Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4394, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285211

RESUMEN

Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fotorreceptores Microbianos/metabolismo , Transducción de Señal/efectos de la radiación , Agrobacterium/enzimología , Proteínas Bacterianas/ultraestructura , Deinococcus/enzimología , Histidina Quinasa/ultraestructura , Luz , Simulación de Dinámica Molecular , Monoéster Fosfórico Hidrolasas/ultraestructura , Fotorreceptores Microbianos/ultraestructura , Dominios Proteicos
2.
Nat Commun ; 11(1): 743, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029744

RESUMEN

Motile bacteria sense chemical gradients with transmembrane receptors organised in supramolecular signalling arrays. Understanding stimulus detection and transmission at the molecular level requires precise structural characterisation of the array building block known as a core signalling unit. Here we introduce an Escherichia coli strain that forms small minicells possessing extended and highly ordered chemosensory arrays. We use cryo-electron tomography and subtomogram averaging to provide a three-dimensional map of a complete core signalling unit, with visible densities corresponding to the HAMP and periplasmic domains. This map, combined with previously determined high resolution structures and molecular dynamics simulations, yields a molecular model of the transmembrane core signalling unit and enables spatial localisation of its individual domains. Our work thus offers a solid structural basis for the interpretation of a wide range of existing data and the design of further experiments to elucidate signalling mechanisms within the core signalling unit and larger array.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Quimiotácticas Aceptoras de Metilo/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Histidina Quinasa/química , Histidina Quinasa/genética , Histidina Quinasa/ultraestructura , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas Quimiotácticas Aceptoras de Metilo/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura
3.
J Mol Biol ; 432(2): 576-584, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626809

RESUMEN

Bacterial chemoreceptors control the activity of the associated CheA kinase in response to chemical gradients and, consequently, regulate the swimming behavior of the cell. However, such control is not direct but requires the participation of the essential coupling protein CheW, which is structurally homologous to the carboxy-terminal domain of the kinase. The actual role of this small coupling protein is somehow intriguing. It has been demonstrated that it is absolutely essential for chemoreceptor control of the kinase, in spite of the occurrence of direct contacts between chemoreceptors and CheA. In addition, CheW plays an essential role in the assembly of the large macromolecular arrays that combine chemoreceptors of different specificities, and it is therefore responsible for molecular interactions that provide such arrays with remarkable signaling properties. In this work, we analyze truncated CheW derivatives that are still able to control the kinase but have lost the ability to connect signaling units. We demonstrate that these two activities can work separately and speculate about the significance of the roles of these two different activities in the context of the chemoreceptor cluster.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Quimiotaxis , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/ultraestructura , Histidina Quinasa/ultraestructura , Proteínas Quimiotácticas Aceptoras de Metilo/ultraestructura , Proteínas Bacterianas/genética , Sitios de Unión , Quimiotaxis/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Histidina Quinasa/genética , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transducción de Señal/genética , Homología Estructural de Proteína
4.
Methods Mol Biol ; 1729: 187-199, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29429093

RESUMEN

Bacterial chemoreceptors form a highly ordered array in concert with the CheA kinase and the CheW coupling protein. The precise architecture of the array is responsible for high sensitivity, high dynamic range, and strong amplification of chemotaxis signaling. Cryo-electron tomography (cryo-ET) has emerged as a unique tool to visualize bacterial chemotaxis arrays at molecular level. Here we describe a detailed cryo-ET and subtomogram averaging procedure to determine in situ structure of the chemoreceptor arrays in Salmonella minicells. The procedure should be readily applicable to visualize other large macromolecular assemblies in their cellular context.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Histidina Quinasa/ultraestructura , Salmonella enterica/ultraestructura , Factores Quimiotácticos/química , Quimiotaxis , Salmonella enterica/metabolismo , Transducción de Señal
5.
Protoplasma ; 255(3): 937-952, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29290041

RESUMEN

Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 that precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain.


Asunto(s)
Cianobacterias/enzimología , Histidina Quinasa/metabolismo , Multimerización de Proteína , Sodio/metabolismo , Cromatografía en Gel , Reactivos de Enlaces Cruzados/metabolismo , Histidina Quinasa/química , Histidina Quinasa/ultraestructura , Iones , Coloración Negativa , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA