Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 741
Filtrar
1.
Genome Biol ; 25(1): 131, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773623

RESUMEN

BACKGROUND: High-efficiency prime editing (PE) is desirable for precise genome manipulation. The activity of mammalian PE systems can be largely improved by inhibiting DNA mismatch repair by coexpressing a dominant-negative variant of MLH1. However, this strategy has not been widely used for PE optimization in plants, possibly because of its less conspicuous effects and inconsistent performance at different sites. RESULTS: We show that direct RNAi knockdown of OsMLH1 in an ePE5c system increases the efficiency of our most recently updated PE tool by 1.30- to 2.11-fold in stably transformed rice cells, resulting in as many as 85.42% homozygous mutants in the T0 generation. The high specificity of ePE5c is revealed by whole-genome sequencing. To overcome the partial sterility induced by OsMLH1 knockdown of ePE5c, a conditional excision system is introduced to remove the RNAi module by Cre-mediated site-specific recombination. Using a simple approach of enriching excision events, we generate 100% RNAi module-free plants in the T0 generation. The increase in efficiency due to OsMLH1 knockdown is maintained in the excised plants, whose fertility is not impaired. CONCLUSIONS: This study provides a safe and reliable plant PE optimization strategy for improving editing efficiency without disturbing plant development via transient MMR inhibition with an excisable RNAi module of MLH1.


Asunto(s)
Edición Génica , Oryza , Proteínas de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidad/genética , Técnicas de Silenciamiento del Gen , Homólogo 1 de la Proteína MutL/genética , Interferencia de ARN , Sistemas CRISPR-Cas , Plantas Modificadas Genéticamente
2.
Gulf J Oncolog ; 1(45): 35-41, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774931

RESUMEN

BACKGROUND: Microsatellite instability (MSI) is a pattern of hyper mutation that occurs at microsatellite level in the genome and result due to error in the mismatch repair system. MSI is caused by defective mismatch repair (MMR) genes associated with either hyper methylation of MMR genes or BRAF mutations. Anti-MLH-1, anti-MSH-2, anti-MSH-6 and anti-PMS2 monoclonal antibodies are used for Immunohistochemical analysis. METHODS: The immunohistochemical expression of MSI proteins were assessed in 72 cases of colorectal carcinoma. These were classified based on the expression of MLH1, MSH2, MSH6 and PMS2 proteins. RESULTS: There were 57 percent of cases showing loss of at least one antibodies, and 43 percent cases showing intact expression of all antibodies (MLH1, MSH2, MSH6 and PMS2). CONCLUSION: In conclusion, our study provides valuable insights into the expression of mismatch repair in colorectal adenocarcinoma through immunohistochemistry analysis conducted at our tertiary care centre. These findings hold significant clinical implications, suggesting further testing for BRAF and MLH1 Promoter Hypermethylation to confirm possibility of Lynch syndrome. KEY WORDS: IHC, MMR, CRC.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Inmunohistoquímica , Centros de Atención Terciaria , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Masculino , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Inmunohistoquímica/métodos , Femenino , Persona de Mediana Edad , Anciano , Adulto , Homólogo 1 de la Proteína MutL/genética
3.
Nat Commun ; 15(1): 4002, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734692

RESUMEN

Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Reparación del ADN , Edición Génica , Proteína p53 Supresora de Tumor , Edición Génica/métodos , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Citosina/metabolismo
4.
Dermatol Online J ; 30(1)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762859

RESUMEN

Patients with Muir-Torre syndrome may have a systemic malignancy and a sebaceous neoplasm such as an adenoma, epithelioma, and/or carcinoma. The syndrome usually results from a germline mutation in one or more mismatch repair genes. Iatrogenic or acquired immunosuppression can promote the appearance of sebaceous tumors, either as an isolated event or as a feature of Muir-Torre syndrome and may unmask individuals genetically predisposed to the syndrome. Two iatrogenically immunosuppressed men with Muir-Torre syndrome features are described. Similar to these immunocompromised men, Muir-Torre syndrome-associated sebaceous neoplasms have occurred in solid organ transplant recipients, human immunodeficiency virus-infected individuals, and patients with chronic diseases who are treated with immunosuppressive agents. Muir-Torre syndrome-associated sebaceous neoplasms occur more frequently and earlier in kidney recipients, who are receiving more post-transplant immunosuppressive agents, than in liver recipients. The development of sebaceous neoplasms is decreased by replacing cyclosporine or tacrolimus with sirolimus or everolimus. Specific anti-cancer vaccines or checkpoint blockade immunotherapy may merit exploration for immune-interception of Muir-Torre syndrome-associated sebaceous neoplasms and syndrome-related visceral cancers. We suggest germline testing for genomic aberrations of mismatch repair genes should routinely be performed in all patients-both immunocompetent and immunosuppressed-who develop a Muir-Torre syndrome-associated sebaceous neoplasm.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Mutación de Línea Germinal , Inmunosupresores , Síndrome de Muir-Torre , Neoplasias de las Glándulas Sebáceas , Humanos , Síndrome de Muir-Torre/genética , Masculino , Reparación de la Incompatibilidad de ADN/genética , Inmunosupresores/uso terapéutico , Inmunosupresores/efectos adversos , Neoplasias de las Glándulas Sebáceas/genética , Persona de Mediana Edad , Proteína 2 Homóloga a MutS/genética , Huésped Inmunocomprometido , Homólogo 1 de la Proteína MutL/genética , Neoplasias Cutáneas/genética , Análisis Mutacional de ADN
5.
Mol Biol Rep ; 51(1): 588, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683237

RESUMEN

BACKGROUND: Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS: Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS: Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION: This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.


Asunto(s)
Fragmentación del ADN , Infertilidad Masculina , MicroARNs , Homólogo 1 de la Proteína MutL , Estrés Oxidativo , Espermatozoides , Varicocele , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Varicocele/genética , Varicocele/metabolismo , Varicocele/patología , Estrés Oxidativo/genética , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Espermatozoides/metabolismo , Adulto , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Semen/metabolismo , Motilidad Espermática/genética , Antioxidantes/metabolismo
6.
EBioMedicine ; 103: 105111, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583260

RESUMEN

BACKGROUND: Lynch syndrome (LS) is one of the most common hereditary cancer syndromes worldwide. Dominantly inherited mutation in one of four DNA mismatch repair genes combined with somatic events leads to mismatch repair deficiency and microsatellite instability (MSI) in tumours. Due to a high lifetime risk of cancer, regular surveillance plays a key role in cancer prevention; yet the observation of frequent interval cancers points to insufficient cancer prevention by colonoscopy-based methods alone. This study aimed to identify precancerous functional changes in colonic mucosa that could facilitate the monitoring and prevention of cancer development in LS. METHODS: The study material comprised colon biopsy specimens (n = 71) collected during colonoscopy examinations from LS carriers (tumour-free, or diagnosed with adenoma, or diagnosed with carcinoma) and a control group, which included sporadic cases without LS or neoplasia. The majority (80%) of LS carriers had an inherited genetic MLH1 mutation. The remaining 20% included MSH2 mutation carriers (13%) and MSH6 mutation carriers (7%). The transcriptomes were first analysed with RNA-sequencing and followed up with Gorilla Ontology analysis and Reactome Knowledgebase and Ingenuity Pathway Analyses to detect functional changes that might be associated with the initiation of the neoplastic process in LS individuals. FINDINGS: With pathway and gene ontology analyses combined with measurement of mitotic perimeters from colonic mucosa and tumours, we found an increased tendency to chromosomal instability (CIN), already present in macroscopically normal LS mucosa. Our results suggest that CIN is an earlier aberration than MSI and may be the initial cancer driving aberration, whereas MSI accelerates tumour formation. Furthermore, our results suggest that MLH1 deficiency plays a significant role in the development of CIN. INTERPRETATION: The results validate our previous findings from mice and highlight early mitotic abnormalities as an important contributor and precancerous marker of colorectal tumourigenesis in LS. FUNDING: This work was supported by grants from the Jane and Aatos Erkko Foundation, the Academy of Finland (330606 and 331284), Cancer Foundation Finland sr, and the Sigrid Jusélius Foundation. Open access is funded by Helsinki University Library.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Inestabilidad de Microsatélites , Mitosis , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/complicaciones , Femenino , Masculino , Mitosis/genética , Persona de Mediana Edad , Mutación , Adulto , Anciano , Homólogo 1 de la Proteína MutL/genética , Perfilación de la Expresión Génica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/etiología , Carcinogénesis/genética , Reparación de la Incompatibilidad de ADN/genética , Transcriptoma
7.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557488

RESUMEN

While breast cancer 2 (BRCA2) loss of heterozygosity (LOH) promotes cancer initiation, it can also induce death in nontransformed cells. In contrast, mismatch repair gene mutL homolog 1 (MLH1) is a tumor-suppressor gene that protects cells from cancer development through repairing mismatched base pairs during DNA mismatch repair (MMR). Sengodan et al., in this issue of the JCI, reveal an interplay between the 2 genes: MLH1 promoted the survival of BRCA2-deficient cells independently of its MMR function. MLH1 protected replication forks from degradation, while also resolving R-loops, thereby reducing genomic instability. Moreover, MLH1 expression was regulated directly by estrogen, shedding light into the hormone-responsive nature of many BRCA2 mutant breast cancers. These results provide important insight into the genetics that drive the initiation of BRCA2-mutated breast cancers.


Asunto(s)
Neoplasias de la Mama , Homólogo 1 de la Proteína MutL , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Inestabilidad Genómica , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498709

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Nucleotidiltransferasas/genética , ADN , Apoptosis/genética , Homólogo 1 de la Proteína MutL/genética
9.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504345

RESUMEN

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Inestabilidad de Microsatélites , Síndromes Neoplásicos Hereditarios , Humanos , Animales , Macaca mulatta/genética , Macaca mulatta/metabolismo , Homólogo 1 de la Proteína MutL/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN/genética , Epigénesis Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/genética
10.
Genes Chromosomes Cancer ; 63(3): e23231, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38459936

RESUMEN

Lynch syndrome-associated endometrial cancer patients often present multiple synchronous tumors and this assessment can affect treatment strategies. We present a case of a 27-year-old woman with tumors in the uterine corpus, cervix, and ovaries who was diagnosed with endometrial cancer and exhibited cervical invasion and ovarian metastasis. Her family history suggested Lynch syndrome, and genetic testing identified a variant of uncertain significance, MLH1 p.L582H. We conducted immunohistochemical staining, microsatellite instability analysis, and Sanger sequencing for Lynch syndrome-associated cancers in three generations of the family and identified consistent MLH1 loss. Whole-exome sequencing for the corpus, cervical, and ovarian tumors of the proband identified a copy-neutral loss of heterozygosity (LOH) occurring at the MLH1 position in all tumors. This indicated that the germline variant and the copy-neutral LOH led to biallelic loss of MLH1 and was the cause of cancer initiation. All tumors shared a portion of somatic mutations with high mutant allele frequencies, suggesting a common clonal origin. There were no mutations shared only between the cervix and ovary samples. The profiles of mutant allele frequencies shared between the corpus and cervix or ovary indicated that two different subclones originating from the corpus independently metastasized to the cervix or ovary. Additionally, all tumors presented unique mutations in endometrial cancer-associated genes such as ARID1A and PIK3CA. In conclusion, we demonstrated clonal origin and genomic diversity in a Lynch syndrome-associated endometrial cancer, suggesting the importance of evaluating multiple sites in Lynch syndrome patients with synchronous tumors.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Endometriales , Homólogo 1 de la Proteína MutL , Neoplasias Primarias Múltiples , Adulto , Femenino , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/complicaciones , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Genómica , Inestabilidad de Microsatélites , Homólogo 1 de la Proteína MutL/genética , Neoplasias Primarias Múltiples/genética
11.
Lancet Oncol ; 25(5): 668-682, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552658

RESUMEN

BACKGROUND: Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD. METHODS: In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries. Clinical data were extracted from the IRRDC database, medical records, and physician-completed case record forms. The primary objective was to describe the clinical features, cancer spectrum, and biology of the condition. Secondary objectives included estimations of cancer incidence and of the impact of the specific mismatch-repair gene and genotype on cancer onset and survival, including after cancer surveillance and immunotherapy interventions. FINDINGS: We analysed data from 201 patients (103 males, 98 females) enrolled between June 5, 2007 and Sept 9, 2022. Median age at diagnosis of CMMRD or a related cancer was 8·9 years (IQR 5·9-12·6), and median follow-up from diagnosis was 7·2 years (3·6-14·8). Endogamy among minorities and closed communities contributed to high homozygosity within countries with low consanguinity. Frequent dermatological manifestations (117 [93%] of 126 patients with complete data) led to a clinical overlap with neurofibromatosis type 1 (35 [28%] of 126). 339 cancers were reported in 194 (97%) of 201 patients. The cumulative cancer incidence by age 18 years was 90% (95% CI 80-99). Median time between cancer diagnoses for patients with more than one cancer was 1·9 years (IQR 0·8-3·9). Neoplasms developed in 15 organs and included early-onset adult cancers. CNS tumours were the most frequent (173 [51%] cancers), followed by gastrointestinal (75 [22%]), haematological (61 [18%]), and other cancer types (30 [9%]). Patients with CNS tumours had the poorest overall survival rates (39% [95% CI 30-52] at 10 years from diagnosis; log-rank p<0·0001 across four cancer types), followed by those with haematological cancers (67% [55-82]), gastrointestinal cancers (89% [81-97]), and other solid tumours (96% [88-100]). All cancers showed high mutation and microsatellite indel burdens, and pathognomonic mutational signatures. MLH1 or MSH2 variants caused earlier cancer onset than PMS2 or MSH6 variants, and inferior survival (overall survival at age 15 years 63% [95% CI 55-73] for PMS2, 49% [35-68] for MSH6, 19% [6-66] for MLH1, and 0% for MSH2; p<0·0001). Frameshift or truncating variants within the same gene caused earlier cancers and inferior outcomes compared with missense variants (p<0·0001). The greater deleterious effects of MLH1 and MSH2 variants as compared with PMS2 and MSH6 variants persisted despite overall improvements in survival after surveillance or immune checkpoint inhibitor interventions. INTERPRETATION: The very high cancer burden and unique genomic landscape of CMMRD highlight the benefit of comprehensive assays in timely diagnosis and precision approaches toward surveillance and immunotherapy. These data will guide the clinical management of children and patients who survive into adulthood with CMMRD. FUNDING: The Canadian Institutes for Health Research, Stand Up to Cancer, Children's Oncology Group National Cancer Institute Community Oncology Research Program, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Harry and Agnieszka Hall, Meagan's Walk, BRAINchild Canada, The LivWise Foundation, St Baldrick Foundation, Hold'em for Life, and Garron Family Cancer Center.


Asunto(s)
Proteínas de Unión al ADN , Síndromes Neoplásicos Hereditarios , Humanos , Masculino , Femenino , Niño , Preescolar , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/terapia , Estudios Transversales , Adolescente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/epidemiología , Reparación de la Incompatibilidad de ADN , Estudios Longitudinales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Incidencia , Proteína 2 Homóloga a MutS/genética , Homólogo 1 de la Proteína MutL/genética , Adulto , Adulto Joven , Mutación
12.
Cancer Sci ; 115(5): 1646-1655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433331

RESUMEN

The clinical features of sporadic mismatch repair deficiency (MMRd) and Lynch syndrome (LS) in Japanese patients with endometrial cancer (EC) were examined by evaluating the prevalence and prognostic factors of LS and sporadic MMRd in patients with EC. Targeted sequencing of five LS susceptibility genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) was carried out in 443 patients with EC who were pathologically diagnosed with EC at the National Cancer Center Hospital between 2011 and 2018. Pathogenic variants in these genes were detected in 16 patients (3.7%). Immunohistochemistry for MMR proteins was undertaken in 337 of the 433 (77.9%) EC patients, and 91 patients (27.0%) showed absent expression of at least one MMR protein. The 13 cases of LS with MMR protein loss (93.8%) showed a favorable prognosis with a 5-year overall survival (OS) rate of 100%, although there was no statistically significant difference between this group and the sporadic MMRd group (p = 0.27). In the MMRd without LS group, the 5-year OS rate was significantly worse in seven patients with an aberrant p53 expression pattern than in those with p53 WT (53.6% vs. 93.9%, log-rank test; p = 0.0016). These results suggest that p53 abnormalities and pathogenic germline variants in MMR genes could be potential biomarkers for the molecular classification of EC with MMRd.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Proteínas de Unión al ADN , Neoplasias Endometriales , Proteína 2 Homóloga a MutS , Proteína p53 Supresora de Tumor , Humanos , Femenino , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética , Anciano , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Adulto , Proteína 2 Homóloga a MutS/genética , Pronóstico , Proteínas de Unión al ADN/genética , Reparación de la Incompatibilidad de ADN/genética , Homólogo 1 de la Proteína MutL/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Anciano de 80 o más Años , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Síndromes Neoplásicos Hereditarios/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Japón/epidemiología
13.
Adv Sci (Weinh) ; 11(19): e2309290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477507

RESUMEN

Temozolomide (TMZ) resistance remains the major obstacle in the treatment of glioblastoma (GBM). Lactylation is a novel post-translational modification that is involved in various tumors. However, whether lactylation plays a role in GBM TMZ resistance remains unclear. Here it is found that histone H3K9 lactylation (H3K9la) confers TMZ resistance in GBM via LUC7L2-mediated intron 7 retention of MLH1. Mechanistically, lactylation is upregulated in recurrent GBM tissues and TMZ-resistant cells, and is mainly concentrated in histone H3K9. Combined multi-omics analysis, including CUT&Tag, SLAM-seq, and RNA-seq, reveals that H3K9 lactylation is significantly enriched in the LUC7L2 promoter and activates LUC7L2 transcription to promote its expression. LUC7L2 mediates intron 7 retention of MLH1 to reduce MLH1 expression, and thereby inhibit mismatch repair (MMR), ultimately leading to GBM TMZ resistance. Of note, it is identified that a clinical anti-epileptic drug, stiripentol, which can cross the blood-brain barrier and inhibit lactate dehydrogenase A/B (LDHA/B) activity, acts as a lactylation inhibitor and renders GBM cells more sensitive to TMZ in vitro and in vivo. These findings not only shed light on the mechanism of lactylation in GBM TMZ resistance but also provide a potential combined therapeutic strategy for clinical GBM treatment.


Asunto(s)
Resistencia a Antineoplásicos , Glioblastoma , Histonas , Intrones , Homólogo 1 de la Proteína MutL , Temozolomida , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Temozolomida/farmacología , Humanos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones , Histonas/metabolismo , Histonas/genética , Animales , Intrones/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Ratones Desnudos
14.
BMC Gastroenterol ; 24(1): 82, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395750

RESUMEN

BACKGROUND: Deficient DNA mismatch repair (MMR) can cause microsatellite instability (MSI) and is more common in colorectal cancer (CRC) patients. Understanding the carcinogenic mechanism of bacteria and their impact on cancer cells is crucial. Bacteroides fragilis (B. fragilis) has been identified as a potential promoter of tumorigenesis through the alteration of signaling pathways. This study aims to assess the expression levels of msh2, msh6, mlh1, and the relative frequency of B. fragilis in biopsy samples from CRC patients. MATERIALS AND METHODS: Based on the sequence of mlh1, msh2, and msh6 genes, B. fragilis specific 16srRNA and bacterial universal 16srRNA specific primers were selected, and the expression levels of the target genes were analyzed using the Real-Time PCR method. RESULTS: Significant increases in the expression levels of mlh1, msh2, and msh6 genes were observed in the cancer group. Additionally, the expression of these MMR genes showed a significant elevation in samples positive for B. fragilis presence. The relative frequency of B. fragilis in the cancer group demonstrated a significant rise compared to the control group. CONCLUSION: The findings suggest a potential correlation between the abundance of B. fragilis and alterations in the expression of MMR genes. Since these genes can play a role in modifying colon cancer, investigating microbial characteristics and gene expression changes in CRC could offer a viable solution for CRC diagnosis.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Humanos , Reparación de la Incompatibilidad de ADN/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Irán , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Inestabilidad de Microsatélites , Proteínas de Unión al ADN/genética , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Biopsia
15.
Zhonghua Yi Xue Za Zhi ; 104(7): 547-551, 2024 Feb 20.
Artículo en Chino | MEDLINE | ID: mdl-38317368

RESUMEN

In this study, a case of Lynch syndrome (LS) family line with a novel mutation site in the MLH1 c.463dupC gene was reported and the clinical and pathogenic genetic features of this family were analyzed. A 40-year-old female patient with colon cancer diagnosed at the First Affiliated Hospital of Kunming Medical University on October 2, 2020 was retrospectively included. The clinical data of the family were collected and the family lineage was drawn. The family tumor history met the Amsterdam Criteria Ⅱ and the diagnostic criteria of LS in Chinese, which was a typical LS family lineage. A germline code-shift missense mutation c.463dupC in the MLH1 gene located in exon 6, a possible pathogenic variant, was detected by second-generation sequencing (NGS) in the patient. Subsequently, Sanger sequencing was performed on a total of 20 direct lineage members of the family of the MLH1 gene, 7 cases were found to harbor the mutation and included in the LS high-risk control. Follow-up to October 2023 showed that the patient had endometrial and cervical polyps, one case had colorectal cancer, and two cases had intestinal polyps, all were treated with early intervention and therapy; two cases did not show any clinical symptoms. This study is the first to report a new mutation site for the potentially pathogenic MLH1 c.463dupC, providing a rationale for the pathogenicity of the mutation and standardized health management for familial carriers.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Femenino , Humanos , Adulto , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Predisposición Genética a la Enfermedad , Estudios Retrospectivos , Homólogo 1 de la Proteína MutL/genética , Mutación
16.
Eur J Hum Genet ; 32(5): 529-538, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38355963

RESUMEN

It is believed that >95% of people with Lynch syndrome (LS) remain undiagnosed. Within the National Health Service (NHS) in England, formal guidelines issued in 2017 state that all colorectal cancers (CRC) should be tested for DNA Mismatch Repair deficiency (dMMR). We used a comprehensive population-level national dataset to analyse implementation of the agreed diagnostic pathway at a baseline point 2 years post-publication of official guidelines. Using real-world data collected and curated by the National Cancer Registration and Analysis Service (NCRAS), we retrospectively followed up all people diagnosed with CRC in England in 2019. Nationwide laboratory diagnostic data incorporated somatic (tumour) testing for dMMR (via immunohistochemistry or microsatellite instability), somatic testing for MLH1 promoter methylation and BRAF status, and constitutional (germline) testing of MMR genes. Only 44% of CRCs were screened for dMMR; these figures varied over four-fold with respect to geography. Of those CRCs identified as dMMR, only 51% underwent subsequent diagnostic testing. Overall, only 1.3% of patients with colorectal cancer had a germline MMR genetic test performed; up to 37% of these tests occurred outside of NICE guidelines. The low rates of molecular diagnostic testing in CRC support the premise that Lynch syndrome is underdiagnosed, with significant attrition at all stages of the testing pathway. Applying our methodology to subsequent years' data will allow ongoing monitoring and analysis of the impact of recent investment. If the diagnostic guidelines were fully implemented, we estimate that up to 700 additional people with LS could be identified each year.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Inglaterra , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Femenino , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Masculino , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL/genética , Inestabilidad de Microsatélites , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Anciano , Adulto
17.
World J Surg Oncol ; 22(1): 36, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280988

RESUMEN

BACKGROUND: Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome. This condition is characterized by germline variants in DNA mismatch repair (MMR) genes, including MLH1, MSH2, MSH6, and PMS2. In this study, we analyzed the molecular defects and clinical manifestations of two families affected with CRC and proposed appropriate individual preventive strategies for all carriers of the variant. METHODS: We recruited two families diagnosed with CRC and combined their family history and immunohistochemical results to analyze the variants of probands and those of other family members by using whole exome sequencing. Subsequently, gene variants in each family were screened by comparing them with the variants available in the public database. Sanger sequencing was performed to verify the variant sites. An online platform ( https://www.uniprot.org ) was used to analyze the functional domains of mutant proteins. RESULTS: A novel frameshift variant (NM_001281492, c.1129_1130del, p.R377fs) in MSH6 and a known deleterious variant (NM_000249.4:c.1731G > A, p.S577S) in MLH1 were identified in the two families with CRC. Using bioinformatics tools, we noted that the frameshift variant reduced the number of amino acids in the MSH6 protein from 1230 to 383, thereby leading to no MSH6 protein expression. The silent variant caused splicing defects and was strongly associated with LS. 5-Fluorouracil-based adjuvant chemotherapy is not recommended for patients with LS. CONCLUSIONS: The novel frameshift variant (MSH6, c.1129_1130del, p.R377fs) is likely pathogenic to LS, and the variant (MLH1, c.1731G > A, p.S577S) has been further confirmed to be pathogenic to LS. Our findings underscore the significance of genetic testing for LS and recommend that genetic consultation and regular follow-ups be conducted to guide individualized treatment for cancer-afflicted families, especially those with a deficiency in MMR expression.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Síndromes Neoplásicos Hereditarios , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Reparación de la Incompatibilidad de ADN/genética , Mutación de Línea Germinal , Proteínas de Unión al ADN/genética , China/epidemiología , Homólogo 1 de la Proteína MutL/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo
18.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255924

RESUMEN

Pathogenic variation in DNA mismatch repair (MMR) gene MLH1 is associated with Lynch syndrome (LS), an autosomal dominant hereditary cancer. Of the 3798 MLH1 germline variants collected in the ClinVar database, 38.7% (1469) were missense variants, of which 81.6% (1199) were classified as Variants of Uncertain Significance (VUS) due to the lack of functional evidence. Further determination of the impact of VUS on MLH1 function is important for the VUS carriers to take preventive action. We recently developed a protein structure-based method named "Deep Learning-Ramachandran Plot-Molecular Dynamics Simulation (DL-RP-MDS)" to evaluate the deleteriousness of MLH1 missense VUS. The method extracts protein structural information by using the Ramachandran plot-molecular dynamics simulation (RP-MDS) method, then combines the variation data with an unsupervised learning model composed of auto-encoder and neural network classifier to identify the variants causing significant change in protein structure. In this report, we applied the method to classify 447 MLH1 missense VUS. We predicted 126/447 (28.2%) MLH1 missense VUS were deleterious. Our study demonstrates that DL-RP-MDS is able to classify the missense VUS based solely on their impact on protein structure.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Aprendizaje Profundo , Homólogo 1 de la Proteína MutL , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Bases de Datos Factuales , Reparación de la Incompatibilidad de ADN , Simulación de Dinámica Molecular , Homólogo 1 de la Proteína MutL/genética
20.
J Surg Oncol ; 129(5): 876-884, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173349

RESUMEN

The aim of the study was to determine DNA mismatch repair (MMR) proteins by immunohistochemically using MLH1, MSH2, MSH6, and PMS2 antibodies in patients diagnosed as pancreatic ductal adenocarcinoma and to assess its relationship with histopathological and clinical prognostic parameters. Fifty cases with a diagnosis of pancreatic ductal adenocarcinoma who underwent surgical resection, were included in the study. Demographic and histopathological features of the patients were collected from the medical records. The relationships between microsatellite status and prognostic parameters were determined. The mean age of the patients was 66.5 ± 9.5 years (range: 47-87) and male/female ratio was 1.63 (31/19). No errors were detected in DNA MMR proteins in any of the cases, and were classified as microsatellite stable. The mean tumor diameter was 4.01 ± 1.77 cm and 74% of the tumors were localized in the pancreatic head. All of the cases had lymphatic invasion, whereas vascular invasion was detected in only 78% and perineural invasion in 98% of the patients. When the relationship between prognostic parameters and survival was evaluated, statistically significant correlation was observed in patient age and histopathological parameters such as tumor diameter, status of surgical margins, and vascular invasion (p < 0.05). Age, tumor size, presence of tumor at surgical margins, vascular invasion, and adjuvant treatment were correlated with survival. Although microsatellite instability was not detected in our cases, it is important to determine the microsatellite status by immunohistochemistry for predicting the chemotherapy response and determining the immunotherapy option in pancreatic adenocarcinomas.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Adenocarcinoma/genética , Adenocarcinoma/terapia , Adenocarcinoma/metabolismo , Pronóstico , Reparación de la Incompatibilidad de ADN , Márgenes de Escisión , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...