicate that local thermosensitive mechanisms modulate regional blood velocity, flow and kinetic energy, thereby controlling the magnitude of flow to the heart and thus the coupling of peripheral and central circulation during hyperthermia.


Asunto(s)
Gasto Cardíaco , Hipertermia , Humanos , Masculino , Adulto , Hipertermia/fisiopatología , Gasto Cardíaco/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Flujo Sanguíneo Regional/fisiología , Fiebre/fisiopatología , Adulto Joven , Calor , Hemodinámica
12.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583875

RESUMEN

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Asunto(s)
Adenocarcinoma , Hipertermia Inducida , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Células PC-3 , Especies Reactivas de Oxígeno/metabolismo , Microondas , Proteína p53 Supresora de Tumor/metabolismo , Hipertermia Inducida/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Reparación del ADN , Apoptosis , Estrés Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , ADN/metabolismo , Línea Celular Tumoral , Proliferación Celular
13.
J Dairy Sci ; 107(8): 6308-6321, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38580145

RESUMEN

Maternal heat stress during late pregnancy can lead to intrauterine hyperthermia and affect fetal hypothalamic-pituitary-adrenal axis development and function. Herein, we investigated the effects of chronic environmental heat stress exposure of Holstein cows in the last 2 mo of gestation on their offspring's adrenal gland histomorphology and transcriptome. Cows in their last 54 ± 5 d of gestation were either heat stressed (housed under the shade of a freestall barn) or provided heat stress abatement via active cooling (via water soakers and fans) during a subtropical summer (temperature-humidity index >68). Respiration rate (RR) and skin temperature (ST) were elevated in heat-stressed dams relative to the cows with access to heat abatement (23 breaths/min and 2°C higher for RR and ST, respectively). Heifers born to heat-stressed cows experienced heat stress in utero (HS), whereas heifers born to actively cooled cows did not (CL). The adrenal gland was harvested from 6 heifers per group that were euthanized at birth (d 0; n = 12) or 1 wk after weaning (d 63; n = 12). Circulating cortisol was measured from blood samples collected weekly throughout the preweaning period. At d 63, heifers that experienced HS while developing in utero had heavier adrenal glands, with a greater total tissue surface area and thickness of the zona glomerulosa (ZG), fasciculata (ZF), and reticularis (ZR), compared with CL heifers. In addition, the adrenal gland of HS heifers had fewer cells in the ZG, more and larger cells in the ZF, and larger cells in the ZR, relative to CL heifers. Although no changes in circulating cortisol were observed through the preweaning period, the transcriptomic profile of the adrenal tissue was altered by fetal exposure to hyperthermia. Both at birth and on d 63, approximately 30 pathways were differentially expressed in the adrenal glands of HS heifers relative to CL. These pathways were associated with immune function, inflammation, prolactin signaling, cell function, and calcium transport. Upstream regulators significantly activated or inhibited in the adrenal glands of heifers exposed to intrauterine hyperthermia were identified. Maternal exposure to heat stress during late gestation caused an enlargement of their offspring's adrenal glands by inducing ZG and ZF cell hypertrophy, and caused gene expression changes. These phenotypic, histological, and molecular changes in the adrenal gland might lead to alterations in stress, immune, and metabolic responses later in life.


Asunto(s)
Glándulas Suprarrenales , Animales , Bovinos , Femenino , Embarazo , Enfermedades de los Bovinos , Hipertermia/veterinaria
14.
Am J Respir Cell Mol Biol ; 71(2): 195-206, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597725

RESUMEN

Extreme heat caused by climate change is increasing the transmission of infectious diseases, resulting in a sharp rise in heat-related illness and mortality. Understanding the mechanistic link between heat, inflammation, and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis, is crucial in febrile seizures and convulsions induced by heat stress in humans. Here, we address what causes thermal hyperpnea in neonates and how it is affected by inflammation. Transient receptor potential cation channel subfamily V member 1 (TRPV1), a heat-activated channel, is sensitized by inflammation and modulates breathing and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures, we treated neonatal rats with bacterial LPS, and breathing, arterial pH, in vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. LPS-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). LPS exposure also elevated vagal spiking and intracellular calcium concentrations in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the LPS-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons.


Asunto(s)
Inflamación , Convulsiones Febriles , Canales Catiónicos TRPV , Convulsiones Febriles/fisiopatología , Convulsiones Febriles/metabolismo , Animales , Canales Catiónicos TRPV/metabolismo , Inflamación/metabolismo , Ratas , Respuesta al Choque Térmico , Animales Recién Nacidos , Lipopolisacáridos/farmacología , Nervio Vago/fisiopatología , Ratas Sprague-Dawley , Alcalosis Respiratoria/metabolismo , Alcalosis Respiratoria/fisiopatología , Hipertermia/metabolismo , Hipertermia/fisiopatología
15.
Brain Behav Immun ; 119: 801-806, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38677624

RESUMEN

There is urgent need for novel antidepressant treatments that confer therapeutic benefits via engagement with identified mechanistic targets. The objective of the study was to determine whether activation of the classical anti-inflammatory interleukin-6 signaling pathways is associated with the antidepressant effects of whole-body hyperthermia. A 6-week, randomized, double-blind study compared whole-body hyperthermia with a sham condition in a university-based medical center. Medically healthy participants aged 18-65 years who met criteria for major depressive disorder, were free of psychotropic medication use, and had a baseline 17-item Hamilton Depression Rating Scale score ≥ 16 were randomized with 1-to-1 allocation in blocks of 6 to receive whole-body hyperthermia or sham. Of 338 individuals screened, 34 were randomized, 30 received interventions and 26 had ≥ 2 blood draws and depressive symptom assessments. Secondary data analysis examined change in the ratio of IL-6:soluble IL-6 receptor pre-intervention, post-intervention, and at weeks 1 and 4. Hierarchical linear modeling tested whether increased IL-6:soluble IL-6 receptor ratio post-intervention was associated with decreased depressive symptom at weeks 1, 2, 4 and 6 for those randomized to whole-body hyperthermia. Twenty-six individuals were randomized to whole-body hyperthermia [n = 12; 75 % female; age = 37.9 years (SD = 15.3) or sham [n = 14; 57.1 % female; age = 41.1 years (SD = 12.5). When compared to the sham condition, active whole-body hyperthermia only increased the IL-6:soluble IL-6 receptor ratio post-treatment [F(3,72) = 11.73,p < .001], but not pre-intervention or at weeks 1 and 4. Using hierarchical linear modeling, increased IL-6:sIL-6R ratio following whole-body hyperthermia moderated depressive symptoms at weeks 1, 2, 4 and 6, such that increases in the IL-6:soluble IL-6 receptor ratio were associated with decreased depressive symptoms at weeks 1, 2, 4 and 6 for those receiving the active whole-body hyperthermia compared to sham treatment (B = -229.44, t = -3.82,p < .001). Acute activation of classical intereukin-6 signaling might emerge as a heretofore unrecognized novel mechanism that could be harnessed to expand the antidepressant armamentarium.


Asunto(s)
Trastorno Depresivo Mayor , Interleucina-6 , Receptores de Interleucina-6 , Transducción de Señal , Humanos , Femenino , Masculino , Interleucina-6/sangre , Adulto , Método Doble Ciego , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos , Trastorno Depresivo Mayor/terapia , Receptores de Interleucina-6/metabolismo , Hipertermia Inducida/métodos , Adulto Joven , Adolescente , Resultado del Tratamiento , Anciano , Hipertermia , Antidepresivos/uso terapéutico , Antidepresivos/farmacología
16.
ACS Biomater Sci Eng ; 10(5): 2995-3005, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38654432

RESUMEN

Magnetic hyperthermia is a crucial medical engineering technique for treating diseases, which usually uses alternating magnetic fields (AMF) to interplay with magnetic substances to generate heat. Recently, it has been found that in some cases, there is no detectable temperature increment after applying an AMF, which caused corresponding effects surprisingly. The mechanisms involved in this phenomenon are not yet fully understood. In this study, we aimed to explore the role of Ca2+ overload in the magnetic hyperthermia effect without a perceptible temperature rise. A cellular system expressing the fusion proteins TRPV1 and ferritin was prepared. The application of an AMF (518 kHz, 16 kA/m) could induce the fusion protein to release a large amount of iron ions, which then participates in the production of massive reactive oxygen radicals (ROS). Both ROS and its induced lipid oxidation enticed the opening of ion channels, causing intracellular Ca2+ overload, which further led to decreased cellular viability. Taken together, Ca2+ overload triggered by elevated ROS and the induced oxidation of lipids contributes to the magnetic hyperthermia effect without a perceptible temperature rise. These findings would be beneficial for expanding the application of temperature-free magnetic hyperthermia, such as in cellular and neural regulation, design of new cancer treatment methods.


Asunto(s)
Calcio , Supervivencia Celular , Hipertermia Inducida , Campos Magnéticos , Especies Reactivas de Oxígeno , Canales Catiónicos TRPV , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPV/metabolismo , Humanos , Hipertermia Inducida/métodos , Temperatura , Ferritinas/metabolismo , Hipertermia/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-38643961

RESUMEN

In fish, thermal and hypoxia tolerances may be functionally related, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) concept, which explains performance failure at high temperatures due to limitations in oxygen delivery. In this study the interrelatedness of hyperthermia and hypoxia tolerances in the Nile tilapia (Oreochromis niloticus), and their links to cardiorespiratory traits were examined. Different groups of O. niloticus (n = 51) were subjected to hypoxia and hyperthermia challenges and the O2 tension for aquatic surface respiration (ASR pO2) and critical thermal maximum (CTmax) were assessed as measurement endpoints. Gill filament length, total filament number, ventricle mass, length and width were also measured. Tolerance to hypoxia, as evidenced by ASR pO2 thresholds of the individual fish, was highly variable and varied between 0.26 and 3.39 kPa. ASR events increased more profoundly as O2 tensions decreased below 2 kPa. The CTmax values recorded for the O. niloticus individuals ranged from 43.1 to 44.8 °C (Mean: 44.2 ± 0.4 °C). Remarkably, there was a highly significant correlation between ASR pO2 and CTmax in O. niloticus (r = -0.76, p < 0.0001) with ASR pO2 increasing linearly with decreasing CTmax. There were, however, no discernible relationships between the measured cardiorespiratory properties and hypoxia or hyperthermia tolerances. The strong relationship between hypoxia and hyperthermia tolerances in this study may be related to the ability of the cardiorespiratory system to provide oxygen to respiring tissues under thermal stress, and thus provides some support for the OCLTT concept in this species, at least at the level of the entire organism.


Asunto(s)
Cíclidos , Branquias , Hipoxia , Animales , Branquias/metabolismo , Cíclidos/fisiología , Hipoxia/fisiopatología , Termotolerancia , Oxígeno/metabolismo , Corazón/fisiopatología , Corazón/fisiología , Hipertermia/fisiopatología
18.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542073

RESUMEN

Modulated electro-hyperthermia (mEHT) is an adjuvant cancer therapy that enables tumor-selective heating (+2.5 °C). In this study, we investigated whether mEHT accelerates the tumor-specific delivery of doxorubicin (DOX) from lyso-thermosensitive liposomal doxorubicin (LTLD) and improves its anticancer efficacy in mice bearing a triple-negative breast cancer cell line (4T1). The 4T1 cells were orthotopically injected into Balb/C mice, and mEHT was performed on days 9, 12, and 15 after the implantation. DOX, LTLD, or PEGylated liposomal DOX (PLD) were administered for comparison. The tumor size and DOX accumulation in the tumor were measured. The cleaved caspase-3 (cC3) and cell proliferation were evaluated by cC3 or Ki67 immunohistochemistry and Western blot. The LTLD+mEHT combination was more effective at inhibiting tumor growth than the free DOX and PLD, demonstrated by reductions in both the tumor volume and tumor weight. LTLD+mEHT resulted in the highest DOX accumulation in the tumor one hour after treatment. Tumor cell damage was associated with cC3 in the damaged area, and with a reduction in Ki67 in the living area. These changes were significantly the strongest in the LTLD+mEHT-treated tumors. The body weight loss was similar in all mice treated with any DOX formulation, suggesting no difference in toxicity. In conclusion, LTLD combined with mEHT represents a novel approach for DOX delivery into cancer tissue.


Asunto(s)
Doxorrubicina/análogos & derivados , Hipertermia Inducida , Neoplasias , Ratones , Animales , Liposomas , Antígeno Ki-67 , Hipertermia Inducida/métodos , Doxorrubicina/farmacología , Hipertermia , Línea Celular Tumoral , Polietilenglicoles
19.
J Therm Biol ; 121: 103827, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518416

RESUMEN

Exercise is a common trigger of heat-related illness (HRI) events in dogs, accounting for 74% of canine HRI cases treated under primary veterinary care in the United Kingdom. However, few empirical studies have evaluated the effectiveness of differing cooling methods for dogs with exertional hyperthermia or HRI. This study aimed to prospectively evaluate effects of ambient conditions and post-exercise management practices (cooling methods and vehicular confinement) on the post-exercise temperature change of dogs participating in UK canicross events. Canine temperature was recorded at three intervals post-exercise: as close as possible to 0- (immediately post-exercise), 5-, and 15-min post-exercise. Ambient conditions and post-exercise management were recorded for 115 cooling profiles from 52 dogs. In 28/115 (24.4%) profiles, the dog's temperature increased during the first 5-min post-exercise. Overall, 68/115 (59.1%) profiles included passive cooling (stood or walked outside), 35 (30.4%) active cooling (cold-water immersion or application of a cooling coat), and 12 (10.4%) involved no cooling and were immediately housed in vehicles. No dogs developed hypothermia during the study and no adverse effects were observed from any cooling method. In hyperthermic dogs, overall post-exercise body temperature change was significantly negatively associated (i.e. the dogs cooled more) with 0-min post-exercise body temperature (ß = -0.93, p < 0.001), and not being housed in a vehicle (ß = -0.43, p = 0.013). This study provides evidence cold-water immersion (in water at 0.1-15.0 °C) can be used to effectively and safely cool dogs with exertional hyperthermia. Progressive temperature increases in many dogs - even after exercise has terminated - supports the message to "cool first, transport second" when managing dogs with HRI. When transporting dogs post-exercise or with HRI even after active cooling, care should be taken to cool the vehicle before entry and promote air movement around the dog during transport to facilitate ongoing cooling and prevent worsening of hyperthermia during travel.


Asunto(s)
Hipertermia , Condicionamiento Físico Animal , Perros , Animales , Masculino , Hipertermia/terapia , Hipertermia/veterinaria , Hipertermia/fisiopatología , Enfermedades de los Perros/terapia , Enfermedades de los Perros/fisiopatología , Femenino , Reino Unido , Temperatura Corporal , Fiebre/terapia , Fiebre/veterinaria , Fiebre/fisiopatología , Regulación de la Temperatura Corporal , Deportes
20.
Appl Physiol Nutr Metab ; 49(6): 874-879, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38507777

RESUMEN

Type 2 diabetes (T2D) is associated with worsening age-related impairments in heat loss, causing higher core temperature during exercise. We evaluated whether these thermoregulatory impairments occur with altered serum protein responses to heat stress by measuring cytoprotection, inflammation, and tissue damage biomarkers in middle-aged-to-older men (50-74 years) with (n = 16) and without (n = 14) T2D following exercise in 40°C. There were no changes in irisin, klotho, HSP70, sCD14, TNF-α, and IL-6, whereas NGAL (+539 pg/mL, p = 0.002) and iFABP (+250 pg/mL, p < 0.001) increased similarly across groups. These similar response patterns occurred despite elevated core temperature in individuals with T2D, suggesting greater heat vulnerability.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 2 , Ejercicio Físico , Hipertermia , Humanos , Masculino , Diabetes Mellitus Tipo 2/sangre , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Ejercicio Físico/fisiología , Hipertermia/sangre , Respuesta al Choque Térmico/fisiología , Regulación de la Temperatura Corporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA