Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 434(7): 167500, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183557

RESUMEN

Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. In Saccharomyces cerevisiae, it is controlled by a reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes. Many of these enzymes are extensively phosphorylated in vivo; however, the functions of almost all phosphosites remain unknown. Here, we comprehensively analyse the phosphoregulation of the yeast histone methylation network by functionally investigating 40 phosphosites on six enzymes. A total of 82 genomically-edited S. cerevisiae strains were generated through mutagenesis of sites to aspartate as a phosphomimetic or alanine as a phosphonull. These phosphosite mutants were screened for changes in native H3K4, H3K36, and H3K79 methylation levels, and for sensitivity to environmental stress conditions. For methyltransferase Set2p, we found that phosphorylation at threonine 127 significantly decreased H3K36 methylation in vivo, and that an N-terminal phosphorylation cluster at serine residues 6, 8, and 10 is required for the diamide stress response. Proteomic analysis of Set2p phosphosite mutants revealed a specific downregulation of membrane-associated proteins and processes, consistent with changes brought about by SET2 deletion and the sensitivity of mutants to diamide. For demethylase Jhd1p, we found that its sole phosphorylation site at serine 44 is required for the cold stress response. This study represents the first systematic investigation into the phosphoregulation of the epigenetic network in any eukaryote, and shows that phosphosites on histone methylation enzymes are required for a normal cellular response to stress in S.cerevisiae.


Asunto(s)
Histona Metiltransferasas , Histona Demetilasas con Dominio de Jumonji , Metiltransferasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estrés Fisiológico , Diamida/farmacología , Histona Metiltransferasas/genética , Histona Metiltransferasas/fisiología , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/fisiología , Metiltransferasas/genética , Metiltransferasas/fisiología , Fosforilación , Proteómica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Serina/metabolismo
2.
Life Sci ; 292: 120321, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031259

RESUMEN

Triple-negative breast cancer (TNBC) is a particularly lethal subtype of breast cancer owing to its heterogeneity, high drug resistance, poor prognosis and lack of therapeutic targets. Recent insights into the complexity of TNBC have been explained by epigenetic regulation and its ability to modulate certain oncogenes and tumour suppressor genes. This has opened an emerging area in anti-cancer therapy using epigenetic modulating drugs, highlighting the epigenetic reprogramming during tumorigenesis and tumour development. Histone methylation and demethylation are such dynamic epigenetic mechanisms mediated by histone methyltransferases (HMTs) and histone demethylases (HDMs), respectively. The interplay between HMTs and HDMs in histone methylation extrapolates their viability as druggable epigenetic targets in TNBC. In this review, we aim to summarize recent progress in the field of epigenetics focusing on HMTs and HDMs in TNBC development and their potential use in targeted therapy for TNBC management.


Asunto(s)
Histona Demetilasas/fisiología , Histona Metiltransferasas/fisiología , Neoplasias de la Mama Triple Negativas/metabolismo , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Oncogenes
3.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664681

RESUMEN

Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.


Asunto(s)
Remodelación Ósea/genética , Epigénesis Genética , Osteoporosis/genética , Adipogénesis , Animales , Autofagia , Resorción Ósea/genética , Metilación de ADN , Modelos Animales de Enfermedad , Endorribonucleasas/fisiología , Código de Histonas , Histona Desacetilasas/fisiología , Histona Metiltransferasas/fisiología , Homeostasis , Humanos , Ratones , MicroARNs/sangre , MicroARNs/genética , Mitofagia , Orgánulos/fisiología , Osteoblastos/fisiología , Osteoblastos/ultraestructura , Osteoporosis/metabolismo , Polimorfismo de Nucleótido Simple
4.
Dev Biol ; 461(2): 132-144, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32044379

RESUMEN

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


Asunto(s)
Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/fisiología , Histona Metiltransferasas/fisiología , Proteína del Locus del Complejo MDS1 y EV11/fisiología , Cráneo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Cromatina/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Oído Medio/anomalías , Oído Medio/embriología , Huesos Faciales/embriología , Femenino , Genes Letales , Código de Histonas/genética , Histona Metiltransferasas/deficiencia , Histona Metiltransferasas/genética , Histonas/metabolismo , Maxilares/embriología , Proteína del Locus del Complejo MDS1 y EV11/deficiencia , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Metilación , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional/genética , Especificidad de la Especie , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
5.
Clin Sci (Lond) ; 133(20): 2085-2105, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31654063

RESUMEN

A previous study reported that histone methyltransferase SETD3 is up-regulated in tumor tissues of hepatocellular carcinoma (HCC) and is associated with the growth of HCC. However, the clinical significance and the effect of SETD3 on HCC metastasis remain unclear. In the present study, both the protein and mRNA expression levels of SETD3 were measured in a larger cohort of HCC patients. The results showed that the protein level of SETD3 in HCC tissues was significantly higher than that in non-tumorous tissues, which was inconsistent with the mRNA expression level of SETD3. The high protein level of SETD3 in HCC tissues was significantly associated with male gender, poor pathological differentiation, liver cirrhosis and unfavorable prognosis of HCC patients. Subsequently, we demonstrated that SETD3 could be regulated at post-transcriptional step by a couple of miRNAs (miR-16, miR-195 and miR-497). Additionally, in vitro and in vivo experiments revealed that SETD3 played opposing roles in proliferation and metastasis of HCC: promoting proliferation but inhibiting metastasis. Mechanistic experiments revealed that doublecortin-like kinase 1 (DCLK1) was a downstream target of SETD3. SETD3 could increase the DNA methylation level of DCLK1 promoter to inhibit the transcription of DCLK1. Further study revealed that DCLK1/PI3K/matrix metalloproteinase (MMP) 2 (MMP-2) was an important pathway that mediated the effect of SETD3 on HCC metastasis. In conclusion, the present study revealed that SETD3 is associated with tumorigenesis and is a promising biomarker for predicting the prognosis of HCC patients after surgical resection. In addition, SETD3 plays inhibitory role in HCC metastasis partly through DCLK1/PI3K/MMP-2 pathway.


Asunto(s)
Carcinoma Hepatocelular/genética , Histona Metiltransferasas/genética , Neoplasias Hepáticas/genética , Anciano , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/secundario , Carcinoma Hepatocelular/cirugía , Proliferación Celular/genética , Proliferación Celular/fisiología , Metilación de ADN/genética , Quinasas Similares a Doblecortina , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatectomía , Histona Metiltransferasas/deficiencia , Histona Metiltransferasas/metabolismo , Histona Metiltransferasas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Masculino , Ratones Endogámicos BALB C , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Procesamiento Postranscripcional del ARN , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Tumorales Cultivadas , Regulación hacia Arriba
6.
Cell Rep ; 25(8): 2273-2284.e3, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463021

RESUMEN

The dynamic process by which nuclear RNAi engages a transcriptionally active target, before the repressive state is stably established, remains largely a mystery. Here, we found that the onset of exogenous dsRNA-induced nuclear RNAi in C. elegans is a transgenerational process, and it requires a putative histone methyltransferase (HMT), SET-32. By developing a CRISPR-based genetic approach, we found that silencing establishment at the endogenous targets of germline nuclear RNAi also requires SET-32. Although SET-32 and two H3K9 HMTs, MET-2 and SET-25, are dispensable for the maintenance of silencing, they do contribute to transcriptional repression in mutants that lack the germline nuclear Argonaute protein HRDE-1, suggesting a conditional role of heterochromatin in the maintenance phase. Our study indicates that (1) establishment and maintenance of siRNA-guided transcriptional repression are two distinct processes with different genetic requirements and (2) the rate-limiting step of the establishment phase is a transgenerational, chromatin-based process.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Epigénesis Genética , Heterocromatina/metabolismo , Histona Metiltransferasas/fisiología , Interferencia de ARN , Animales , Sistemas CRISPR-Cas/genética , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Histona Metiltransferasas/genética , Histonas/metabolismo , Lisina/metabolismo , Mutación/genética , ARN Bicatenario/metabolismo , Transcripción Genética
7.
Nat Commun ; 9(1): 3633, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194301

RESUMEN

Currently, little is known about the evolution of epigenetic regulation in animal stem cells. Here we demonstrate, using the planarian stem cell system to investigate the role of the COMPASS family of MLL3/4 histone methyltransferases that their function as tumor suppressors in mammalian stem cells is conserved over a long evolutionary distance. To investigate the potential conservation of a genome-wide epigenetic regulatory program in animal stem cells, we assess the effects of Mll3/4 loss of function by performing RNA-seq and ChIP-seq on the G2/M planarian stem cell population, part of which contributes to the formation of outgrowths. We find many oncogenes and tumor suppressors among the affected genes that are likely candidates for mediating MLL3/4 tumor suppression function. Our work demonstrates conservation of an important epigenetic regulatory program in animals and highlights the utility of the planarian model system for studying epigenetic regulation.


Asunto(s)
Epigénesis Genética , Evolución Molecular , Histona Metiltransferasas/fisiología , Células Madre Pluripotentes/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Neurogénesis , Oncogenes , Planarias , Regeneración
8.
PLoS Genet ; 14(8): e1007578, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30110327

RESUMEN

SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts.


Asunto(s)
Epigénesis Genética , Histona Metiltransferasas/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/genética , Adolescente , Animales , Sistemas CRISPR-Cas , Niño , Preescolar , Estudios de Cohortes , Modelos Animales de Enfermedad , Desarrollo Embrionario/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Corazón/efectos de los fármacos , Corazón/embriología , Cardiopatías Congénitas/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/fisiología , Histona Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Lactante , Masculino , Mutación Missense , Conformación Proteica , Análisis de Secuencia de ARN , Transcriptoma , Secuenciación del Exoma , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
9.
PLoS Biol ; 16(8): e2006134, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080846

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.


Asunto(s)
Histona Demetilasas/fisiología , Histona Demetilasas con Dominio de Jumonji/fisiología , Proteínas de la Membrana/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Línea Celular , Citosol/metabolismo , ADN/metabolismo , Histona Metiltransferasas/fisiología , Histonas/fisiología , Humanos , Inmunidad Innata/fisiología , Inmunoterapia , Interferones/metabolismo , Interferones/fisiología , Células MCF-7 , Proteínas de la Membrana/metabolismo , Transducción de Señal
10.
Nucleic Acids Res ; 46(18): 9353-9366, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007360

RESUMEN

One of the most intensively studied chromatin binding factors is HP1α. HP1α is associated with silenced, heterochromatic regions of the genome and binds to H3K9me3. While H3K9me3 is necessary for HP1α recruitment to heterochromatin, it is becoming apparent that it is not sufficient suggesting that additional factors are involved. One candidate proposed as a potential regulator of HP1α recruitment is the linker histone H1.4. Changes to the underlying make-up of chromatin, such as the incorporation of the histone variant H2A.Z, has also been linked with regulating HP1 binding to chromatin. Here, we rigorously dissected the effects of H1.4, H2A.Z and H3K9me3 on the nucleosome binding activity of HP1α in vitro employing arrays, mononucleosomes and nucleosome core particles. Unexpectedly, histone H1.4 impedes the binding of HP1α but strikingly, this inhibition is partially relieved by the incorporation of both H2A.Z and H3K9me3 but only in the context of arrays or nucleosome core particles. Our data suggests that there are two modes of interaction of HP1α with nucleosomes. The first primary mode is through interactions with linker DNA. However, when linker DNA is missing or occluded by linker histones, HP1α directly interacts with the nucleosome core and this interaction is enhanced by H2A.Z with H3K9me3.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Histona Metiltransferasas/fisiología , Histonas/metabolismo , Cromatina/química , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Heterocromatina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/química , Histonas/fisiología , Humanos , Metilación , Nucleosomas/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...