Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
1.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678233

RESUMEN

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Asunto(s)
Histona Desacetilasa 1 , Histona Desacetilasa 2 , Proto-Oncogenes Mas , Humanos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Histonas/metabolismo , Animales
2.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682259

RESUMEN

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Histona Desacetilasa 2 , Proteínas Nucleares , Regiones Promotoras Genéticas , SARS-CoV-2 , Transactivadores , Humanos , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Transactivadores/metabolismo , Transactivadores/genética , Regiones Promotoras Genéticas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , COVID-19/virología , COVID-19/inmunología , COVID-19/genética , COVID-19/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/inmunología , Células HEK293 , Regulación hacia Abajo/genética , Presentación de Antígeno/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética
3.
Sci Rep ; 14(1): 9897, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688962

RESUMEN

Alzheimer's disease (AD) is associated with cognitive deficits and epigenetic deacetylation that can be modulated by natural products. The role of natural oxyresveratrol-ß-cyclodextrin (ORV) on cognition and histone deacetylase activity in AD is unclear. Herein, in-silico docking and molecular dynamics simulation analysis determined that oxyresveratrol potentially targets histone deacetylase-2 (HDAC2). We therefore evaluated the in vivo ameliorative effect of ORV against cognitive deficit, cerebral and hippocampal expression of HDAC in experimental AD rats. Intracerebroventricular injection of STZ (3 mg/kg) induced experimental AD and the rats were treated with low dose (200 mg/kg), high dose (400 mg/kg) of ORV and donepezil (10 mg/kg) for 21 days. The STZ-induced AD caused cognitive and behavioural deficits demonstrated by considerable increases in acetylcholinesterase activity and escape latency compared to sham control. The levels of malondialdehyde (MDA) and HDAC activity were significantly increased in AD disease group comparison to the sham. Interestingly, the ORV reversed the cognitive-behavioural deficit and prominently reduced the MDA and HDAC levels comparable to the effect of the standard drug, donepezil. The findings suggest anti-AD role of ORV via antioxidant effect and inhibition of HDAC in the hippocampal and frontal cortical area of rats for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Histona Desacetilasa 2 , Extractos Vegetales , Estilbenos , Estreptozocina , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Estilbenos/farmacología , Estilbenos/uso terapéutico , Masculino , Histona Desacetilasa 2/metabolismo , beta-Ciclodextrinas/farmacología , Simulación del Acoplamiento Molecular , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Malondialdehído/metabolismo , Donepezilo/farmacología , Donepezilo/uso terapéutico , Simulación de Dinámica Molecular , Ratas Wistar
4.
Food Funct ; 15(9): 5103-5117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38680105

RESUMEN

Hydroxytyrosol (HT), a phenolic extra-virgin olive oil compound used as a food supplement, has been recognized to protect liver function and alleviate stress-induced depressive-like behaviors. However, its protective effects against stress-induced liver injury (SLI) remain unknown. Here, the anti-SLI effect of HT was evaluated in mice with chronic unpredictable mild stress-induced SLI. Network pharmacology combined with molecular docking was used to clarify the underlying mechanism of action of HT against SLI, followed by experimental verification. The results showed that accompanying with the alleviation of HT on stress-induced depressive-like behaviors, HT was confirmed to exert the protective effects against SLI, as represented by reduced serum corticosterone (CORT), aspartate aminotransferase and alanine aminotransferase activities, as well as repair of liver structure, inhibition of oxidative homeostasis collapse, and inflammation reaction in the liver. Furthermore, core genes including histone deacetylase 1 and 2 (HDAC1/2), were identified as potential targets of HT in SLI based on bioinformatic screening and simulation. Consistently, HT significantly inhibited HDAC1/2 expression to maintain mitochondrial dysfunction in an autophagy-dependent manner, which was confirmed in a CORT-induced AML-12 cell injury and SLI mice models combined with small molecule inhibitors. We provide the first evidence that HT inhibits HDAC1/2 to induce autophagy in hepatocytes for maintaining mitochondrial dysfunction, thus preventing inflammation and oxidative stress for exerting an anti-SLI effect. This constitutes a novel therapeutic modality to synchronously prevent stress-induced depression-like behaviors and liver injury, supporting the advantaged therapeutic potential of HT.


Asunto(s)
Autofagia , Histona Desacetilasa 2 , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Animales , Ratones , Alcohol Feniletílico/farmacología , Autofagia/efectos de los fármacos , Masculino , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Ratones Endogámicos C57BL , Histona Desacetilasa 1/metabolismo , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones
5.
Epigenomics ; 16(5): 277-292, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356395

RESUMEN

Background: The objective of this research was to determine whether HDAC2 function is associated with gastric cancer progression. Methods: HDAC2 was knocked out in EPG85.257 cells using CRISPR/Cas9 and tumorigenesis pathways were evaluated. Results: Cell proliferation, colony formation, wound healing and transwell invasion were inhibited in ΔHDAC2:EPG85.257 cells. Quantitative analyses revealed a significant downregulation of MMP1, p53, Bax, MAPK1, MAPK3, pro-Caspase3, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, p-NF-κB (p65), Twist, Snail and p-FAK transcripts/proteins, while SIRT1, PTEN, p21 and Caspase3 were upregulated in ΔHDAC2:EPG85.257 cells. Conclusion: These results indicated that HDAC2 enhanced migration, colony formation and transmigration ability. HDAC2 inhibition may improve gastric cancer chemotherapy pathways.


DNA changes are the main causes of cancer. Therefore, finding easy ways to manipulate and correct DNA changes has been the biggest medical concern in cancer treatment. Researchers have introduced CRISPR/Cas9 as the newest technology for gene editing that precisely and easily changes the genome of any cell. In our study, histone deacetylase-2 was disrupted in gastric cancer cells using CRISPR technology. This modification reduced growth kinetics and invasion of cancer cells. On the other hand, cell death (also called apoptosis) was induced. Sensitization of the cancer cells to chemotherapeutic agents is noticeable in this research. This study needs to uncover more signaling pathways in vitro and in vivo.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Epigénesis Genética , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo
6.
Cell Death Differ ; 31(4): 447-459, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413797

RESUMEN

Hypoxia is a hallmark of cancer development. However, the molecular mechanisms by which hypoxia promotes tumor metastasis are not fully understood. In this study, we demonstrate that hypoxia promotes breast cancer metastasis through suppression of ΔNp63α in a HIF1α-independent manner. We show that hypoxia-activated XBP1s forms a stable repressor protein complex with HDAC2 and EZH2 to suppress ΔNp63α transcription. Notably, H3K27ac is predominantly occupied on the ΔNp63 promoter under normoxia, while H3K27me3 on the promoter under hypoxia. We show that XBP1s binds to the ΔNp63 promoter to recruit HDAC2 and EZH2 in facilitating the switch of H3K27ac to H3K27me3. Pharmacological inhibition or the knockdown of either HDAC2 or EZH2 leads to increased H3K27ac, accompanied by the reduced H3K27me3 and restoration of ΔNp63α expression suppressed by hypoxia, resulting in inhibition of cell migration. Furthermore, the pharmacological inhibition of IRE1α, but not HIF1α, upregulates ΔNp63α expression in vitro and inhibits tumor metastasis in vivo. Clinical analyses reveal that reduced p63 expression is correlated with the elevated expression of XBP1, HDAC2, or EZH2, and is associated with poor overall survival in human breast cancer patients. Together, these results indicate that hypoxia-activated XBP1s modulates the epigenetic program in suppression of ΔNp63α to promote breast cancer metastasis independent of HIF1α and provides a molecular basis for targeting the XBP1s/HDAC2/EZH2-ΔNp63α axis as a putative strategy in the treatment of breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Histona Desacetilasa 2 , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteínas Supresoras de Tumor , Proteína 1 de Unión a la X-Box , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Línea Celular Tumoral , Metástasis de la Neoplasia , Ratones , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Hipoxia de la Célula/genética
7.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254102

RESUMEN

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Asunto(s)
Benzamidas , Carcinoma Epitelial de Ovario , Adhesión Celular , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Neoplasias Ováricas , Neoplasias Peritoneales , Animales , Femenino , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Anticuerpos Monoclonales , Carcinoma Epitelial de Ovario/metabolismo , Epitelio , Proteínas de la Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilasa 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/metabolismo , Proteómica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilasa 2/metabolismo , Adhesión Celular/genética
8.
Dig Dis Sci ; 69(3): 835-850, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38240850

RESUMEN

BACKGROUND: Increased SOX4 (SRY-related HMG-box) activity aids cellular transformation and metastasis. However, its specific functions and downstream targets remain to be completely elusive in colorectal cancer (CRC). AIMS: To investigate the role of SOX4 in CRC progression and the underlying mechanism. METHODS: In the current study, online available datasets of CRC patients were explored to check the expression status of SOX4. To investigate the further functions, SOX4 was overexpressed and knocked down in CRC cells. Colony formation assay, flowcytometry analysis, and MTT assay were used to check for proliferation and apoptosis. Acridine orange staining was done to check the role of SOX4 in autophagy induction. Furthermore, western blot, qRT-PCR, and bioinformatic analysis was done to elucidate the downstream molecular mechanism of SOX4. RESULTS: GEPIA database showed enhanced expression of SOX4 mRNA in CRC tumor, and the human protein atlas (HPA) showed strong staining of SOX4 protein in tumor when compared to the normal tissue. Ectopic expression of SOX4 enhanced colony formation ability as well as rescued cells from apoptosis. SOX4 overexpressed cells showed the formation of acidic vesicular organelles (AVOs) which indicated autophagy. Further results revealed the activation of p-AKT/MAPK molecules upon overexpression of SOX4. SOX4 expression was found to be positively correlated with histone deacetylase 2 (HDAC2). Knockdown of SOX4 or HDAC2 inhibition induced apoptosis, revealed by decrease in BCL2 and increase in BAX expression, and inactivated the p-AKT/MAPK signaling. CONCLUSION: The study uncovers that SOX4/HDAC2 axis improves cell survivability and reduces apoptosis via activation of the p-AKT/MAPK pathway.


Asunto(s)
Neoplasias Colorrectales , Histona Desacetilasa 2 , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción SOXC , Humanos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo
9.
Br J Pharmacol ; 181(9): 1452-1473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38073114

RESUMEN

BACKGROUND AND PURPOSE: Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by using herbal medicines. Currently, no therapies are available to treat or prevent aristolochic acid nephropathy. Histone deacetylase (HDAC) plays a crucial role in the development and progression of renal disease. We tested whether HDAC inhibitors could prevent aristolochic acid nephropathy and determined the underlying mechanism. EXPERIMENTAL APPROACH: HDACs expression in the aristolochic acid nephropathy model was examined. The activation of PANoptosis of mouse kidney and renal tubular epithelial cell were assessed after exposure to HDAC1 and HDAC2 blockade. Kidney-specific knock-in of proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) mice were used to investigate whether PSTPIP2 affected the production of PANoptosome. KEY RESULTS: Aristolochic acid upregulated the expression of HDAC1 and HDAC2 in the kidneys. Notably, the HDAC1 and HDAC2 specific inhibitor, romidepsin (FK228, depsipeptide), suppressed aristolochic acid-induced kidney injury, epithelial cell pyroptosis, apoptosis and necroptosis (PANoptosis). Moreover, romidepsin upregulated PSTPIP2 in renal tubular epithelial cells, which was enhanced by aristolochic acid treatment. Conditional knock-in of PSTPIP2 in the kidney protected against aristolochic acid nephropathy. In contrast, the knockdown of PSTPIP2 expression in PSTPIP2-knock-in mice restored kidney damage and PANoptosis. PSTPIP2 function was determined in vitro using PSTPIP2 knockdown or overexpression in mouse renal tubular epithelial cells (mTECs). Additionally, PSTPIP2 was found to regulate caspase 8 in aristolochic acid nephropathy. CONCLUSION AND IMPLICATIONS: HDAC-mediated silencing of PSTPIP2 may contribute to aristolochic acid nephropathy. Hence, HDAC1 and HDAC2 specific inhibitors or PSTPIP2 could be valuable therapeutic agents for preventing aristolochic acid nephropathy.


Asunto(s)
Ácidos Aristolóquicos , Enfermedades Renales , Ratones , Animales , Piroptosis , Histona Desacetilasas/metabolismo , Necroptosis , Enfermedades Renales/metabolismo , Ácidos Aristolóquicos/toxicidad , Apoptosis , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo
10.
Apoptosis ; 29(1-2): 210-228, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087046

RESUMEN

Epithelial ovarian cancer (EOC) is the leading cause of cancer death all over the world. USP43 functions as a tumor promoter in various malignant cancers. Nevertheless, the biological roles and mechanisms of USP43 in EOC remain unknown. In this study, USP43 was highly expressed in EOC tissues and cells, and high expression of USP43 were associated with a poor prognosis of EOC. USP43 overexpression promoted EOC cell proliferation, enhanced the ability of migration and invasion, decreased cisplatin sensitivity and inhibited apoptosis. Knockdown of USP43 in vitro effectively retarded above malignant progression of EOC. In vivo xenograft tumors, silencing USP43 slowed tumor growth and enhanced cisplatin sensitivity. Mechanistically, USP43 inhibited HDAC2 degradation and enhanced HDAC2 protein stability through its deubiquitylation function. USP43 diminished the sensitivity of EOC cells to cisplatin through activation of the Wnt/ß-catenin signaling pathway mediated by HDAC2. Taken together, the data in this study revealed the functions of USP43 in proliferation, migration, invasion, chemoresistance of EOC cells, and the mechanism of HDAC2-mediated Wnt/ß-catenin signaling pathway. Thus, USP43 might serve as a potential target for the control of ovarian cancer progression.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Cisplatino/farmacología , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Apoptosis , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo
11.
Birth Defects Res ; 116(1): e2266, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921375

RESUMEN

BACKGROUND: Skeletal development requires precise extrinsic and intrinsic signals to regulate processes that form and maintain bone and cartilage. Notch1 is a highly conserved signaling receptor that regulates cell fate decisions by controlling the duration of transcriptional bursts. Epigenetic molecular events reversibly modify DNA and histone tails by influencing the spatial organization of chromatin and can fine-tune the outcome of a Notch1 transcriptional response. Histone deacetylase 1 and 2 (HDAC1 and HDAC2) are chromatin modifying enzymes that mediate osteoblast differentiation. While an HDAC1-Notch interaction has been studied in vitro and in Drosophila, its role in mammalian skeletal development and disorders is unclear. Osteosclerosis is a bone disorder with an abnormal increase in the number of osteoblasts and excessive bone formation. METHODS: Here, we tested whether Hdac1/2 contribute to the pathogenesis of osteosclerosis in a murine model of the disease owing to conditionally cre-activated expression of the Notch1 intracellular domain in immature osteoblasts. RESULTS: Importantly, selective homozygous deletions of Hdac1/2 in osteoblasts partially alleviate osteosclerotic phenotypes (Col2.3kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/flox ; Hdac2flox/flox ) with a 40% decrease in bone volume and a 22% decrease in trabecular thickness in 4 weeks old when compared to male mice with heterozygous deletions of Hdac1/2 (Col2.3 kb-Cre; TGRosaN1ICD/+ ; Hdac1flox/+ ; Hdac2flox/+ ). Osteoblast-specific deletion of Hdac1/2 in male and female mice results in no overt bone phenotype in the absence of the Notch1 gain-of-function (GOF) allele. CONCLUSIONS: These results provide evidence that Hdac1/2 contribute to Notch1 pathogenic signaling in the mammalian skeleton. Our study on epigenetic regulation of Notch1 GOF-induced osteosclerosis may facilitate further mechanistic studies of skeletal birth defects caused by Notch-related GOF mutations in human patients, such as Adams-Oliver disease, congenital heart disease, and lateral meningocele syndrome.


Asunto(s)
Mutación con Ganancia de Función , Osteosclerosis , Ratones , Animales , Humanos , Masculino , Femenino , Epigénesis Genética , Osteoblastos/metabolismo , Osteosclerosis/genética , Osteosclerosis/metabolismo , Cromatina/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo
12.
CNS Neurosci Ther ; 30(4): e14524, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38105511

RESUMEN

INTRODUCTION: Persistent neuroinflammatory response after cauda equina injury (CEI) lowers nociceptor firing thresholds, accompanied by pathological pain and decreasing extremity dysfunction. Histone deacetylation has been considered a key regulator of immunity, inflammation, and neurological dysfunction. Our previous study suggested that valproic acid (VPA), a histone deacetylase inhibitor, exhibited neuroprotective effects in rat models of CEI, although the underlying mechanism remains elusive. METHODS: The cauda equina compression surgery was performed to establish the CEI model. The Basso, Beattie, Bresnahan score, and the von Frey filament test were carried out to measure the animal behavior. Immunofluorescence staining of myelin basic protein and GPX4 was carried out. In addition, transmission electron microscope analysis was used to assess the effect of VPA on the morphological changes of mitochondria. RNA-sequencing was conducted to clarify the underlying mechanism of VPA on CEI protection. RESULTS: In this current study, we revealed that the expression level of HDAC1 and HDAC2 was elevated after cauda equina compression model but was reversed by VPA treatment. Meanwhile, HDAC2 knockdown resulted in the improvement of motor functions and pathologic pain, similar to treatment with VPA. Histology analysis also showed that knockdown of histone deacetylase (HDAC)-2, but not HDAC1, remarkably alleviated cauda equina injury and demyelinating lesions. The potential mechanism may be related to lowering oxidative stress and inflammatory response in the injured region. Notably, the transcriptome sequencing indicated that the therapeutic effect of VPA may depend on HDAC2-mediated ferroptosis. Ferroptosis-related genes were analyzed in vivo and DRG cells further validated the reliability of RNA-sequencing results, suggesting HDAC2-H4K12ac axis participated in epigenetic modulation of ferroptosis-related genes. CONCLUSION: HDAC2 is critically involved in the ferroptosis and neuroinflammation in cauda equina injury, and VPA ameliorated cauda equina injury by suppressing HDAC2-mediated ferroptosis.


Asunto(s)
Cauda Equina , Ferroptosis , Ácido Valproico , Animales , Ratas , Cauda Equina/efectos de los fármacos , Cauda Equina/lesiones , Cauda Equina/patología , Ferroptosis/efectos de los fármacos , Inflamación/patología , Dolor , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , ARN/farmacología , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/metabolismo
13.
J Enzyme Inhib Med Chem ; 39(1): 2289355, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059332

RESUMEN

Liver cancer exhibits a high degree of heterogeneity and involves intricate mechanisms. Recent research has revealed the significant role of histone lysine methylation and acetylation in the epigenetic regulation of liver cancer development. In this study, five inhibitors capable of targeting both histone lysine methyltransferase nuclear receptor-binding SET domain 2 (NSD2) and histone deacetylase 2 (HDAC2) were identified using a structure-based virtual screening approach. Notably, DT-NH-1 displayed a potent inhibition of NSD2 (IC50 = 0.08 ± 0.03 µM) and HDAC2 (IC50 = 5.24 ± 0.87 nM). DT-NH-1 also demonstrated a strong anti-proliferative activity against various liver cancer cell lines, particularly HepG2 cells, and exhibited a high level of biological safety. In an experimental xenograft model involving HepG2 cells, DT-NH-1 showed a significant reduction in tumour growth. Consequently, these findings indicate that DT-NH-1 will be a promising lead compound for the treatment of liver cancer with epigenetic dual-target inhibitors.


Asunto(s)
Neoplasias Hepáticas , Simulación de Dinámica Molecular , Humanos , Epigénesis Genética , Histona Desacetilasa 2/metabolismo , Detección Precoz del Cáncer , Neoplasias Hepáticas/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química
14.
Physiol Behav ; 273: 114406, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949308

RESUMEN

Mice naturally form social hierarchies, and their experiences as subordinate or dominant mice inform future behavioural strategies. To better understand the neural bases of social dominance, we investigated hippocampal gene and protein expression of histone deacetylase 2 (HDAC2), an epigenetic regulator that decreases expression of synaptic plasticity genes and reduces excitatory synaptic function. Hdac2 in hippocampus was associated with social status. The gene for a closely related histone deacetylase (Hdac1), and HDAC2 protein expression, were not associated with social rank in hippocampus. These findings suggest that Hdac2 expression in hippocampus is distinctly linked with social status.


Asunto(s)
Histona Desacetilasa 1 , Estatus Social , Animales , Ratones , Masculino , Femenino , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Hipocampo/metabolismo
15.
J Enzyme Inhib Med Chem ; 39(1): 2295241, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38134358

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide. Nowadays, owing to the complex mechanism of tumorigenesis, simultaneous inhibition of multiple targets is an important anticancer strategy. Recent studies have demonstrated receptor tyrosine kinase AXL (AXL) and histone deacetylase 2 (HDAC2) are closely associated with colorectal cancer. Herein, we identified five hit compounds concurrently targeting AXL and HDAC2 using virtual screening. Inhibitory experiments revealed these hit compounds potently inhibited AXL and HDAC2 in the nanomolar range. Among them, Hit-3 showed the strongest inhibitory effects which were better than that of the positive control groups. Additionally, MD assays showed that Hit-3 could bind stably to the AXL and HDAC2 active pockets. Further MTT assays demonstrated that Hit-3 showed potent anti-proliferative activity. Most importantly, Hit-3 exhibited significant in vivo antitumor efficacy in xenograft models. Collectively, this study is the first discovery of dual-targeting AXL/HDAC2 inhibitors for colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , Farmacóforo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Detección Precoz del Cáncer , Neoplasias Colorrectales/tratamiento farmacológico
16.
J Biol Chem ; 300(1): 105562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097189

RESUMEN

Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.


Asunto(s)
Blastocisto , Metilación de ADN , Embrión de Mamíferos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Análisis de Expresión Génica de una Sola Célula , Sulfitos , Animales , Bovinos , Femenino , Embarazo , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Sulfitos/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/enzimología
17.
Toxicology ; 499: 153639, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797690

RESUMEN

Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Lead (Pb) exposure impaired the development and the health of bones, which slows the growth of children. However, it is far from clear what exactly the effects of Pb on skeletal muscle development are. In this study, C2C12 cells are commonly used as an in vitro model of muscle regeneration due to their ability to transition from a proliferative phase into differentiated myofibers. The dose of 1, 5, and 10 µM Pb were adopted to study the toxicity of Pb on C2C12 proliferation and differentiation. First, the effects of Pb on cell viability were detected and the results demonstrated that 5 µM and 10 µM Pb exposure decreased cell viability, while 1 µM Pb exposure has no obvious effects on cell viability. Then, 1-10 µM Pb exposure seriously reduced the C2C12 myoblasts differentiation, with the decrease of myogenic differentiation marker genes expression, including Muscle creatine kinase (MCK), Myosin Heavy Chain 4 (MYH4), Myogenin (MYOG), Myogenic Differentiation (MYOD). What's more, it was found that the epigenetic modifier histone deacetylase-2 (HDAC2) was upregulated after Pb exposure on C2C12 myoblasts. Further studies conclusively showed knockdown of HDAC2 ameliorated Pb-damaged C2C12 myoblasts differentiation, indicating HDAC2 plays a vital role in the Pb-induced C2C12 myoblasts differentiation deficits. In summary, these results demonstrated that Pb exposure inhibited C2C12 myoblasts differentiation by regulating HDAC2.


Asunto(s)
Plomo , Mioblastos , Niño , Humanos , Plomo/toxicidad , Plomo/metabolismo , Diferenciación Celular/genética , Expresión Génica , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo
18.
J Enzyme Inhib Med Chem ; 38(1): 2241118, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37528657

RESUMEN

Prostate cancer (PCa) is a clinically heterogeneous disease with a progressively increasing incidence. Concurrent inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) and histone deacetylase 2 (HDAC2) could potentially be a novel strategy against PCa. Herein, we identified seven compounds simultaneously targeting CARM1 and HDAC2 through structure-based virtual screening. These compounds possessed potent inhibitory activities at the nanomolar level in vitro. Among them, CH-1 was the most active inhibitor which exhibited excellent and balanced inhibitory effects against both CARM1 (IC50 = 3.71 ± 0.11 nM) and HDAC2 (IC50 = 4.07 ± 0.25 nM). MD simulations presented that CH-1 could stably bind the active pockets of CARM1 and HDAC2. Notably, CH-1 exhibited strong anti-proliferative activity against multiple prostate-related tumour cells (IC50 < 1 µM). In vivo, assessment indicated that CH-1 significantly inhibited tumour growth in a DU145 xenograft model. Collectively, CH-1 could be a promising drug candidate for PCa treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Histona Desacetilasa 2/metabolismo , Antineoplásicos/farmacología , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Inhibidores de Histona Desacetilasas/farmacología
19.
Cancer Lett ; 571: 216333, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543278

RESUMEN

The mechanisms underlying the progression of prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC), an aggressive PCa variant, are largely unclear. Two prominent NEPC phenotypes are elevated NE marker expression and heightened angiogenesis. Identifying the still elusive direct molecular links connecting angiogenesis and neuroendocrine differentiation (NED) is crucial for our understanding and targeting of NEPC. Here we found that histone deacetylase 2 (HDAC2), whose role in NEPC has not been reported, is one of the most upregulated epigenetic regulators in NEPC. HDAC2 promotes both NED and angiogenesis. G protein-coupled receptor kinase 3 (GRK3), also upregulated in NEPC, is a critical promoter for both phenotypes too. Of note, GRK3 phosphorylates HDAC2 at S394, which enhances HDAC2's epigenetic repression of potent anti-angiogenic factor Thrombospondin 1 (TSP1) and master NE-repressor RE1 Silencing Transcription Factor (REST). Intriguingly, REST suppresses angiogenesis while TSP1 suppresses NE marker expression in PCa cells, indicative of their novel functions and their synergy in cross-repressing the two phenotypes. Furthermore, the GRK3-HDAC2 pathway is activated by androgen deprivation therapy and hypoxia, both known to promote NED and angiogenesis in PCa. These results indicate that NED and angiogenesis converge on GRK3-enhanced HDAC2 suppression of REST and TSP1, which constitutes a key missing link between two prominent phenotypes of NEPC.


Asunto(s)
Quinasa 3 del Receptor Acoplado a Proteína-G , Histona Desacetilasa 2 , Neoplasias de la Próstata , Humanos , Masculino , Antagonistas de Andrógenos , Diferenciación Celular , Línea Celular Tumoral , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Transducción de Señal/genética , Quinasa 3 del Receptor Acoplado a Proteína-G/genética , Quinasa 3 del Receptor Acoplado a Proteína-G/metabolismo
20.
Brain Res ; 1816: 148480, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429454

RESUMEN

Major depressive disorder (MDD) is a devastating psychiatric disease, and current therapies could not well meet the demand for MDD treatment. Exercise benefits mental illness, and notably, exercise has been recommended as an alternative option for MDD treatment in some countries. However, the paradigm and intensity of exercise for MDD treatment has yet to be determined. High-intensity interval training (HIIT) is a potent and time-efficient type of exercise training and has gained popularity in recent years. In this study, we exposed the mice to chronic unpredictable mild stress (CUMS) and found HIIT exerted substantial antidepressant effect. Moreover, HIIT further enhanced the antidepressant effect of fluoxetine, a classic antidepressant in the clinic, confirming the antidepressant role of HIIT. HIIT significantly reversed the CUMS-induced upregulations in HDAC2 mRNA and protein level in the ventral hippocampus. We also found HIIT rescued the CUMS-induced downregulation in the expression of brain-derived neurotrophic factor (BDNF) and HDAC2 overexpression counteracted the HIIT-induced increase in BDNF level. More importantly, both virus-mediated HDAC2 overexpression and microinfusion of TrkB-Fc, a BDNF scavenger, in the ventral hippocampus abolished the antidepressant effect of HIIT. Together, our results strongly demonstrate that HIIT attenuates depressive behaviors, probably via HDAC2-BDNF signaling pathway and reveal that HIIT may serve as an alternative option for MDD treatment.


Asunto(s)
Trastorno Depresivo Mayor , Entrenamiento de Intervalos de Alta Intensidad , Animales , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/terapia , Depresión/metabolismo , Trastorno Depresivo Mayor/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Transducción de Señal , Estrés Psicológico/terapia , Estrés Psicológico/metabolismo , Histona Desacetilasa 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...