Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 134: 1-10, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28323168

RESUMEN

Recent publications have shown that active RNA polymerase (RNAP) from Mycobacterium tuberculosis (MtbRNAP) can be produced by expressing all four subunits in a single recombinant Escherichia coli strain [1-3]. By reducing the number of plasmids and changing the codon usage of the Mtb genes in the co-expression system published by Banerjee et al. [1], we present a simplified, detailed and reproducible protocol for the purification of recombinant MtbRNAP containing the ω subunit. Moreover, we describe the formation of ternary elongation complexes (TECs) with a short fluorescence-labeled RNA primer and DNA oligonucleotides, suitable for transcription elongation studies. The purification of milligram quantities of the pure and highly active holoenzyme omits ammonium sulfate or polyethylene imine precipitation steps [4] and requires only 5 g of wet cells. Our results indicate that subunit assemblies other than α2ßß'ω·σA can be separated by ion-exchange chromatography on Mono Q column and that assemblies with the wrong RNAP subunit stoichiometry lack transcriptional activity. We show that MtbRNAP TECs can be stalled by NTP substrate deprivation and chased upon the addition of missing NTP(s) without the need of any accessory proteins. Finally, we demonstrate the ability of the purified MtbRNAP to initiate transcription from a promoter and establish that its open promoter complexes are stabilized by the M. tuberculosis protein CarD.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Regiones Promotoras Genéticas , Transcripción Genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/biosíntesis , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Holoenzimas/biosíntesis , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
2.
Proc Natl Acad Sci U S A ; 110(40): 15955-60, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043782

RESUMEN

Bacteria use multiple sigma factors to coordinate gene expression in response to environmental perturbations. In Escherichia coli and other γ-proteobacteria, the transcription factor Crl stimulates σ(S)-dependent transcription during times of cellular stress by promoting the association of σ(S) with core RNA polymerase. The molecular basis for specific recognition of σ(S) by Crl, rather than the homologous and more abundant primary sigma factor σ(70), is unknown. Here we use bacterial two-hybrid analysis in vivo and p-benzoyl-phenylalanine cross-linking in vitro to define the features in σ(S) responsible for specific recognition by Crl. We identify residues in σ(S) conserved domain 2 (σ(S)2) that are necessary and sufficient to allow recognition of σ(70) conserved domain 2 by Crl, one near the promoter-melting region and the other at the position where a large nonconserved region interrupts the sequence of σ(70). We then use luminescence resonance energy transfer to demonstrate directly that Crl promotes holoenzyme assembly using these specificity determinants on σ(S). Our results explain how Crl distinguishes between sigma factors that are largely homologous and activates discrete sets of promoters even though it does not bind to promoter DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Factor sigma/química , Factores de Transcripción/metabolismo , ARN Polimerasas Dirigidas por ADN/biosíntesis , Holoenzimas/biosíntesis , Oligonucleótidos/genética , Mapeo de Interacción de Proteínas
3.
FEBS J ; 280(2): 644-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22443683

RESUMEN

Protein phosphatase type 2A (PP2A) enzymes constitute a large family of Ser/Thr phosphatases with multiple functions in cellular signaling and physiology. The composition of heterotrimeric PP2A holoenzymes, resulting from the combinatorial assembly of a catalytic C subunit, a structural A subunit, and regulatory B-type subunit, provides the essential determinants for substrate specificity, subcellular targeting, and fine-tuning of phosphatase activity, largely explaining why PP2A is functionally involved in so many diverse physiological processes, sometimes in seemingly opposing ways. In this review, we highlight how PP2A holoenzyme biogenesis and enzymatic activity are controlled by a sophisticatedly coordinated network of five PP2A modulators, consisting of α4, phosphatase 2A phosphatase activator (PTPA), leucine carboxyl methyl transferase 1 (LCMT1), PP2A methyl esterase 1 (PME-1) and, potentially, target of rapamycin signaling pathway regulator-like 1 (TIPRL1), which serve to prevent promiscuous phosphatase activity until the holoenzyme is completely assembled. Likewise, these modulators may come into play when PP2A holoenzymes are disassembled following particular cellular stresses. Malfunctioning of these cellular control mechanisms contributes to human disease. The potential therapeutic benefits or pitfalls of interfering with these regulatory mechanisms will be briefly discussed.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Holoenzimas/biosíntesis , Holoenzimas/metabolismo , Humanos , Modelos Biológicos , Chaperonas Moleculares , Proteína O-Metiltransferasa/metabolismo , Proteína Fosfatasa 2/biosíntesis , Especificidad por Sustrato
4.
J Med Chem ; 55(3): 1382-8, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22239485

RESUMEN

Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2',5'-dihydroxychalcone (2',5'-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure-activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels. This effect was drastically improved with one or two electrowithdrawing groups on phenyl ring B and up to three methoxyl and/or hydroxyl groups on phenyl ring A. The optimal structure, 2-chloro-4',6'-dimethoxy-2'-hydroxychalcone, induced both a potent NF-E2-related factor 2-mediated transcriptional response and an increased formation of glutamate cysteine ligase holoenzyme, as shown using a human breast cancer cell line stably expressing a luciferase reporter gene driven by antioxidant response elements.


Asunto(s)
Chalconas/síntesis química , Glutatión/biosíntesis , Antioxidantes/metabolismo , Línea Celular Tumoral , Chalconas/química , Chalconas/farmacología , Genes Reporteros , Glutamato-Cisteína Ligasa/biosíntesis , Glutamato-Cisteína Ligasa/genética , Holoenzimas/biosíntesis , Holoenzimas/genética , Humanos , Espacio Intracelular/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Subunidad p45 del Factor de Transcripción NF-E2/genética , Subunidad p45 del Factor de Transcripción NF-E2/metabolismo , Elementos de Respuesta , Relación Estructura-Actividad , Transcripción Genética
5.
J Biol Chem ; 284(11): 7190-200, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19129191

RESUMEN

Alternative translation is an underappreciated post-transcriptional regulation mechanism. Although only a small number of genes are found to be alternatively translated, most genes undergoing alternative translation play important roles in tumorigenesis and development. Protein phosphatase 2A (PP2A) is involved in many cellular events during tumorigenesis and development. The specificity, localization, and activity of PP2A are regulated by B regulatory subunits. B56epsilon, a member of the B56 regulatory subunit family, is involved in multiple signaling pathways and regulates a number of developmental processes. Here we report that B56epsilon is alternatively translated, leading to the production of a full-length form and a shorter isoform that lacks the N-terminal 76 amino acid residues of the full-length form. Alternative translation of B56epsilon occurs through a cap-dependent mechanism. We provide evidence that the shorter isoform is required for Wnt signaling and regulates the midbrain/hindbrain boundary formation during Xenopus embryonic development. This demonstrates that the shorter isoform of B56epsilon has important biological functions. Furthermore, we show that the N-terminal sequence of B56epsilon, which is not present in the shorter isoform, contains a nuclear localization signal, whereas the C terminus of B56epsilon contains a nuclear export signal. The shorter isoform, which lacks the N-terminal nuclear localization signal, is restricted to the cytoplasm. In contrast, the full-length form can be localized to the nucleus in a cell type-specific manner. The finding that B56epsilon is alternatively translated adds a new level of regulation to PP2A holoenzymes.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Mesencéfalo/embriología , Fosfoproteínas Fosfatasas/biosíntesis , Biosíntesis de Proteínas/fisiología , Proteína Fosfatasa 2/biosíntesis , Rombencéfalo/embriología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Proteínas de Xenopus/biosíntesis , Transporte Activo de Núcleo Celular/fisiología , Animales , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Holoenzimas/biosíntesis , Holoenzimas/genética , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , Mesencéfalo/enzimología , Ratones , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2/genética , Estructura Terciaria de Proteína/fisiología , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Rombencéfalo/enzimología , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis
6.
Biochemistry ; 47(4): 1136-43, 2008 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-18179257

RESUMEN

FAD in monomeric sarcosine oxidase (MSOX) is covalently linked to the protein by a thioether linkage between its 8alpha-methyl group and Cys315. Covalent flavinylation of apoMSOX has been shown to proceed via an autocatalytic reaction that requires only FAD and is blocked by a mutation of Cys315. His45 and Arg49 are located just above the si-face of the flavin ring, near the site of covalent attachment. His45Ala and His45Asn mutants contain covalently bound FAD and exhibit catalytic properties similar to wild-type MSOX. The results rule out a significant role for His45 in covalent flavinylation or sarcosine oxidation. In contrast, Arg49Ala and Arg49Gln mutants are isolated as catalytically inactive apoproteins. ApoArg49Ala forms a stable noncovalent complex with reduced 5-deazaFAD that exhibits properties similar to those observed for the corresponding complex with apoCys315Ala. The results show that elimination of a basic residue at position 49 blocks covalent flavinylation but does not prevent noncovalent flavin binding. The Arg49Lys mutant contains covalently bound FAD, but its flavin content is approximately 4-fold lower than wild-type MSOX. However, most of the apoprotein in the Arg49Lys preparation is reconstitutable with FAD in a reaction that exhibits kinetic parameters similar to those observed for flavinylation of wild-type apoMSOX. Although covalent flavinylation is scarcely affected, the specific activity of the Arg49Lys mutant is only 4% of that observed with wild-type MSOX. The results show that a basic residue at position 49 is essential for covalent flavinylation of MSOX and suggest that Arg49 also plays an important role in sarcosine oxidation.


Asunto(s)
Flavinas/metabolismo , Sarcosina-Oxidasa/biosíntesis , Aminoácidos/genética , Aminoácidos/metabolismo , Flavinas/química , Holoenzimas/biosíntesis , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Cinética , Modelos Moleculares , Estructura Molecular , Mutación/genética , Sarcosina-Oxidasa/genética , Sarcosina-Oxidasa/aislamiento & purificación
7.
J Bacteriol ; 188(22): 7966-70, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16980472

RESUMEN

The Escherichia coli Crl protein has been described as a transcriptional coactivator for the stationary-phase sigma factor sigma(S). In a transcription system with highly purified components, we demonstrate that Crl affects transcription not only by the Esigma(S) RNA polymerase holoenzyme but also by Esigma(70) and Esigma(32). Crl increased transcription dramatically but only when the sigma concentration was low and when Crl was added to sigma prior to assembly with the core enzyme. Our results suggest that Crl facilitates holoenzyme formation, the first positive regulator identified with this mechanism of action.


Asunto(s)
Adhesinas Bacterianas/genética , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Holoenzimas/genética , ARN Polimerasas Dirigidas por ADN/biosíntesis , Escherichia coli/enzimología , Holoenzimas/biosíntesis , Factor sigma/genética , Transcripción Genética
8.
Mol Cell Biol ; 26(7): 2832-44, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16537924

RESUMEN

Protein phosphatase 2A (PP2A) plays a prominent role in controlling accumulation of the proto-oncoprotein c-Myc. PP2A mediates its effects on c-Myc by dephosphorylating a conserved residue that normally stabilizes c-Myc, and in this way, PP2A enhances c-Myc ubiquitin-mediated degradation. Stringent regulation of c-Myc levels is essential for normal cell function, as c-Myc overexpression can lead to cell transformation. Conversely, PP2A has tumor suppressor activity. Uncovering relevant PP2A holoenzymes for a particular target has been limited by the fact that cellular PP2A represents a large heterogeneous population of trimeric holoenzymes, composed of a conserved catalytic subunit and a structural subunit along with a variable regulatory subunit which directs the holoenzyme to a specific target. We now report the identification of a specific PP2A regulatory subunit, B56alpha, that selectively associates with the N terminus of c-Myc. B56alpha directs intact PP2A holoenzymes to c-Myc, resulting in a dramatic reduction in c-Myc levels. Inhibition of PP2A-B56alpha holoenzymes, using small hairpin RNA to knock down B56alpha, results in c-Myc overexpression, elevated levels of c-Myc serine 62 phosphorylation, and increased c-Myc function. These results uncover a new protein involved in regulating c-Myc expression and reveal a critical interconnection between a potent oncoprotein, c-Myc, and a well-documented tumor suppressor, PP2A.


Asunto(s)
Regulación hacia Abajo/genética , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Dominio Catalítico , Holoenzimas/biosíntesis , Holoenzimas/metabolismo , Humanos , Fosfoproteínas Fosfatasas/deficiencia , Fosfoproteínas Fosfatasas/genética , Fosforilación , Unión Proteica , Proteína Fosfatasa 2 , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , Serina/metabolismo , Activación Transcripcional/genética , Proteínas Virales/metabolismo
9.
J Mol Biol ; 357(3): 820-32, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16460753

RESUMEN

While phorbol ester-binding sites within protein kinase C alpha (PKCalpha) have been identified and characterized utilizing fragments of the enzyme, it remains unclear whether additional regions within the enzyme may play an important role in its ability to be activated by phorbol ester. To examine this hypothesis, we generated 20 glutathione-S-transferase-tagged, V1-deficient, human PKCalpha holoenzyme constructs in which tandem six or 12 amino acid residue stretches along the full regulatory domain were changed to alanine residues. Each protein was assessed for its ability to bind phorbol ester and to induce growth repression when its catalytic activity was activated by phorbol ester upon expression in yeast cells. Mutagenesis of residues 99-158 potently reduced phorbol binding, consistent with previously published findings on the importance of the C1b region in phorbol binding. In addition, we identified a number of regions within the PKC regulatory domain that, when mutagenized, blocked the activation of PKC-mediated growth repression by phorbol ester while actually enhancing phorbol ester binding in vitro (residues 33-62, and 75-86). This study thus helps distinguish regions important for phorbol binding from regions important for the ability of phorbol ester to activate the enzyme. Our findings also suggest that multiple regions within C2 are necessary for full activation of the enzyme by phorbol ester, in particular residues 231-254. Finally, three regions, when mutagenized, completely, blocked catalytic domain activity in vivo (residues 33-62, 75-86, and 123-146), underscoring the important role of regulatory domain sequences in influencing catalytic domain function, even in the absence of the V1 region containing the pseudosubstrate sequence. This is the first tandem mutagenesis study for PKC that assesses the importance of regions for both phorbol binding and for phorbol-dependent activation in the context of the entire holoenzyme.


Asunto(s)
Dominio Catalítico , Mutagénesis Sitio-Dirigida , Ésteres del Forbol/química , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Dominio Catalítico/genética , Clonación Molecular , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Holoenzimas/biosíntesis , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Immunoblotting , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida/métodos , Ésteres del Forbol/metabolismo , Proteína Quinasa C-alfa/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Tritio/metabolismo
10.
Biochem J ; 393(Pt 1): 181-90, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16137247

RESUMEN

GCL (glutamate-cysteine ligase) is a heterodimer of a GCLC (GCL catalytic subunit) that possesses all of the enzymatic activity and a GCLM (GCL modifier subunit) that alters the K(i) of GCLC for GSH. We hypothesized that the expression of GCLM and the association of GCLM with GCLC were responsible for the apparent increase in GCL activity state observed in the liver of rats fed low-protein diets or in hepatocytes cultured in low-sulphur amino acid-containing medium. Therefore we conducted a series of studies using rats and a human hepatoma (HepG2/C3A) cell line to assess the role of GCLM and holoenzyme formation in the regulation of GCL activity in response to sulphur amino acid intake or availability. Increases in GCL activity in rat liver, as well as in HepG2 cells, were due to the additive effects of changes in the amount of GCLC and the kcat for GCLC. The increase in the kcat for GCLC was associated with increased holoenzyme formation, which was associated with an increase in the molar ratio of GCLM to GCLC. Furthermore, our results indicate that the GCLM level in rat liver is always limiting and that up-regulation of the GCLM level results in increased holoenzyme formation and an increase in the kcat. This is the first report demonstrating that the catalytic efficiency of rat GCL is increased by holoenzyme formation and the first demonstration of differential up-regulation of the GCL subunits in response to cysteine deprivation.


Asunto(s)
Cisteína/deficiencia , Regulación Enzimológica de la Expresión Génica , Glutamato-Cisteína Ligasa/biosíntesis , Glutamato-Cisteína Ligasa/genética , Holoenzimas/biosíntesis , Animales , Dominio Catalítico , Línea Celular Tumoral , Cisteína/metabolismo , Proteínas en la Dieta , Glutamato-Cisteína Ligasa/química , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Holoenzimas/química , Holoenzimas/genética , Humanos , Hígado/enzimología , Masculino , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno
11.
J Biotechnol ; 122(1): 28-38, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16188339

RESUMEN

In plants, the indole pathway provides precursors for a variety of secondary metabolites. In Catharanthus roseus, a decarboxylated derivative of tryptophan, tryptamine, is a building block for the biosynthesis of terpenoid indole alkaloids. Previously, we manipulated the indole pathway by introducing an Arabidopsis feedback-insensitive anthranilate synthase (AS) alpha subunit (trp5) cDNA and C. roseus tryptophan decarboxylase gene (TDC) under the control of a glucocorticoid-inducible promoter into C. roseus hairy roots [Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004a. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86, 718-727; Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004b. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabol. Eng. 6, 268-276]. Inducible expression of either or both transgenes did not lead to significant increases in overall alkaloid levels despite the considerable accumulation of tryptophan and tryptamine. In an attempt to more successfully engineer the indole pathway, a wild type Arabidopsis ASbeta subunit (ASB1) cDNA was constitutively expressed along with the inducible expression of trp5 and TDC in C. roseus hairy roots. Transgenic hairy roots expressing both trp5 and ASB1 show a significantly greater resistance to feedback inhibition of AS activity by tryptophan than plants expressing only trp5. In fact, a 4.5-fold higher concentration of tryptophan is required to achieve 50% inhibition of AS activity in plants overexpressing both genes than in plants expressing only trp5. In addition, upon a 3 day induction during the exponential phase, a trp5:ASB1 hairy root line produced 1.8 times more tryptophan (specific yield ca. 3.0 mg g(-1) dry weight) than the trp5 hairy root line. Concurrently, tryptamine levels increase up to 9-fold in the induced trp5:ASB1 line (specific yield ca. 1.9 mg g(-1) dry weight) as compared with only a 4-fold tryptamine increase in the induced trp5 line (specific yield ca. 0.3 mg g(-1) dry weight). However, endogenous TDC activities of both trp5:ASB1 and trp5 lines remain unchanged irrespective of induction. When TDC is ectopically expressed together with trp5 and ASB1, the induced trp5:ASB1:TDC hairy root line accumulates tryptamine up to 14-fold higher than the uninduced line. In parallel with the remarkable accumulation of tryptamine upon induction, alkaloid accumulation levels were significantly changed depending on the duration and dosage of induction.


Asunto(s)
Antranilato Sintasa/biosíntesis , Arabidopsis/enzimología , Descarboxilasas de Aminoácido-L-Aromático/biosíntesis , Catharanthus/enzimología , Raíces de Plantas/enzimología , Ingeniería de Proteínas/métodos , Antranilato Sintasa/genética , Arabidopsis/genética , Descarboxilasas de Aminoácido-L-Aromático/genética , Catharanthus/genética , Coenzimas/biosíntesis , Coenzimas/genética , Retroalimentación/fisiología , Técnicas de Transferencia de Gen , Holoenzimas/biosíntesis , Holoenzimas/genética , Raíces de Plantas/genética , Proteínas Recombinantes de Fusión/biosíntesis
12.
Biochemistry ; 44(20): 7593-601, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15896003

RESUMEN

Like that of the neuronal nitric oxide synthase (nNOS), the binding of Ca(2+)-bound calmodulin (CaM) also regulates the activity of the inducible isoform (iNOS). However, the role of each of the four Ca(2+)-binding sites of CaM in the activity of iNOS is unclear. Using a series of single-point mutants of Drosophila melanogaster CaM, the effect that mutating each of the Ca(2+)-binding sites plays in the transfer of electrons within iNOS has been examined. The same Glu (E) to Gln (Q) mutant series of CaM used previously [Stevens-Truss, R., Beckingham, K., and Marletta, M. A. (1997) Biochemistry 36, 12337-12345] to study the role of the Ca(2+)-binding sites in the activity of nNOS was used for these studies. We demonstrate here that activity of iNOS is dependent on Ca(2+) being bound to sites II (B2Q) and III (B3Q) of CaM. Nitric oxide ((*)NO) producing activity (as measured using the hemoglobin assay) of iNOS bound to the B2Q and B3Q CaMs was found to be 41 and 43% of the wild-type activity, respectively. The site I (B1Q) and site IV (B4Q) CaM mutants only minimally affected (*)NO production (95 and 90% of wild-type activity, respectively). These results suggest that NOS isoforms, although all possessing a prototypical CaM binding sequence and requiring CaM for activity, interact with CaM differently. Moreover, iNOS activation by CaM, like nNOS, is not dependent on Ca(2+) being bound to all four Ca(2+)-binding sites, but has specific and distinct requirements. This novel information, in addition to helping us understand NOS, should aid in our understanding of CaM target activation.


Asunto(s)
Calcio/química , Calmodulina/química , Proteínas de Drosophila/química , Óxido Nítrico Sintasa/química , Animales , Sitios de Unión/genética , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transporte de Electrón/genética , Activación Enzimática/genética , Holoenzimas/biosíntesis , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/aislamiento & purificación , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo II , Unión Proteica/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
13.
Biochemistry ; 43(31): 10247-54, 2004 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-15287752

RESUMEN

Recombinant baculoviruses were created and used to coexpress rat phosphorylase kinase (Phk) alpha, gamma, and delta subunits and rabbit beta subunit in insect cells. Coexpression allowed creation of the (alphabetagammadelta)4 hexadecamer, the alphagammadelta heterotrimer, and the gammadelta heterodimeric subcomplexes. Neither the individual alpha, beta, or gamma subunit nor any complex containing the beta subunit other than the hexadecameric holoenzyme was obtained in soluble form. The expressed complexes exhibited pH- and [Ca2+]-dependent specific activities that were similar to those of the Phk holoenzyme purified from rabbit skeletal muscle (SkM Phk). SkM Phk, expressed Phk, and the alphagammadelta subcomplex were activated by exogenous calmodulin and underwent Ca(2+)-dependent autophosphorylation. In some of these features there were subtle differences that could likely be attributed to differences in the covalent modification state of the baculovirus-driven expressed protein. Our results provide an important avenue to probe the detailed characterization of the structure of Phk and the function of the individual domains of the subunits using baculovirus-mediated expression of Phk and Phk subcomplexes.


Asunto(s)
Baculoviridae/enzimología , Baculoviridae/genética , Fosforilasa Quinasa/biosíntesis , Fosforilasa Quinasa/genética , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Animales , Calcio/química , Calmodulina/química , Línea Celular , Activación Enzimática , Holoenzimas/biosíntesis , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Holoenzimas/metabolismo , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mariposas Nocturnas , Músculo Esquelético/enzimología , Fosforilasa Quinasa/aislamiento & purificación , Fosforilasa Quinasa/metabolismo , Fosforilación , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Conejos , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
14.
Drug Metab Dispos ; 32(4): 431-6, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15039296

RESUMEN

CYP2C9 is distinguished by a preference for substrates bearing a negative charge at physiological pH. Previous studies have suggested that CYP2C9 residues R97 and K72 may play roles in determining preference for anionic substrates by interaction at the active site or in the access channel. The aim of the present study was to assess the role of these two residues in determining substrate selectivity. R97 and K72 were substituted with negative, uncharged polar and hydrophobic residues using a degenerate polymerase chain reaction-directed strategy. Wild-type and mutant enzymes were expressed in bicistronic format with human cytochrome P450 reductase in Escherichia coli. Mutation of R97 led to a loss of holoenzyme expression for R97A, R97V, R97L, R97T, and R97E mutants. Low levels of hemoprotein were detected for R97Q, R97K, R97I, and R97P mutants. Significant apoenzyme was observed, suggesting that heme insertion or protein stability was compromised in R97 mutants. These observations are consistent with a structural role for R97 in addition to any role in substrate binding. By contrast, all K72 mutants examined (K72E, K72Q, K72V, and K72L) could be expressed as hemoprotein at levels comparable to wild-type. Type I binding spectra were obtained with wild-type and K72 mutants using diclofenac and ibuprofen. Mutation of K72 had little or no effect on the interaction with these substrates, arguing against a critical role in determining substrate specificity. Thus, neither residue appears to play a role in determining substrate specificity, but a structural role for R97 can be proposed consistent with recently published crystallographic data for CYP2C9 and CYP2C5.


Asunto(s)
Arginina/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Lisina/metabolismo , Especificidad por Sustrato/fisiología , Animales , Arginina/química , Arginina/genética , Hidrocarburo de Aril Hidroxilasas/química , Hidrocarburo de Aril Hidroxilasas/genética , Secuencia de Bases , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Citocromo P-450 CYP2C9 , Diclofenaco/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Hemoproteínas/biosíntesis , Hemoproteínas/química , Hemoproteínas/genética , Holoenzimas/biosíntesis , Holoenzimas/química , Holoenzimas/genética , Humanos , Ibuprofeno/metabolismo , Lisina/química , Lisina/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida/efectos de los fármacos , Mutagénesis Sitio-Dirigida/fisiología , NADPH-Ferrihemoproteína Reductasa/biosíntesis , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/genética , Naproxeno/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato/efectos de los fármacos
15.
Biochemistry ; 41(44): 13133-42, 2002 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-12403614

RESUMEN

Mammalian DNA polymerase delta was originally characterized as a tightly associated heterodimer consisting of the catalytic subunit, p125, and the p50 subunit. Recently, two additional subunits, the third (p68) and fourth subunits (p12), have been identified. The heterotetrameric human pol delta complex was reconstituted by overexpression of the four subunits in Sf9 cells, followed by purification to near-homogeneity using FPLC chromatography. The properties of the four-subunit enzyme were shown to be functionally indistinguishable from those of pol delta isolated from calf thymus. The physicochemical properties of both the reconstituted heterotetramer and the heterodimer of the p125 and p50 subunits were examined by gel filtration and glycerol gradient ultracentrifugation. These studies show quite clearly that the heterodimer and heterotetramer complexes do not behave in solution as dimeric structures. This issue is of significance because several studies of the yeast pol delta complexes have indicated that the third subunit is able to bring about the dimerization of the pol delta complex. The heterodimer is only weakly stimulated by PCNA, whereas the heterotetramer is strongly stimulated to a level with a specific activity comparable to that of the calf thymus enzyme. These results resolve earlier, conflicting reports on the response of the heterodimer to PCNA. Nevertheless, the heterodimer does have some ability to interact functionally with PCNA, consistent with evidence that the p125 subunit itself has an ability to interact with PCNA. The functional interaction of PCNA with the pol delta complex may likely involve multiple contacts.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Animales , Baculoviridae/genética , Centrifugación por Gradiente de Densidad , Fenómenos Químicos , Química Física , Cromatografía en Gel , ADN Polimerasa III/genética , ADN Polimerasa III/aislamiento & purificación , Dimerización , Activación Enzimática , Células HeLa , Holoenzimas/biosíntesis , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Humanos , Pruebas de Precipitina , Antígeno Nuclear de Célula en Proliferación/química , Procesamiento Proteico-Postraduccional , Subunidades de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Spodoptera/genética
16.
FEBS Lett ; 522(1-3): 141-6, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12095634

RESUMEN

The flavinylation and the presequence processing of the mitochondrial matrix enzyme dimethylglycine dehydrogenase (Me(2)GlyDH) were investigated with the reticulocyte lysate translated precursor (pMe(2)GlyDH) added to solubilised mitoplasts of rat liver mitochondria. The flavinylation of pMe(2)GlyDH was strictly dependent on the addition of mitochondrial protein(s), among which the mitochondrial flavinylation stimulating factor [Brizio C., et al. (2000) Eur. J. Biochem 267, 4346-4354], that actively promotes holo-Me(2)GlyDH formation. The precursor processing, that accompanies the biogenesis of the enzyme, was not required to allow the flavinylation to proceed. The comparison of the time course of the flavinylation and the processing of pMe(2)GlyDH demonstrated that the covalent attachment of the flavin moiety preceded the presequence processing by mitochondrial processing peptidase.


Asunto(s)
Precursores Enzimáticos/metabolismo , Flavinas/metabolismo , Mitocondrias Hepáticas/enzimología , Oxidorreductasas N-Desmetilantes/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Dimetilglicina-Deshidrogenasa , Precursores Enzimáticos/biosíntesis , Holoenzimas/biosíntesis , Cinética , Masculino , Proteínas Mitocondriales , Oxidorreductasas N-Desmetilantes/biosíntesis , Conejos , Ratas , Ratas Wistar , Solubilidad , Tripsina/metabolismo
17.
J Bacteriol ; 183(24): 7120-5, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11717270

RESUMEN

The alpha-aminoadipate pathway for lysine biosynthesis is present only in fungi. The alpha-aminoadipate reductase (AAR) of this pathway catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde by a complex mechanism involving two gene products, Lys2p and Lys5p. The LYS2 and LYS5 genes encode, respectively, a 155-kDa inactive AAR and a 30-kDa phosphopantetheinyl transferase (PPTase) which transfers a phosphopantetheinyl group from coenzyme A (CoA) to Lys2p for the activation of Lys2p and AAR activity. In the present investigation, we have confirmed the posttranslational activation of the 150-kDa Lys2p of Candida albicans, a pathogenic yeast, in the presence of CoA and C. albicans lys2 mutant (CLD2) extract as a source of PPTase (Lys5p). The recombinant Lys2p or CLD2 mutant extract exhibited no AAR activity with or without CoA. However, the recombinant 150-kDa Lys2p, when incubated with CLD2 extract and CoA, exhibited significant AAR activity compared to that of wild-type C. albicans CAI4 extract. The PPTase in the CLD2 extract was required only for the activation of Lys2p and not for AAR reaction. Site-directed mutational analysis of G882 and S884 of the Lys2p activation domain (LGGHSI) revealed no AAR activity, indicating that these two amino acids are essential for the activation. Replacement of other amino acid residues in the domain resulted in partial or full AAR activity. These results demonstrate the posttranslational activation and the requirement of specific amino acid residues in the activation domain of the AAR of C. albicans.


Asunto(s)
Aldehído Oxidorreductasas/biosíntesis , Candida albicans/enzimología , Lisina/biosíntesis , Panteteína/análogos & derivados , Procesamiento Proteico-Postraduccional , Aldehído Oxidorreductasas/genética , Secuencia de Aminoácidos , Apoenzimas/biosíntesis , Candida albicans/genética , Coenzima A/metabolismo , Secuencia Conservada , Activación Enzimática , Holoenzimas/biosíntesis , L-Aminoadipato-Semialdehído Deshidrogenasa , Panteteína/metabolismo
18.
Arch Microbiol ; 176(1-2): 19-28, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11479699

RESUMEN

Flavocytochrome c-sulfide dehydrogenase (FCSD), an enzyme that catalyzes the reversible conversion of sulfide to elemental sulfur in vitro, is common to bacteria that utilize reduced sulfur compounds as electron donors in the process of carbon dioxide fixation. FCSD is a heterodimer containing two different cofactors, a flavin (FAD) and one or two heme c groups, located on the separate protein subunits. Efforts to produce the holoproteins of the soluble Allochromatium vinosum FCSD and the membrane-bound Ectothiorhodospira vacuolata protein in Escherichia coli using several expression systems were unsuccessful. Although all systems used were able to export the recombinant FCSDs to the periplasm, the proteins did not incorporate heme. In order to develop a new expression system involving photosynthetic hosts (Rhodobacter capsulatus, Rhodobacter sphaeroides and Ect. vacuolata), plasmid mobilisation from E. coli donors was studied. In the search for efficient promoters for such hosts, a system was developed combining the broad-host-range plasmid pGV910 and the promoter of the A. vinosum RuBisCo gene, rbcA. Conjugation was used to enable transfer from the expression plasmid of E. coli into Rba. capsulatus, Rba. sphaeroides strains and into Ect. vacuolata. Both Rhodobacter hosts were able to transcribe the genes coding for FCSD from the rbcA promoter and to produce detectable amounts of recombinant FCSD holoprotein. Western blots showed that the best production was obtained from cells grown photosynthetically on malate or acetate with sulfide. This system may prove to be of general use for the production of recombinant c-type cytochromes in homologous or related host systems.


Asunto(s)
Chromatiaceae/enzimología , Chromatiaceae/genética , Grupo Citocromo c/biosíntesis , Holoenzimas/biosíntesis , Oxidorreductasas/biosíntesis , Regiones Promotoras Genéticas/genética , Rhodobacter/genética , Ribulosa-Bifosfato Carboxilasa/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Western Blotting , Conjugación Genética , Grupo Citocromo c/genética , Grupo Citocromo c/aislamiento & purificación , Grupo Citocromo c/metabolismo , ADN Recombinante/genética , Ectothiorhodospira/química , Ectothiorhodospira/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Vectores Genéticos/genética , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Holoenzimas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Rhodobacter/fisiología
19.
J Mol Biol ; 308(5): 873-82, 2001 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-11352578

RESUMEN

The genome of Dictyostelium discoideum contains a single gene (cnbA) for the regulatory (B) subunit of the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin (CN). Two mRNA species and two protein products differing in size were found. The apparent molecular masses of the protein isoforms corresponded to translation products starting from the first and second AUG codons of the primary transcript, respectively. The smaller mRNA and protein isoforms accumulated during early differentiation of the cells. Whereas the amount of the higher molecular mass protein isoform remained constant throughout development, the larger mRNA disappeared to virtually undetectable levels during aggregation. 5'RACE amplification of the smaller transcript yielded cDNAs lacking the 5' non-translated region and the first ATG initiator codon. Expression of truncated cDNAs and various chimeric genes encoding CNB-green fluorescent protein fusions in Dictyostelium indicate that the mature cnbA transcript is processed by an unconventional mechanism that leads to truncation of the 5' untranslated region and at least the first AUG initiator codon, and to utilization of the second AUG codon for translation initiation of the small CNB isoform. Determinants for this processing mechanism reside within the coding region of the cnbA gene.


Asunto(s)
Calcineurina/biosíntesis , Calcineurina/genética , Dictyostelium/genética , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 5'/genética , Regiones no Traducidas 5'/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Calcineurina/química , Calcineurina/metabolismo , Calmodulina/metabolismo , Codón Iniciador/genética , Dictyostelium/citología , Dictyostelium/enzimología , Dictyostelium/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Holoenzimas/biosíntesis , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades de Proteína , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
20.
Eur J Biochem ; 267(13): 4264-71, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10866831

RESUMEN

Overproduction of Thermus sp. YS 8-13 manganese catalase in Escherichia coli BL21(DE3) was accomplished by introducing a derivative of pET-23a(+) containing a copy of the coding gene into the multicloning site. E. coli BL21(DE3)/pETMNCAT produced abundant quantities of manganese catalase as insoluble inclusion bodies. Regeneration of active catalase was achieved by denaturation in guanidine hydrochloride and subsequent dialysis in the presence of manganese ion. When the E. coli chaperone genes GroEL, GroES, DnaK, DnaJ and GrpE were coexpressed with manganese catalase, a significant fraction of the overproduced protein was partitioned into the soluble fraction. However, almost all of the soluble enzyme was isolated in a manganese-deficient apo form which could subsequently be converted into active holoenzyme by incubation with manganese ion at high temperatures. Further experiments on this apo catalase suggested that the structure of this protein was virtually identical to the active holoenzyme.


Asunto(s)
Apoenzimas/biosíntesis , Catalasa/biosíntesis , Escherichia coli/genética , Holoenzimas/biosíntesis , Thermus/enzimología , Línea Celular , Cromatografía en Gel , Activación Enzimática , Chaperonas Moleculares/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...