Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
1.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718571

RESUMEN

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparación del ADN/efectos de la radiación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Morfogénesis/efectos de la radiación , Luz Azul
2.
Curr Biol ; 34(4): 825-840.e7, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38301650

RESUMEN

Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.


Asunto(s)
Medicago truncatula , Medicago truncatula/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Hipocótilo/genética , Hipocótilo/metabolismo , Citocininas/genética , Meristema/metabolismo , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
3.
Nat Commun ; 15(1): 1286, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346986

RESUMEN

The nuclear matrix is a nuclear compartment that has diverse functions in chromatin regulation and transcription. However, how this structure influences epigenetic modifications and gene expression in plants is largely unknown. In this study, we show that a nuclear matrix binding protein, AHL22, together with the two transcriptional repressors FRS7 and FRS12, regulates hypocotyl elongation by suppressing the expression of a group of genes known as SMALL AUXIN UP RNAs (SAURs) in Arabidopsis thaliana. The transcriptional repression of SAURs depends on their attachment to the nuclear matrix. The AHL22 complex not only brings these SAURs, which contain matrix attachment regions (MARs), to the nuclear matrix, but it also recruits the histone deacetylase HDA15 to the SAUR loci. This leads to the removal of H3 acetylation at the SAUR loci and the suppression of hypocotyl elongation. Taken together, our results indicate that MAR-binding proteins act as a hub for chromatin and epigenetic regulators. Moreover, we present a mechanism by which nuclear matrix attachment to chromatin regulates histone modifications, transcription, and hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Matriz Nuclear/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
4.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38190549

RESUMEN

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Asunto(s)
Arabidopsis , Hidrolasas de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Mutación/genética , Pectinas/metabolismo , Concentración de Iones de Hidrógeno
5.
J Exp Bot ; 75(1): 241-257, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37824096

RESUMEN

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fitocromo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Hazard Mater ; 465: 133255, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38103287

RESUMEN

Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. We report the development of CRISPR/Cas9-based knockout mutant plants of tobacco, NtHY5CR, and show down-regulation of the nicotine and phenylpropanoid pathway genes leading to a significant reduction in nicotine and flavonol content, whereas NtHY5 overexpression (NtHY5OX) plants show the opposite effect. Grafting experiments using wild-type, NtHY5CR, and NtHY5OX indicated that NtHY5 moves from shoot-to-root to regulate nicotine biosynthesis in the root tissue. Shoot HY5, directly or through enhancing expression of the root HY5, promotes nicotine biosynthesis by binding to light-responsive G-boxes present in the NtPMT, NtQPT and NtODC promoters. We conclude that the mobility of HY5 from shoot-to-root regulates light-dependent nicotine biosynthesis. The CRISPR/Cas9-based mutants developed, in this study; with low nicotine accumulation in leaves could help people to overcome their nicotine addiction and the risk of death.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Factores de Transcripción/genética , Hipocótilo/genética , Hipocótilo/metabolismo , Nicotina , Proteínas de Arabidopsis/genética , Nicotiana , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Mutación , Luz
7.
Science ; 382(6673): 935-940, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995216

RESUMEN

In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Proteínas de Arabidopsis , Arabidopsis , Brassica , Hipocótilo , Fototropinas , Fototropismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Brassica/genética , Brassica/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Luz , Fototropinas/metabolismo , Transducción de Señal
8.
Funct Plant Biol ; 50(12): 1086-1098, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866377

RESUMEN

Hypocotyl elongation directly affects the seedling establishment and soil-breaking after germination. In soybean (Glycine max ), the molecular mechanisms regulating hypocotyl development remain largely elusive. To decipher the regulatory landscape, we conducted proteome and transcriptome analysis of soybean hypocotyl samples at different development stages. Our results showed that during hypocotyl development, many proteins were with extreme high translation efficiency (TE) and may act as regulators. These potential regulators include multiple peroxidases and cell wall reorganisation related enzymes. Peroxidases may produce ROS including H2 O2 . Interestingly, exogenous H2 O2 application promoted hypocotyl elongation, supporting peroxidases as regulators of hypocotyl development. However, a vast variety of proteins were shown to be with dramatically changed TE during hypocotyl development, including multiple phytochromes, plasma membrane intrinsic proteins (PIPs) and aspartic proteases. Their potential roles in hypocotyl development were confirmed by that ectopic expression of GmPHYA1 and GmPIP1-6 in Arabidopsis thaliana affected hypocotyl elongation. In addition, the promoters of these potential regulatory genes contain multiple light/gibberellin/auxin responsive elements, while the expression of some members in hypocotyls was significantly regulated by light and exogenous auxin/gibberellin. Overall, our results revealed multiple novel regulatory factors of soybean hypocotyl elongation. Further research on these regulators may lead to new approvals to improve soybean hypocotyl traits.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo/genética , Hipocótilo/metabolismo , Giberelinas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Proteínas de Arabidopsis/genética , Transcriptoma/genética , Proteómica , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Peroxidasas/genética , Peroxidasas/metabolismo
9.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37895090

RESUMEN

Hypocotyl length is a botanical trait that affects the cold tolerance of Brassica napus L. (B. napus). In this study, we constructed an F2 segregating population using the cold-resistant short hypocotyl variety '16VHNTS158' and the cold-sensitive long hypocotyl variety 'Tianyou 2288' as the parents, and BSA-seq was employed to identify candidate genes for hypocotyl length in B. napus. The results of parental differences showed that the average hypocotyl lengths of '16VHNTS158' and 'Tianyou 2288' were 0.41 cm and 0.77 cm at the 5~6 leaf stage, respectively, after different low-temperature treatments, and '16VHNTS158' exhibited lower relative ion leakage rates compared to 'Tianyou 2288'. The contents of indole acetic acid (IAA), gibberellin (GA), and brassinosteroid (BR) in hypocotyls of '16VHNTS158' and 'Tianyou 2288' increased with decreasing temperatures, but the IAA and GA contents were significantly higher than those of 'Tianyou 2288', and the BR content was lower than that of 'Tianyou 2288'. The genetic analysis results indicate that the genetic model for hypocotyl length follows the 2MG-A model. By using SSR molecular markers, a QTL locus associated with hypocotyl length was identified on chromosome C04. The additive effect value of this locus was 0.025, and it accounted for 2.5% of the phenotypic variation. BSA-Seq further localized the major effect QTL locus on chromosome C04, associating it with 41 genomic regions. The total length of this region was 1.06 Mb. Within this region, a total of 20 non-synonymous mutation genes were identified between the parents, and 26 non-synonymous mutation genes were found within the pooled samples. In the reference genome of B. napus, this region was annotated with 24 candidate genes. These annotated genes are predominantly enriched in four pathways: DNA replication, nucleotide excision repair, plant hormone signal transduction, and mismatch repair. The findings of this study provide a theoretical basis for cloning genes related to hypocotyl length in winter rapeseed and their utilization in breeding.


Asunto(s)
Brassica napus , Brassica napus/genética , Sitios de Carácter Cuantitativo/genética , Hipocótilo/genética , Fitomejoramiento , Mapeo Cromosómico
10.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762111

RESUMEN

Hypocotyl length is a critical determinant for the efficiency of mechanical harvesting in pakchoi production, but the knowledge on the molecular regulation of hypocotyl growth is very limited. Here, we report a spontaneous mutant of pakchoi, lhy7.1, and identified its characteristics. We found that it has an elongated hypocotyl phenotype compared to the wild type caused by the longitudinal growth of hypocotyl cells. Different light quality treatments, transcriptome, and proteomic analyses were performed to reveal the molecular mechanisms of hypocotyl elongation. The data showed that the hypocotyl length of lhy7.1 was significantly longer than that of WT under red, blue, and white lights but there was no significant difference under dark conditions. Furthermore, we used transcriptome and label-free proteome analyses to investigate differences in gene and protein expression levels between lhy7.1 and WT. At the transcript level, 4568 differentially expressed genes (DEGs) were identified, which were mainly enriched in "plant hormone signal transduction", "photosynthesis", "photosynthesis-antenna proteins", and "carbon fixation in photosynthetic organisms" pathways. At the protein level, 1007 differentially expressed proteins (DEPs) were identified and were mainly enriched in photosynthesis-related pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network of hypocotyl elongation involving plant hormone signal transduction and photosynthesis-related pathways. The findings of this study help elucidate the regulatory mechanisms of hypocotyl elongation in lhy7.1.


Asunto(s)
Hipocótilo , Proteoma , Proteoma/genética , Hipocótilo/genética , Reguladores del Crecimiento de las Plantas , Proteómica , Transcriptoma
11.
Molecules ; 28(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570597

RESUMEN

Amaranth plants contain abundant betalains and flavonoids. Anthocyanins are important flavonoids; however, they cannot coexist in the same plant with betalains. Blue light influences metabolite synthesis and hypocotyl elongation; accordingly, analyses of its effects on betalain and flavonoid biosynthesis in Amaranthus tricolor may provide insight into the distribution of these plant pigments. We analyzed the betalain and flavonoid content and transcriptome profiles in amaranth hypocotyls under blue light and dark conditions. Furthermore, we analyzed the expression patterns of key genes related to betalains and flavonoids. Amaranth hypocotyls were shorter and redder and showed higher betalain and flavonoid content under blue light than in dark conditions. Key genes involved in the synthesis of betalains and flavonoids were upregulated under blue light. The gene encoding DELLA was also upregulated. These results suggest that blue light favors the synthesis of both betalains and flavonoids via the suppression of bioactive gibberellin and the promotion of DELLA protein accumulation, which also suppresses hypocotyl elongation. The metabolite profiles differed between plants under blue light and dark conditions. These findings improve our understanding of the environmental cues and molecular mechanisms underlying pigment variation in Amaranthus.


Asunto(s)
Amaranthus , Betalaínas , Flavonoides/metabolismo , Transcriptoma , Antocianinas/metabolismo , Amaranthus/genética , Amaranthus/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Plantas/metabolismo
12.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373095

RESUMEN

Abiotic stress, such as drought, osmotic, and salinity stresses, seriously affects plant growth and crop production. Studying stress-resistant genes that enhance plant stress tolerance is an efficient way to facilitate the breeding of crop species with high stress tolerance. In this study, we reported that the core circadian clock component, the LATE ELONGATED HYPOCOTYL (LHY) orthologue MtLHY, plays a positive role in salt stress response in Medicago truncatula. The expression of MtLHY was induced by salt stress, and loss-of-function mutants of MtLHY were shown to be hypersensitive to salt treatment. However, overexpression of MtLHY improved salt stress tolerance through a higher accumulation of flavonoids. Consistently, exogenous flavonol application improved the salt stress tolerance in M. truncatula. Additionally, MtLHY was identified as a transcriptional activator of the flavonol synthase gene, MtFLS. Our findings revealed that MtLHY confers plant salt stress tolerance, at least by modulating the flavonoid biosynthesis pathway, which provides insight into salt stress tolerance that links the circadian clock with flavonoid biosynthesis.


Asunto(s)
Hipocótilo , Medicago truncatula , Hipocótilo/genética , Hipocótilo/metabolismo , Medicago truncatula/metabolismo , Fitomejoramiento , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Flavonoides/farmacología , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Plant J ; 115(5): 1394-1407, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243898

RESUMEN

Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transducción de Señal/fisiología , Plantas/metabolismo , Fitocromo/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
14.
PLoS Genet ; 19(5): e1010779, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216398

RESUMEN

Integration of light and phytohormones is essential for plant growth and development. FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis and is a jasmonate (JA)-conjugating enzyme for the generation of an active JA-isoleucine. Accumulating evidence indicates that FR and JA signaling integrate with each other. However, the molecular mechanisms underlying their interaction remain largely unknown. Here, the phyA mutant was hypersensitive to JA. The double mutant fin219-2phyA-211 showed a synergistic effect on seedling development under FR light. Further evidence revealed that FIN219 and phyA antagonized with each other in a mutually functional demand to modulate hypocotyl elongation and expression of light- and JA-responsive genes. Moreover, FIN219 interacted with phyA under prolonged FR light, and MeJA could enhance their interaction with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) in the dark and FR light. FIN219 and phyA interaction occurred mainly in the cytoplasm, and they regulated their mutual subcellular localization under FR light. Surprisingly, the fin219-2 mutant abolished the formation of phyA nuclear bodies under FR light. Overall, these data identified a vital mechanism of phyA-FIN219-COP1 association in response to FR light, and MeJA may allow the photoactivated phyA to trigger photomorphogenic responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo A/genética , Fitocromo A/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/genética , Mutación , Regulación de la Expresión Génica de las Plantas
15.
Plant Commun ; 4(5): 100597, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37002603

RESUMEN

Plant growth is coordinately controlled by various environmental and hormonal signals, of which light and gibberellin (GA) signals are two critical factors with opposite effects on hypocotyl elongation. Although interactions between the light and GA signaling pathways have been studied extensively, the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified. Previously, we reported that ABA INSENSITIVE 4 (ABI4) controls hypocotyl elongation through its regulation of cell-elongation-related genes, but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown. In this study, we show that promotion of hypocotyl elongation by GA is dependent on ABI4 activation. DELLAs interact directly with ABI4 and inhibit its DNA-binding activity. In turn, ABI4 combined with ELONGATED HYPOCOTYL 5 (HY5), a key positive factor in light signaling, feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels. Taken together, our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Giberelinas/metabolismo , Hipocótilo/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
16.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108407

RESUMEN

AT-hook motif nuclear localization (AHL) proteins play essential roles in various plant biological processes. Yet, a comprehensive understanding of AHL transcription factors in walnut (Juglans regia L.) is missing. In this study, 37 AHL gene family members were first identified in the walnut genome. Based on the evolutionary analysis, JrAHL genes were grouped into two clades, and their expansion may occur due to segmental duplication. The stress-responsive nature and driving of developmental activities of JrAHL genes were revealed by cis-acting elements and transcriptomic data, respectively. Tissue-specific expression analysis showed that JrAHLs had a profound transcription in flower and shoot tip, JrAHL2 in particular. Subcellular localization showed that JrAHL2 is anchored to the nucleus. Overexpression of JrAHL2 in Arabidopsis adversely affected hypocotyl elongation and delayed flowering. Our study, for the first time, presented a detailed analysis of JrAHL genes in walnut and provided theoretical knowledge for future genetic breeding programs.


Asunto(s)
Arabidopsis , Juglans , Juglans/genética , Juglans/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencias AT-Hook/genética , Fitomejoramiento , Flores/genética , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Plant Physiol ; 191(4): 2353-2366, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36670526

RESUMEN

Phytochromes are red light and far-red light sensitive, plant-specific light receptors that allow plants to orient themselves in space and time. Tomato (Solanum lycopersicum) contains a small family of five phytochrome genes, for which to date stable knockout mutants are only available for three of them. Using CRISPR technology, we created multiple alleles of SlPHYTOCHROME F (phyF) mutants to determine the function of this understudied phytochrome. We report that SlphyF acts as a red/far-red light reversible low fluence sensor, likely through the formation of heterodimers with SlphyB1 and SlphyB2. During photomorphogenesis, phyF functions additively with phyB1 and phyB2. Our data further suggest that phyB2 requires the presence of either phyB1 or phyF during seedling de-etiolation in red light, probably via heterodimerization, while phyB1 homodimers are required and sufficient to suppress hypocotyl elongation in red light. During the end-of-day far-red response, phyF works additively with phyB1 and phyB2. In addition, phyF plays a redundant role with phyB1 in photoperiod detection and acts additively with phyA in root patterning. Taken together, our results demonstrate various roles for SlphyF during seedling establishment, sometimes acting additively, other times acting redundantly with the other phytochromes in tomato.


Asunto(s)
Fitocromo , Solanum lycopersicum , Fitocromo/genética , Solanum lycopersicum/genética , Plantones , Hipocótilo/genética , Luz , Fitocromo A/genética , Fitocromo B/genética , Mutación/genética
18.
Plant Cell Rep ; 42(2): 371-383, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36512035

RESUMEN

KEY MESSAGE: Our findings indicated that the SlERF.J2-IAA23 module integrates hormonal signals to regulate hypocotyl elongation and plant height in tomato. Light and phytohormones can synergistically regulate photomorphogenesis-related hypocotyl elongation and plant height in tomato. AP2/ERF family genes have been extensively demonstrated to play a role in light signaling and various hormones. In this study, we identified a novel AP2/ERF family gene in tomato, SlERF.J2. Overexpression of SlERF.J2 inhibits hypocotyl elongation and plant height. However, the plant height in the slerf.j2ko knockout mutant was not significantly changed compared with the WT. we found that hypocotyl cell elongation and plant height were regulated by a network involving light, auxin and gibberellin signaling, which is mediated by regulatory relationship between SlERF.J2 and IAA23. SlERF.J2 protein could bind to IAA23 promoter and inhibit its expression. In addition, light-dark alternation can activate the transcription of SlERF.J2 and promote the function of SlERF.J2 in photomorphogenesis. Our findings indicated that the SlERF.J2-IAA23 module integrates hormonal signals to regulate hypocotyl elongation and plant height in tomato.


Asunto(s)
Solanum lycopersicum , Factores de Transcripción , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Luz , Solanum lycopersicum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Mol Biol Rep ; 50(1): 31-41, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36301462

RESUMEN

BACKGROUND: Plants have evolved to adapt to the ever-changing environments through various morphological changes. An organism anticipates and responds to changes in its environment via the circadian clock, an endogenous oscillator lasting approximately 24 h. The circadian clock regulates various physiological processes, such as hypocotyl elongation in Arabidopsis thaliana. Phytochrome interacting factor 4 (PIF4), a member of the bHLH protein family, plays a vital hub role in light signaling pathways and temperature-mediated growth response mechanisms. PIF4 is controlled by the circadian clock and interacts with several factors. However, the components that regulate PIF4 transcription and activity are not clearly understood. METHODS AND RESULTS: Here, we showed that the Arabidopsis thaliana GATA25 (AtGATA25) transcription factor plays a fundamental role in promoting hypocotyl elongation by positively regulating the expression of PIF4. This was confirmed to in the loss-of-function mutant of AtGATA25 via CRISPR/Cas9-mediated gene editing, which inhibits hypocotyl elongation and decreases the expression of PIF4. In contrast, the overexpression of AtGATA25 in transgenic plants resulted in increased expression of PIF4 and enhanced hypocotyl elongation. To better understand AtGATA25-mediated PIF4 transcriptional regulation, we analyzed the promoter region of the target gene PIF4 and characterized the role of GATA25 through transcriptional activation analysis. CONCLUSION: Our findings suggest a novel role of the AtGATA25 transcription factor in hypocotyl elongation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/genética , Sistemas CRISPR-Cas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
20.
Plant Dis ; 107(7): 1993-2001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36475742

RESUMEN

Fusarium wilt of Luffa, caused by Fusarium oxysporum f. sp. luffae, causes great losses in Luffa plants worldwide. In this study, 45 accessions of Luffa germplasm were used to determine their resistance to F. oxysporum f. sp. luffae isolates (FOLUST, FOLUSC, Fomh16, and Fol114) in two independent trials. In the first trial, only FOLUST was used to preliminarily identify resistant accessions. Nine accessions of Luffa acutangula and five of L. aegyptiaca were resistant to the FOLUST isolate. In the second trial, the other three isolates were then used to reevaluate the 14 resistant accessions. The results indicated that the 14 accessions were resistant to FOLUSC but exhibited variable resistance to the Fomh16 and Fol114 isolates. Eight accessions of L. acutangula and one accession of L. aegyptiaca were resistant to Fol114. Seven accessions of L. acutangula and one accession of L. aegyptiaca were resistant to Fomh16. Despite the lack of any symptoms, the F. oxysporum f. sp. luffae isolates were recovered from the hypocotyls of all resistant accessions at 28 days postinoculation, except for isolates FOLUSC and FOLUST on one accession (LA140). A high percentage (87.5%) of accessions collected from Bangladesh were identified as resistant, highlighting the effect of local adaptation on resistance. These results provide potentially valuable genetic resources for breeding programs to develop new varieties or rootstocks that could be beneficial for controlling soilborne diseases in different cucurbit crops and further investigating the mechanisms of resistance to F. oxysporum f. sp. luffae in Luffa plants.


Asunto(s)
Fusarium , Luffa , Fusarium/genética , Hipocótilo/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Productos Agrícolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...