Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2409628121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163341

RESUMEN

Protein kinase Gcn2 attenuates protein synthesis in response to amino acid starvation while stimulating translation of a transcriptional activator of amino acid biosynthesis. Gcn2 activation requires a domain related to histidyl-tRNA synthetase (HisRS), the enzyme that aminoacylates tRNAHis. While evidence suggests that deacylated tRNA binds the HisRS domain for kinase activation, ribosomal P-stalk proteins have been implicated as alternative activating ligands on stalled ribosomes. We report crystal structures of the HisRS domain of Chaetomium thermophilum Gcn2 that reveal structural mimicry of both catalytic (CD) and anticodon-binding (ABD) domains, which in authentic HisRS bind the acceptor stem and anticodon loop of tRNAHis. Elements for forming histidyl adenylate and aminoacylation are lacking, suggesting that Gcn2HisRS was repurposed for kinase activation, consistent with mutations in the CD that dysregulate yeast Gcn2 function. Substituting conserved ABD residues well positioned to contact the anticodon loop or that form a conserved ABD-CD interface impairs Gcn2 function in starved cells. Mimicry in Gcn2HisRS of two highly conserved structural domains for binding both ends of tRNA-each crucial for Gcn2 function-supports that deacylated tRNAs activate Gcn2 and exemplifies how a metabolic enzyme is repurposed to host new local structures and sequences that confer a novel regulatory function.


Asunto(s)
Chaetomium , Histidina-ARNt Ligasa , Proteínas Serina-Treonina Quinasas , Chaetomium/enzimología , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Histidina-ARNt Ligasa/metabolismo , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/genética , Estrés Fisiológico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cristalografía por Rayos X , Modelos Moleculares , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
2.
RNA Biol ; 16(9): 1275-1285, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31179821

RESUMEN

The extra 5' guanine nucleotide (G-1) on tRNAHis is a nearly universal feature that specifies tRNAHis identity. The G-1 residue is either genome encoded or post-transcriptionally added by tRNAHis guanylyltransferase (Thg1). Despite Caenorhabditis elegans being a Thg1-independent organism, its cytoplasmic tRNAHis (CetRNAnHis) retains a genome-encoded G-1. Our study showed that this eukaryote possesses a histidyl-tRNA synthetase (CeHisRS) gene encoding two distinct HisRS isoforms that differ only at their N-termini. Most interestingly, its mitochondrial tRNAHis (CetRNAmHis) lacks G-1, a scenario never observed in any organelle. This tRNA, while lacking the canonical identity element, can still be efficiently aminoacylated in vivo. Even so, addition of G-1 to CetRNAmHis strongly enhanced its aminoacylation efficiency in vitro. Overexpression of CeHisRS successfully bypassed the requirement for yeast THG1 in the presence of CetRNAnHis without G-1. Mutagenesis assays showed that the anticodon takes a primary role in CetRNAHis identity recognition, being comparable to the universal identity element. Consequently, simultaneous introduction of both G-1 and the anticodon of tRNAHis effectively converted a non-cognate tRNA to a tRNAHis-like substrate. Our study suggests that a new balance between identity elements of tRNAHis relieves HisRS from the absolute requirement for G-1.


Asunto(s)
Caenorhabditis elegans/genética , Nucleótidos/genética , ARN Mitocondrial/genética , ARN de Transferencia de Histidina/metabolismo , Secuencia de Aminoácidos , Aminoacilación , Animales , Anticodón/genética , Secuencia de Bases , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estabilidad de Enzimas , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/genética , Cinética , Nucleotidiltransferasas , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidad por Sustrato , Temperatura
3.
Hum Mutat ; 39(3): 415-432, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29235198

RESUMEN

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Asunto(s)
Axones/patología , Histidina-ARNt Ligasa/metabolismo , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/patología , Secuencia de Aminoácidos , Aminoacilación , Biocatálisis , Dominio Catalítico , Secuencia Conservada , Femenino , Prueba de Complementación Genética , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/aislamiento & purificación , Humanos , Cinética , Masculino , Mutación/genética , Linaje , Enfermedades del Sistema Nervioso Periférico/genética , Multimerización de Proteína , Especificidad por Sustrato
4.
J Biomol Struct Dyn ; 36(4): 878-892, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28317434

RESUMEN

Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.


Asunto(s)
Aminoácidos/química , Histidina-ARNt Ligasa/química , Serina-ARNt Ligasa/química , Aminoacilación de ARN de Transferencia , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Simulación de Dinámica Molecular , Conformación Proteica , Thermus thermophilus/química , Thermus thermophilus/enzimología
5.
PLoS One ; 12(9): e0185317, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28934368

RESUMEN

Histidyl tRNA Synthetase (HARS) is a member of the aminoacyl tRNA synthetase (ARS) family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.


Asunto(s)
Citoplasma/enzimología , Citoplasma/genética , Histidina-ARNt Ligasa/genética , Mitocondrias/enzimología , Pez Cebra/genética , Animales , Células COS , Chlorocebus aethiops , Secuencia Conservada , Regulación Enzimológica de la Expresión Génica , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/metabolismo , Humanos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie
6.
Biochemistry ; 56(28): 3619-3631, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28632987

RESUMEN

Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNAHis binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.


Asunto(s)
Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/metabolismo , Mutación Puntual , Síndromes de Usher/enzimología , Síndromes de Usher/genética , Secuencia de Aminoácidos , Aminoacilación , Células Cultivadas , Estabilidad de Enzimas , Células HEK293 , Histidina-ARNt Ligasa/química , Humanos , Cinética , Modelos Moleculares , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Alineación de Secuencia , Temperatura , Síndromes de Usher/metabolismo
7.
Cell Mol Life Sci ; 74(14): 2663-2677, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28321488

RESUMEN

The discriminator base N73 is a key identity element of tRNAHis. In eukaryotes, N73 is an "A" in cytoplasmic tRNAHis and a "C" in mitochondrial tRNAHis. We present evidence herein that yeast histidyl-tRNA synthetase (HisRS) recognizes both A73 and C73, but somewhat prefers A73 even within the context of mitochondrial tRNAHis. In contrast, humans possess two distinct yet closely related HisRS homologues, with one encoding the cytoplasmic form (with an extra N-terminal WHEP domain) and the other encoding its mitochondrial counterpart (with an extra N-terminal mitochondrial targeting signal). Despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Moreover, only the mitochondrial form recognized the anticodon as a strong identity element. Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNAHis isoacceptors conveniently switched their enzyme preferences. Similarly, swapping seven residues in the active site between the two isoforms readily switched their N73 preferences. This study suggests that the human HisRS genes, while descending from a common ancestor with dual function for both types of tRNAHis, have acquired highly specialized tRNA recognition properties through evolution.


Asunto(s)
Evolución Molecular , Histidina-ARNt Ligasa/metabolismo , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Aminoacilación , Bacillus subtilis/enzimología , Escherichia coli/enzimología , Histidina-ARNt Ligasa/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Mitocondrias/metabolismo , Proteínas Mutantes/metabolismo , Filogenia , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato
8.
Methods ; 113: 64-71, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27794454

RESUMEN

Differential scanning fluorimetry (DSF) is a fluorescence-based assay to evaluate protein stability by determining protein melting temperatures. Here, we describe the application of DSF to investigate aminoacyl-tRNA synthetase (AARS) stability and interaction with ligands. Employing three bacterial AARS enzymes as model systems, methods are presented here for the use of DSF to measure the apparent temperatures at which AARSs undergo melting transitions, and the effect of AARS substrates and inhibitors. One important observation is that the extent of temperature stability realized by an AARS in response to a particular bound ligand cannot be predicted a priori. The DSF method thus serves as a rapid and highly quantitative approach to measure AARS stability, and the ability of ligands to influence the temperature at which unfolding transitions occur.


Asunto(s)
Alanina-ARNt Ligasa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Histidina-ARNt Ligasa/química , ARN de Transferencia Aminoácido-Específico/metabolismo , Treonina-ARNt Ligasa/química , Alanina-ARNt Ligasa/antagonistas & inhibidores , Alanina-ARNt Ligasa/genética , Alanina-ARNt Ligasa/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Benzopiranos/química , Inhibidores Enzimáticos/química , Estabilidad de Enzimas , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Fluorometría/métodos , Histidina-ARNt Ligasa/antagonistas & inhibidores , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Transición de Fase , Unión Proteica , Desplegamiento Proteico , ARN de Transferencia Aminoácido-Específico/genética , Especificidad por Sustrato , Treonina-ARNt Ligasa/antagonistas & inhibidores , Treonina-ARNt Ligasa/genética , Treonina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1684-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249349

RESUMEN

American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.


Asunto(s)
Inhibidores Enzimáticos/química , Histidina-ARNt Ligasa/antagonistas & inhibidores , Histidina-ARNt Ligasa/química , Bibliotecas de Moléculas Pequeñas/química , Trypanosoma cruzi/enzimología , Sitios de Unión , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/microbiología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Histidina-ARNt Ligasa/metabolismo , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/farmacología , Trypanosoma cruzi/química , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/metabolismo
10.
PLoS Genet ; 11(2): e1004991, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25695491

RESUMEN

The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α. Gcn2 is activated in amino acid-deprived cells by binding of uncharged tRNA to the regulatory domain related to histidyl-tRNA synthetase, but the molecular mechanism of activation is unclear. We used a genetic approach to identify a key regulatory surface in Gcn2 that is proximal to the predicted active site of the HisRS domain and likely remodeled by tRNA binding. Mutations leading to amino acid substitutions on this surface were identified that activate Gcn2 at low levels of tRNA binding (Gcd- phenotype), while other substitutions block kinase activation (Gcn- phenotype), in some cases without altering tRNA binding by Gcn2 in vitro. Remarkably, the Gcn- substitutions increase affinity of the HisRS domain for the C-terminal domain (CTD), previously implicated as a kinase autoinhibitory segment, in a manner dampened by HisRS domain Gcd- substitutions and by amino acid starvation in vivo. Moreover, tRNA specifically antagonizes HisRS/CTD association in vitro. These findings support a model wherein HisRS-CTD interaction facilitates the autoinhibitory function of the CTD in nonstarvation conditions, with tRNA binding eliciting kinase activation by weakening HisRS-CTD association with attendant disruption of the autoinhibitory KD-CTD interaction.


Asunto(s)
Histidina-ARNt Ligasa/genética , Proteínas Serina-Treonina Quinasas/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sustitución de Aminoácidos/genética , Cristalografía por Rayos X , Factor 2 Eucariótico de Iniciación/genética , Histidina-ARNt Ligasa/química , Mutación , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trypanosoma cruzi
11.
Nucleic Acids Res ; 43(5): 2980-90, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25722375

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) play a crucial role in protein translation by linking tRNAs with cognate amino acids. Among all the tRNAs, only tRNA(His) bears a guanine base at position -1 (G-1), and it serves as a major recognition element for histidyl-tRNA synthetase (HisRS). Despite strong interests in the histidylation mechanism, the tRNA recognition and aminoacylation details are not fully understood. We herein present the 2.55 Å crystal structure of HisRS complexed with tRNA(His), which reveals that G-1 recognition is principally nonspecific interactions on this base and is made possible by an enlarged binding pocket consisting of conserved glycines. The anticodon triplet makes additional specific contacts with the enzyme but the rest of the loop is flexible. Based on the crystallographic and biochemical studies, we inferred that the uniqueness of histidylation system originates from the enlarged binding pocket (for the extra base G-1) on HisRS absent in other aaRSs, and this structural complementarity between the 5' extremity of tRNA and enzyme is probably a result of coevolution of both.


Asunto(s)
Guanina/química , Histidina-ARNt Ligasa/química , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN de Transferencia de Histidina/química , Secuencia de Aminoácidos , Aminoacilación , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , Guanina/metabolismo , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , ARN de Transferencia de Histidina/genética , ARN de Transferencia de Histidina/metabolismo , Homología de Secuencia de Aminoácido , Thermus thermophilus/enzimología , Thermus thermophilus/genética
12.
RNA ; 21(2): 243-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25505023

RESUMEN

The identity of tRNA(His) is strongly associated with the presence of an additional 5'-guanosine residue (G-1) in all three domains of life. The critical nature of the G-1 residue is underscored by the fact that two entirely distinct mechanisms for its acquisition are observed, with cotranscriptional incorporation observed in Bacteria, while post-transcriptional addition of G-1 occurs in Eukarya. Here, through our investigation of eukaryotes that lack obvious homologs of the post-transcriptional G-1-addition enzyme Thg1, we identify alternative pathways to tRNA(His) identity that controvert these well-established rules. We demonstrate that Trypanosoma brucei, like Acanthamoeba castellanii, lacks the G-1 identity element on tRNA(His) and utilizes a noncanonical G-1-independent histidyl-tRNA synthetase (HisRS). Purified HisRS enzymes from A. castellanii and T. brucei exhibit a mechanism of tRNA(His) recognition that is distinct from canonical G-1-dependent synthetases. Moreover, noncanonical HisRS enzymes genetically complement the loss of THG1 in Saccharomyces cerevisiae, demonstrating the biological relevance of the G-1-independent aminoacylation activity. In contrast, in Caenorhabditis elegans, which is another Thg1-independent eukaryote, the G-1 residue is maintained, but here its acquisition is noncanonical. In this case, the G-1 is encoded and apparently retained after 5' end processing, which has so far only been observed in Bacteria and organelles. Collectively, these observations unearth a widespread and previously unappreciated diversity in eukaryotic tRNA(His) identity mechanisms.


Asunto(s)
Acanthamoeba castellanii/enzimología , Procesamiento Postranscripcional del ARN , ARN Protozoario/biosíntesis , ARN de Transferencia de Histidina/biosíntesis , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/fisiología , Cinética , Datos de Secuencia Molecular , Nucleotidiltransferasas/fisiología , Filogenia , Proteínas Protozoarias/química , Proteínas Protozoarias/fisiología , ARN Protozoario/genética , ARN de Transferencia de Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacilación de ARN de Transferencia
13.
Biochimie ; 106: 111-20, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25151410

RESUMEN

As part of a project aimed at obtaining selective inhibitors and drug-like compounds targeting tRNA synthetases from trypanosomatids, we have elucidated the crystal structure of human cytosolic histidyl-tRNA synthetase (Hs-cHisRS) in complex with histidine in order to be able to compare human and parasite enzymes. The resultant structure of Hs-cHisRS•His represents the substrate-bound state (H-state) of the enzyme. It provides an interesting opportunity to compare with ligand-free and imidazole-bound structures Hs-cHisRS published recently, both of which represent the ligand-free state (F-state) of the enzyme. The H-state Hs-cHisRS undergoes conformational changes in active site residues and several conserved motif of HisRS, compared to F-state structures. The histidine forms eight hydrogen bonds with HisRS of which six engage the amino and carboxylate groups of this amino acid. The availability of published imidazole-bound structure provides a unique opportunity to dissect the structural roles of individual chemical groups of histidine. The analysis revealed the importance of the amino and carboxylate groups, of the histidine in leading to these dramatic conformational changes of the H-state. Further, comparison with previously published trypanosomatid HisRS structures reveals a pocket in the F-state of the parasite enzyme that may provide opportunities for developing specific inhibitors of Trypanosoma brucei HisRS.


Asunto(s)
Histidina-ARNt Ligasa/química , Histidina/química , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Histidina/metabolismo , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Trypanosoma brucei brucei/genética
14.
J Immunol ; 191(4): 1865-72, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23842751

RESUMEN

We have previously shown that i.m. administration of bacterially expressed murine histidyl-tRNA synthetase (HRS) triggers florid muscle inflammation (relative to appropriate control proteins) in various congenic strains of mice. Because severe disease develops even in the absence of adaptive immune responses to HRS, we sought to identify innate immune signaling components contributing to our model of HRS-induced myositis. In vitro stimulation assays demonstrated HRS-mediated activation of HEK293 cells transfected with either TLR2 or TLR4, revealing an excitatory capacity exceeding that of other bacterially expressed fusion proteins. Corresponding to this apparent functional redundancy of TLR signaling pathways, HRS immunization of B6.TLR2(-/-) and B6.TLR4(-/-) single-knockout mice yielded significant lymphocytic infiltration of muscle tissue comparable to that produced in C57BL/6 wild-type mice. In contrast, concomitant elimination of TLR2 and TLR4 signaling in B6.TLR2(-/-).TLR4(-/-) double-knockout mice markedly reduced the severity of HRS-induced muscle inflammation. Complementary subfragment analysis demonstrated that aa 60-90 of HRS were absolutely required for in vitro as well as in vivo signaling via these MyD88-dependent TLR pathways--effects mediated, in part, through preferential binding of exogenous ligands capable of activating specific TLRs. Collectively, these experiments indicate that multiple MyD88-dependent signaling cascades contribute to this model of HRS-induced myositis, underscoring the antigenic versatility of HRS and confirming the importance of innate immunity in this system.


Asunto(s)
Autoantígenos/toxicidad , Histidina-ARNt Ligasa/toxicidad , Factor 88 de Diferenciación Mieloide/fisiología , Enfermedad Autoinmune Experimental del Sistema Nervioso/fisiopatología , Transducción de Señal/fisiología , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/fisiología , Animales , Autoantígenos/química , Autoantígenos/inmunología , Diglicéridos/metabolismo , Endotoxinas/metabolismo , Femenino , Proteína HMGB1/metabolismo , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/inmunología , Inmunidad Innata , Inmunización , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/toxicidad , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Enfermedad Autoinmune Experimental del Sistema Nervioso/etiología , Oligopéptidos/metabolismo , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/toxicidad , Unión Proteica , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/toxicidad , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/efectos de los fármacos , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/efectos de los fármacos
15.
Structure ; 20(9): 1470-7, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22958643

RESUMEN

Aminoacyl-tRNA synthetases (AARSs) catalyze aminoacylation of tRNAs in the cytoplasm. Surprisingly, AARSs also have critical extracellular and nuclear functions. Evolutionary pressure for new functions might be manifested by splice variants that skip only an internal catalytic domain (CD) and link noncatalytic N- and C-terminal polypeptides. Using disease-associated histidyl-tRNA synthetase (HisRS) as an example, we found an expressed 171-amino acid protein (HisRSΔCD) that deleted the entire CD, and joined an N-terminal WHEP to the C-terminal anticodon-binding domain (ABD). X-ray crystallography and three-dimensional NMR revealed the structures of human HisRS and HisRSΔCD. In contrast to homodimeric HisRS, HisRSΔCD is monomeric, where rupture of the ABD's packing with CD resulted in a dumbbell-like structure of flexibly linked WHEP and ABD domains. In addition, the ABD of HisRSΔCD presents a distinct local conformation. This natural internally deleted HisRS suggests evolutionary pressure to reshape AARS tertiary and quaternary structures for repurposing.


Asunto(s)
Evolución Molecular , Histidina-ARNt Ligasa/química , Eliminación de Secuencia , Anticuerpos/sangre , Anticuerpos/inmunología , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , ADN Complementario/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Histidina-ARNt Ligasa/genética , Histidina-ARNt Ligasa/inmunología , Humanos , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Miositis/sangre , Miositis/inmunología , Isoformas de Proteínas , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN , Transcriptoma
16.
J Biomol Struct Dyn ; 30(6): 701-15, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22731388

RESUMEN

In the present work we report, for the first time, a novel difference in the molecular mechanism of the activation step of aminoacylation reaction between the class I and class II aminoacyl tRNA synthetases (aaRSs). The observed difference is in the mode of nucleophilic attack by the oxygen atom of the carboxylic group of the substrate amino acid (AA) to the αP atom of adenosine triphosphate (ATP). The syn oxygen atom of the carboxylic group attacks the α-phosphorous atom (αP) of ATP in all class I aaRSs (except TrpRS) investigated, while the anti oxygen atom attacks in the case of class II aaRSs. The class I aaRSs investigated are GluRS, GlnRS, TyrRS, TrpRS, LeuRS, ValRS, IleRS, CysRS, and MetRS and class II aaRSs investigated are HisRS, LysRS, ProRS, AspRS, AsnRS, AlaRS, GlyRS, PheRS, and ThrRS. The variation of the electron density at bond critical points as a function of the conformation of the attacking oxygen atom measured by the dihedral angle ψ (C(α)-C') conclusively proves this. The result shows that the strength of the interaction of syn oxygen and αP is stronger than the interaction with the anti oxygen for class I aaRSs. This indicates that the syn oxygen is the most probable candidate for the nucleophilic attack in class I aaRSs. The result is further supported by the computation of the variation of the nonbonded interaction energies between αP atom and anti oxygen as well as syn oxygen in class I and II aaRSs, respectively. The difference in mechanism is explained based on the analysis of the electrostatic potential of the AA and ATP which shows that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs, which is correlated with the organization of the active site in respective aaRSs. A comparative study of the reaction mechanisms of the activation step in a class I aaRS (Glutaminyl tRNA synthetase) and in a class II aaRS (Histidyl tRNA synthetase) is carried out by the transition state analysis. The atoms in molecule analysis of the interaction between active site residues or ions and substrates are carried out in the reactant state and the transition state. The result shows that the observed novel difference in the mechanism is correlated with the organizations of the active sites of the respective aaRSs. The result has implication in understanding the experimentally observed different modes of tRNA binding in the two classes of aaRSs.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Histidina-ARNt Ligasa/química , Modelos Moleculares , Adenosina Trifosfato/química , Algoritmos , Secuencias de Aminoácidos , Dominio Catalítico , Simulación por Computador , Unión Proteica , ARN de Transferencia de Glutamina/química , ARN de Transferencia de Histidina/química , Propiedades de Superficie , Termodinámica
17.
Biophys Chem ; 158(1): 61-72, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21636210

RESUMEN

The relation between the conservation of active site residues and the molecular mechanism of aminoacylation reaction is an unexplored problem. In the present paper, the influences of the conserved active site residues on the reaction mechanism as well as the electrostatic potential near the reaction center are analyzed for Histidyl tRNA synthetase from Escherichia coli, Thermus thermophilus and Staphylococcus aureus. While the primary structures show both convergence as well as divergence, the secondary level structures of the active sites of the three species show considerable conservation in the respective structural organizations. The conserved active site residues near the reaction center, which have a major role in the reaction mechanism and catalysis, retain their specific position and orientation relative to the substrate in the three species. In order to understand the influence of different conserved and nonconserved residues near the reaction center, two different models are considered. First, a large model of active site with the substrates, Mg(2+) ions and water is constructed in which the first shell residues (including both conserved as well as nonconserved) near the reaction center are studied. From the large model, a smaller model is constructed for reaction path modeling individually for three species. Validation of the smaller model is carried out by comparing the energy surfaces of large and small models as a function of reaction coordinates. Further, the electrostatic potential near the reaction center for the large and small model are compared. The transition state structures of the activation step of aminoacylation reaction for E. coli, T. thermophilus and S. aureus are calculated using the combined ab-initio/semi-empirical calculation. The similarity of the energy profiles as a function of the relevant reaction coordinate and the orientation of the catalytic residue, Arg259, indicate that the reaction mechanisms are identical which are guided by the strikingly similar structural pattern formed by conserved residues for three species. The energy surfaces have close resemblance in three species and present a clear perspective that how the reaction proceeds with the aid of different conserved residues. The study of electrostatic potential confirms this view. The present study provides an understanding of the relationship between the conservation of residues and the efficient reaction mechanism of aminoacylation reaction.


Asunto(s)
Aminoacilación , Histidina-ARNt Ligasa/química , Acilación , Secuencia de Aminoácidos , Dominio Catalítico , Escherichia coli/enzimología , Histidina-ARNt Ligasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Teoría Cuántica , Alineación de Secuencia , Staphylococcus aureus/enzimología , Electricidad Estática , Termodinámica , Thermus thermophilus/enzimología
18.
Langmuir ; 27(10): 6116-23, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21491877

RESUMEN

For the miniaturization of biological assays, especially for the fabrication of microarrays, immobilization of biomolecules at the surfaces of the chips is the decisive factor. Accordingly, a variety of binding techniques have been developed over the years to immobilize DNA or proteins onto such substrates. Most of them require rather complex fabrication processes and sophisticated surface chemistry. Here, a comparatively simple immobilization technique is presented, which is based on the local generation of small spots of surface attached polymer networks. Immobilization is achieved in a one-step procedure: probe molecules are mixed with a photoactive copolymer in aqueous buffer, spotted onto a solid support, and cross-linked as well as bound to the substrate during brief flood exposure to UV light. The described procedure permits spatially confined surface functionalization and allows reliable binding of biological species to conventional substrates such as glass microscope slides as well as various types of plastic substrates with comparable performance. The latter also permits immobilization on structured, thermoformed substrates resulting in an all-plastic biochip platform, which is simple and cheap and seems to be promising for a variety of microdiagnostic applications.


Asunto(s)
Proteínas Inmovilizadas/química , Polímeros/química , ADN Viral/química , ADN Viral/genética , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/metabolismo , Humanos , Hidrogeles/química , Proteínas Inmovilizadas/metabolismo , Inmunoensayo , Yoduro Peroxidasa/química , Yoduro Peroxidasa/metabolismo , Conformación Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Papillomaviridae/genética , Reacción en Cadena de la Polimerasa , Propiedades de Superficie
19.
J Biol Chem ; 286(12): 10387-95, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21270472

RESUMEN

Four minimal (119-145 residue) active site fragments of Escherichia coli Class II histidyl-tRNA synthetase were constructed, expressed as maltose-binding protein fusions, and assayed for histidine activation as fusion proteins and after TEV cleavage, using the (32)PP(i) exchange assay. All contain conserved Motifs 1 and 2. Two contain an N-terminal extension of Motif 1 and two contain Motif 3. Five experimental results argue strongly for the authenticity of the observed catalytic activities: (i) active site titration experiments showing high (∼0.1-0.55) fractions of active molecules, (ii) release of cryptic activity by TEV cleavage of the fusion proteins, (iii) reduced activity associated with an active site mutation, (iv) quantitative attribution of increased catalytic activity to the intrinsic effects of Motif 3, the N-terminal extension and their synergistic effect, and (v) significantly altered K(m) values for both ATP and histidine substrates. It is therefore plausible that neither the insertion domain nor Motif 3 were essential for catalytic activity in the earliest Class II aminoacyl-tRNA synthetases. The mean rate enhancement of all four cleaved constructs is ∼10(9) times that of the estimated uncatalyzed rate. As observed for the tryptophanyl-tRNA synthetase (TrpRS) Urzyme, these fragments bind ATP tightly but have reduced affinity for cognate amino acids. These fragments thus likely represent Urzymes (Ur = primitive, original, earliest + enzyme) comparable in size and catalytic activity and coded by sequences proposed to be antisense to that coding the previously described Class I TrpRS Urzyme. Their catalytic activities provide metrics for experimental recapitulation of very early evolutionary events.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Histidina-ARNt Ligasa/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Catálisis , Dominio Catalítico , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/metabolismo , Histidina/química , Histidina/metabolismo , Histidina-ARNt Ligasa/clasificación , Histidina-ARNt Ligasa/metabolismo
20.
J Mol Biol ; 397(2): 481-94, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20132829

RESUMEN

Crystal structures of histidyl-tRNA synthetase (HisRS) from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme and reveal differences from bacterial homologs. HisRSs in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three-dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active-site rearrangement upon histidine binding but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme's first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human HisRSs. The essentiality of the single HisRS gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference.


Asunto(s)
Histidina-ARNt Ligasa/química , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Técnicas de Silenciamiento del Gen , Genes Esenciales , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Alineación de Secuencia , Trypanosoma brucei brucei/química , Trypanosoma cruzi/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA