Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Sci Rep ; 13(1): 12602, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537261

RESUMEN

Root lesion nematodes (RLN) of the genus Pratylenchus are causing significant damage in cereal production worldwide. Due to climate change and without efficient and environment-friendly treatments, the damages through RLNs are predicted to increase. Microscopic assessments of RLNs in the field and the greenhouses are time-consuming and laborious. As a result, cereal breeders have mostly ignored this pest. We present a method measuring RLN in infected cereal roots using a standardized PCR approach. Publicly available Pratylenchus neglectus primer combinations were evaluated. An optimal primer combination for RT-qPCR assay was identified to detect and quantify P. neglectus within infected cereal roots. Using the RT-qPCR detection assay, P. neglectus could be clearly distinguished from other plant parasitic nematodes. We could identify P. neglectus DNA in barley and wheat roots as low as 0.863 and 0.916 ng/µl of total DNA, respectively. A single P. neglectus individual was detected in water suspension and within barley and wheat roots. The RT-qPCR detection assay provides a robust and accurate alternative to microscopic nematode identification and quantification. It could be of interest for resistance breeding, where large populations must be screened to detect and quantify P. neglectus in farmer's fields.


Asunto(s)
Hordeum , Infecciones por Nematodos , Tylenchoidea , Animales , Grano Comestible/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Fitomejoramiento , ADN , Tylenchoidea/genética , Triticum/genética , Triticum/parasitología , Hordeum/genética , Hordeum/parasitología
2.
Arch Insect Biochem Physiol ; 109(1): e21853, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34820894

RESUMEN

Corn leaf aphid Rhopalosiphum maidis (Fitch) can feed on various cereal crops and transmit viruses that may cause serious economic losses. To test the impact of both host plant species and age on R. maidis, as well as the proteomic difference of diverse populations, we first investigated the survival and reproduction of six R. maidis populations (i.e., LF, HF, GZ, DY, BJ, and MS) via a direct observation method in the laboratory on 10 and 50 cm high maize seedlings, and 10 cm high barley seedlings. Then a proteomic approach was implemented to identify the differentially expressed proteins from both aphids and endosymbionts of BJ and MS populations. Results indicated that the BJ population performed significantly better than the others on both barley and 50 cm high maize seedlings, while no population could survive on 10 cm high maize seedlings. The proteomic results demonstrated that the expression levels of myosin heavy chain (muscle isoform X12) (spot 781) and peroxidase (spot 1383) were upregulated, while ATP-dependent protease Hsp 100 (spot 2137) from Hamiltonella defensa and protein SYMBAF (spot 2703) from Serratia symbiotica were downregulated in the BJ population when compared to expression levels of the MS population. We hypothesize that the fatalness observed on 10 cm high maize seedlings may be caused by secondary metabolites that are synthesized by the seedlings and the MS population of R. maidis should be more stress-resistant than the BJ population. Our results also provide insights for understanding the interaction between host plants and aphids.


Asunto(s)
Áfidos/metabolismo , Proteoma , Animales , Áfidos/microbiología , Áfidos/fisiología , Enterobacteriaceae/metabolismo , Hordeum/parasitología , Proteínas de Insectos/metabolismo , Hojas de la Planta/parasitología , Serratia/metabolismo , Simbiosis , Zea mays/parasitología
3.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830231

RESUMEN

Food insecurity and malnutrition have reached critical levels with increased human population, climate fluctuations, water shortage; therefore, higher-yielding crops are in the spotlight of numerous studies. Abiotic factors affect the yield of staple food crops; among all, wheat stem sawfly (Cephus cinctus Norton) and orange wheat blossom midge (Sitodiplosis mosellana) are two of the most economically and agronomically harmful insect pests which cause yield loss in cereals, especially in wheat in North America. There is no effective strategy for suppressing this pest damage yet, and only the plants with intrinsic tolerance mechanisms such as solid stem phenotypes for WSS and antixenosis and/or antibiosis mechanisms for OWBM can limit damage. A major QTL and a causal gene for WSS resistance were previously identified in wheat, and 3 major QTLs and a causal gene for OWBM resistance. Here, we present a comparative analysis of coding and non-coding features of these loci of wheat across important cereal crops, barley, rye, oat, and rice. This research paves the way for our cloning and editing of additional WSS and OWBM tolerance gene(s), proteins, and metabolites.


Asunto(s)
Dípteros/patogenicidad , Resistencia a la Enfermedad/genética , Genoma de Planta , Himenópteros/patogenicidad , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Animales , Avena/genética , Avena/inmunología , Avena/parasitología , Mapeo Cromosómico/métodos , Dípteros/fisiología , Grano Comestible , Código Genético , Hordeum/genética , Hordeum/inmunología , Hordeum/parasitología , Humanos , Himenópteros/fisiología , Oryza/genética , Oryza/inmunología , Oryza/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Carácter Cuantitativo Heredable , Secale/genética , Secale/inmunología , Secale/parasitología , Especificidad de la Especie , Triticum/inmunología , Triticum/parasitología
4.
PLoS One ; 16(8): e0255372, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34383810

RESUMEN

This study was conducted in Farta district, south Gondar from 2019 to 2020 cropping years to identify rodent pest species and estimate damage caused on barley crops. Four independent barley crop fields (40 x 40 m each) were sampled randomly to estimate the loss. Two were located near Alemsaga Priority State Forest and the other two were away from the forest. Four (2 x 2 m) rodent exclusion plots were established at 10 m interval as control units in each selected experimental barley fields using fine wire mesh. Rodent pest species were collected using both Sherman and snap traps throughout the different crop growing stages. The damaged and undamaged barley tillers by pest rodents were counted on five 1 x 1 m randomly sampled quadrats for each selected experimental fields. Variations on pest rodent population between cropping years and sites were analyzed using Chi square test. The mean crop damages between cropping years and experimental field sites were analyzed using two way ANOVA. Arvicanthis abyssinicus, Mastomys natalensis, Arvicanthis dembeensis, Mus musculus, Lophuromys simensis, Tachyoryctes splendens and Hystrix cristata were identified as pest rodents in the study area. A total of 968 individual rodents (427 in 2019 and 541 in 2020) were trapped during the study period. There was a statistical variation (χ2 = 13.42, df = 1 and P<0.05) between trapped individuals of the two successive years. The crop fields near the forest were more vulnerable than away from the forest during both cropping years. Statistical variations was observed on mean crop losses between cropping years and experimental barley crop sites. The highest crop damage was seen at maturity stage and the lowest during sowing in all experimental plots and cropping years. The percentage of barley yield loss due to rodent pests was 21.7 kg ha-1. The monetary value of this yield loss was equivalent to 4875 Birr (121.9 US$ h-1). Alemsaga Forest as shelter and conservation strategies like free of farmland from livestock and terracing for soil conservation have great role for the high rodent pest populations in the study area. Field sanitation, trapping and using restricted rodenticides like zinc phosphide are the possible recommendation to local farmers against rodent pests.


Asunto(s)
Producción de Cultivos/métodos , Hordeum/crecimiento & desarrollo , Roedores/fisiología , Animales , Producción de Cultivos/economía , Productos Agrícolas/economía , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitología , Demografía , Etiopía , Granjas , Bosques , Herbivoria , Hordeum/parasitología , Control de Plagas , Roedores/clasificación
5.
Sci Rep ; 11(1): 4761, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637802

RESUMEN

The Hessian fly Mayetiola destructor (Diptera: Cecidmyiidae) is a major pest of wheat, globally. We conducted a series of laboratory choice and no-choice assays to quantify Hessian fly host preference for barley (cv. Champion), oat (cv. Cayuse), susceptible (cv. Alturas), and resistant (cv. Hollis) wheat. In addition, larval survivorship and adult emergence were compared among the evaluated host plants. We then examined whether insect preference for a host can be explained by differences in plant spectral reflectance. Further, larval survivorship and adult emergence were compared among host plants in relation to phytohormone concentrations. Hessian flies laid more eggs on wheat compared to either oat or barley. Spectral reflectance measurements of leaves were similar between susceptible and resistant wheat cultivars but different from those of barley and oat. Our results suggested that higher reflectance in the near-infrared range and lower reflectance in the visible range may be used by females for host selection. Hessian fly larvae were unable to develop into the pupal stage on resistant wheat and oat. No significant difference in larval survivorship was detected between the susceptible wheat and barley. However, adult emergence was significantly higher on barley than the susceptible wheat. Phytohormonal evaluations revealed that salicylic acid (SA) may be an important contributor to plant defense response to larval feeding as relatively higher concentrations of SA were present in oat and resistant wheat. While resistance in the resistant wheat is achieved only through antibiosis, both antibiosis and antixenosis were in effect rendering oat as a non-host for Hessian flies.


Asunto(s)
Dípteros/fisiología , Grano Comestible/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Triticum/parasitología , Animales , Avena/metabolismo , Avena/parasitología , Grano Comestible/metabolismo , Hordeum/metabolismo , Hordeum/parasitología , Enfermedades de las Plantas/parasitología , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Triticum/metabolismo
6.
PLoS One ; 15(9): e0238527, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32915817

RESUMEN

Accurately estimating cause-specific mortality for immature insect herbivores is usually difficult. The insects are exposed to abiotic and biotic mortality factors, causing cadavers to simply disappear before cause of mortality can be recorded. Also, insect herbivores are often highly mobile on hosts, making it difficult to follow patterns for individuals through time. In contrast, the wheat stem sawfly, Cephus cinctus Norton, spends its entire egg, larval, and pupal period inside a host stem. Therefore, with periodic sampling stage-specific causes of mortality can be ascertained. Consequently, we examined C. cinctus mortality in eight barley, Hordeum vulgare L., cultivars in two locations in Montana from 2016 to 2018 by collecting stem samples from stem elongation to crop maturity at weekly intervals, and collecting overwintered barley stubs the following spring and summer from the same plots. If larvae were present, we examined larval status-dead or alive-and categorized dead individuals into one of 5 mortality categories: plant defense, cannibalism, parasitism, pathogens, and unknown factors. We used multiple decrement life tables to estimate cause-specific mortality and irreplaceable mortality (the proportion of mortality from a given cause that cannot be replaced by other causes of mortality). Plant defense (antibiosis) caused 85.7 ± 3.6%, cannibalism (governed by antixenosis) caused 70.1 ± 7.6%, parasitism caused 13.8 ± 5.9%, unknown factors caused 38.5 ± 7.6%, and pathogens caused 14.7 ± 8.5% mortality in the presence of all causes of mortality. Similarly, irreplaceable mortality due to plant defense was 22.3 ± 6.4%, cannibalism was 29.1± 4.2%, unknown factors was 6.2 ± 1.8%, pathogens was 0.9 ± 0.5%, and parasitism was 1. 5 ± 0. 6%. Antibiosis traits primarily killed newly emerged larvae, while other traits supported more favorable oviposition decisions by females, increasing mortality by obligate cannibalism. Our results suggest that breeding barley for resistance to C. cinctus targeting both categories of traits (antibiosis and antixenosis) is a highly valuable tactic for management of this important pest.


Asunto(s)
Hordeum/inmunología , Hordeum/parasitología , Himenópteros/fisiología , Tablas de Vida , Animales , Parásitos/fisiología
7.
Plant Cell Rep ; 39(12): 1719-1741, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32955612

RESUMEN

KEY MESSAGE: Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.


Asunto(s)
Hordeum/parasitología , Interacciones Huésped-Parásitos/fisiología , Ácaros/patogenicidad , Hojas de la Planta/metabolismo , Tylenchoidea/patogenicidad , Animales , Cloroplastos/parasitología , Cloroplastos/ultraestructura , Enzimas/metabolismo , Hordeum/fisiología , Fenoles/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/parasitología , Proteínas de Plantas/metabolismo , Carbonilación Proteica , Especies Reactivas de Oxígeno/metabolismo
8.
J Mass Spectrom ; 55(5): e4501, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31945247

RESUMEN

The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on-site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)-mass spectrometry (MS). The APCI source utilizes soft X-radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on-site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI-MS. Accordingly, more than 90% of the volatile metabolites found by APCI-MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC-IMS.


Asunto(s)
Grano Comestible/parasitología , Hongos/química , Hordeum/parasitología , Compuestos Orgánicos Volátiles/análisis , Grano Comestible/química , Contaminación de Alimentos/análisis , Cromatografía de Gases y Espectrometría de Masas , Hordeum/química , Espectrometría de Movilidad Iónica
9.
Mol Plant Pathol ; 21(1): 38-52, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605455

RESUMEN

Vacuolar processing enzymes (VPEs) play an important role during regular growth and development and defence responses. Despite substantial attempts to understand the molecular basis of plant-cyst nematode interaction, the mechanism of VPEs functioning during this interaction remains unknown. The second-stage Heterodera filipjevi juvenile penetrates host roots and induces the formation of a permanent feeding site called a syncytium. To investigate whether infection with H. filipjevi alters plant host VPEs, the studies were performed in Hordeum vulgare roots and leaves on the day of inoculation and at 7, 14 and 21 days post-inoculation (dpi). Implementing molecular, biochemical and microscopic methods we identified reasons for modulation of barley VPE activity during interaction with H. filipjevi. Heterodera filipjevi parasitism caused a general decrease of VPE activity in infected roots, but live imaging of VPEs showed that their activity is up-regulated in syncytia at 7 and 14 dpi and down-regulated at 21 dpi. These findings were accompanied by tissue-specific VPE gene expression patterns. Expression of the barley cystatin HvCPI-4 gene was stimulated in leaves but diminished in roots upon infestation. External application of cyclotides that can be produced naturally by VPEs elicits in pre-parasitic juveniles vesiculation of their body, enhanced formation of granules, induction of exploratory behaviour (stylet thrusts and head movements), production of reactive oxygen species (ROS) and final death by methuosis. Taken together, down-regulation of VPE activity through nematode effectors promotes the nematode invasion rates and leads to avoidance of the induction of the plant proteolytic response and death of the invading juveniles.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Hordeum/enzimología , Hordeum/parasitología , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Animales , Clorofila/metabolismo , Ciclotidas/farmacología , Cistatinas/genética , Perfilación de la Expresión Génica , Hordeum/genética , Interacciones Huésped-Parásitos , Raíces de Plantas/parasitología
10.
Plant Dis ; 103(12): 3259-3264, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31600115

RESUMEN

The root lesion nematode, Pratylenchus neglectus, is one of the most damaging nematodes to affect wheat worldwide. The nematode is widely distributed in Montana, primarily affecting winter wheat within the state. Managing the nematode primarily involves rotation to resistant and moderately resistant crops (peas, lentils, and barley). A nematode survey was conducted across the state nearly 10 years after an initial survey, to reassess the nematode threat and assess the impact of changing trends in crop rotations. To assess the broad applicability of rotation crops to control P. neglectus across Montana, greenhouse trials were conducted to challenge rotational crops using eight populations of P. neglectus collected from geographically diverse locations across the state. In the trials, conducted with four Montana crops, a significant interaction was detected between crop and nematode population (analysis of variance P < 0.001). Populations from Hill, Dawson, and Chouteau counties were found to be pathogenic on barley. Male nematodes were detected in seven of the eight pot culture populations, and these were confirmed to be P. neglectus by morphological and molecular methods. These results suggest a re-evaluation of barley and lentils as a management option for P. neglectus in Montana, as pathotypes for each exist within the state.


Asunto(s)
Enfermedades de las Plantas , Tylenchoidea , Animales , Hordeum/parasitología , Masculino , Montana , Enfermedades de las Plantas/parasitología , Triticum/parasitología , Tylenchoidea/patogenicidad , Tylenchoidea/fisiología
11.
J Exp Bot ; 70(15): 4011-4026, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173098

RESUMEN

Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression. However, the specificity of this resistance to aphids and its underlying mechanistic processes are unknown. In this study, we assessed the specificity of Hsp5 resistance to aphids and analysed differences in aphid probing and feeding behaviour on Hsp5 and a susceptible barley cultivar (Concerto). We found that partial resistance in Hsp5 to R. padi extends to two other aphid pests of grasses. Using the electrical penetration graph technique, we show that partial resistance is mediated by phloem- and mesophyll-based resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible for partial resistance, we compared non-glandular trichome density, defence gene expression, and phloem composition of Hsp5 with those of the susceptible barley cultivar Concerto. We show that Hsp5 partial resistance involves elevated basal expression of thionin and phytohormone signalling genes, and a reduction in phloem quality. This study highlights plant traits that may contribute to broad-spectrum partial resistance to aphids in barley.


Asunto(s)
Áfidos/patogenicidad , Hordeum/metabolismo , Hordeum/parasitología , Células del Mesófilo/metabolismo , Células del Mesófilo/parasitología , Floema/metabolismo , Floema/parasitología , Enfermedades de las Plantas/parasitología , Animales , Regulación de la Expresión Génica de las Plantas
12.
Theor Appl Genet ; 132(5): 1397-1408, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30712072

RESUMEN

KEY MESSAGE: Long-term pre-breeding using Hordeum vulgare ssp. spontaneum as a donor of bird cherry-oat aphid resistance has resulted in agronomically improved resistance sources of barley along with easy-to-use molecular markers. Bird cherry-oat aphid (Rhopalosiphum padi L.) is a pest and a virus vector in barley to which there are no bred-resistant cultivars. The present study describes how resistance from Hordeum vulgare ssp. spontaneum has been introgressed in cultivated barley via five successive crosses with the same cultivar Lina (BC) and in parallel with other more modern barley cultivars. Most of the selections for resistance are based on measurements of individual aphid growth in the laboratory. This very slow phenotyping method has been complemented by molecular marker evaluation and application in part of the breeding material. Doubled haploid production in each generation has been crucial for more precise selection of lines with the quantitatively expressed resistance. A field trial of selected "BC3"-generation lines essentially confirmed the laboratory results, so did genotyping of the whole pedigree of parents and selected "BC2" and "BC4" offspring lines. The Infinium iSelect 50 K SNP assay confirmed relationships between lines and discerned several new markers for a resistance QTL on chromosome 2H.


Asunto(s)
Áfidos/fisiología , Resistencia a la Enfermedad/genética , Hordeum/genética , Animales , Cruzamiento , Marcadores Genéticos , Haploidia , Hordeum/parasitología , Polimorfismo de Nucleótido Simple
13.
Theor Appl Genet ; 132(5): 1309-1320, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30656354

RESUMEN

KEY MESSAGE: The cereal cyst nematode resistance locus Rha2 was mapped to a 978 kbp region on the long arm of barley chromosome 2H. Three candidate genes are discussed. The cereal cyst nematode (CCN) Heterodera avenae is a soil-borne obligate parasite that can cause severe damage to cereals. This research involved fine mapping of Rha2, a CCN resistance locus on chromosome 2H of barley. Rha2 was previously mapped relative to restriction fragment length polymorphisms (RFLPs) in two mapping populations. Anchoring of flanking RFLP clone sequences to the barley genome assembly defined an interval of 5077 kbp. Genotyping-by-sequencing of resistant and susceptible materials led to the discovery of potentially useful single nucleotide polymorphisms (SNPs). Assays were designed for these SNPs and applied to mapping populations. This narrowed the region of interest to 3966 kbp. Further fine mapping was pursued by crossing and backcrossing the resistant cultivar Sloop SA to its susceptible ancestor Sloop. Evaluation of F2 progeny confirmed that the resistance segregates as a single dominant gene. Genotyping of 9003 BC2F2 progeny identified recombinants. Evaluation of recombinant BC2F3 progeny narrowed the region of interest to 978 kbp. Two of the SNPs within this region proved to be diagnostic of CCN resistance across a wide range of barley germplasm. Fluorescence-based and gel-based assays were developed for these SNPs for use in marker-assisted selection. Within the candidate region of the reference genome, there are nine high-confidence predicted genes. Three of these, one that encodes RAR1 (a cysteine- and histidine-rich domain-containing protein), one that is predicted to encode an acetylglutamate kinase and one that is predicted to encode a tonoplast intrinsic protein, are discussed as candidate genes for CCN resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Hordeum/genética , Proteínas de Plantas/genética , Animales , Mapeo Cromosómico , Genoma de Planta , Hordeum/parasitología , Nematodos , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple
14.
Int J Mol Sci ; 20(2)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669499

RESUMEN

Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals like wheat and barley. These nematodes alone are estimated to reduce production of crops by 10% globally. This necessitates a huge enhancement of nematode resistance in cereal crops against CCNs. Nematode resistance in wheat and barley in combination with higher grain yields has been a preferential research area for cereal nematologists. This usually involved the targeted genetic exploitations through natural means of classical selection breeding of resistant genotypes and finding quantitative trait luci (QTLs) associated with resistance genes. These improvements were based on available genetic diversity among the crop plants. Recently, genome-wide association studies have widely been exploited to associate nematode resistance or susceptibility with particular regions of the genome. Use of biotechnological tools through the application of various transgenic strategies for enhancement of nematode resistance in various crop plants including wheat and barley had also been an important area of research. These modern approaches primarily include the use of gene silencing, exploitation of nematode effector genes, proteinase inhibitors, chemodisruptive peptides and a combination of one or more of these approaches. Furthermore, the perspective genome editing technologies including CRISPR-Cas9 could also be helpful for improving CCN resistance in wheat and barley. The information provided in this review will be helpful to enhance resistance against CCNs and will attract the attention of the scientific community towards this neglected area.


Asunto(s)
Resistencia a la Enfermedad , Hordeum/parasitología , Interacciones Huésped-Parásitos , Nematodos , Enfermedades de las Plantas/parasitología , Triticum/parasitología , Adaptación Biológica , Agricultura/economía , Animales , Edición Génica , Silenciador del Gen , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Factores de Riesgo
15.
Exp Parasitol ; 197: 51-56, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30641035

RESUMEN

The pine wood nematode Bursaphelenchus xylophilus is a disastrous pathogen of pine forests in East Asia and Europe. Despite its decimating effect on pine forests, efficient and environmentally friendly methods available to control the pine wood nematode (PWN) are limited. The most abundant protein in nematode sperm, major sperm proteins (MSPs) have only been discovered in nematodes. In this study, phylogenetic analysis showed that BxMSP10 was highly conserved in the nematode and had a closer phylogenetic relationship with free-living nematodes than with plant-parasitic nematode species. BxMSP10 was specifically expressed in the seminal vesicle of male adults. dsRNA of BxMSP10 significantly decreased reproduction, egg hatching and population maintenance in B. xylophilus. These results indicated that BxMSP10 was a potential candidate for application in the control of B. xylophilus.


Asunto(s)
Proteínas del Helminto/fisiología , Rabdítidos/fisiología , Animales , Botrytis , ADN de Helmintos/aislamiento & purificación , Femenino , Expresión Génica , Hordeum/microbiología , Hordeum/parasitología , Hibridación in Situ , Intrones , Masculino , Filogenia , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Interferencia de ARN , ARN de Helminto/aislamiento & purificación , ARN de Helminto/fisiología , Reproducción/fisiología , Rabdítidos/clasificación , Rabdítidos/genética
16.
Int J Mol Sci ; 19(10)2018 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-30274246

RESUMEN

An understanding of the genes and mechanisms regulating environmental stress in crops is critical for boosting agricultural yield and safeguarding food security. Under adverse conditions, response pathways are activated for tolerance or resistance. In multiple species, the alternative oxidase (AOX) genes encode proteins which help in this process. Recently, this gene family has been extensively investigated in the vital crop plants, wheat, barley and rice. Cumulatively, these three species and/or their wild ancestors contain the genes for AOX1a, AOX1c, AOX1e, and AOX1d, and common patterns in the protein isoforms have been documented. Here, we add more information on these trends by emphasizing motifs that could affect expression, and by utilizing the most recent discoveries from the AOX isoform in Trypanosoma brucei to highlight clade-dependent biases. The new perspectives may have implications on how the AOX gene family has evolved and functions in monocots. The common or divergent amino acid substitutions between these grasses and the parasite are noted, and the potential effects of these changes are discussed. There is the hope that the insights gained will inform the way future AOX research is performed in monocots, in order to optimize crop production for food, feed, and fuel.


Asunto(s)
Hordeum/metabolismo , Proteínas Mitocondriales/metabolismo , Oryza/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Triticum/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/parasitología , Proteínas Mitocondriales/genética , Oryza/parasitología , Oxidorreductasas/genética , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Triticum/parasitología , Trypanosoma brucei brucei/patogenicidad
18.
Int J Mol Sci ; 19(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494488

RESUMEN

Cystatins have been largely used for pest control against phytophagous species. However, cystatins have not been commonly overexpressed in its cognate plant species to test their pesticide capacity. Since the inhibitory role of barley HvCPI-6 cystatin against the phytophagous mite Tetranychus urticae has been previously demonstrated, the purpose of our study was to determine if barley transgenic lines overexpressing its own HvIcy6 gene were more resistant against this phytophagous infestation. Besides, a transcriptomic analysis was done to find differential expressed genes among wild-type and transformed barley plants. Barley plants overexpressing HvIcy6 cystatin gene remained less susceptible to T. urticae attack when compared to wild-type plants, with a significant lesser foliar damaged area and a lower presence of the mite. Transcriptomic analysis revealed a certain reprogramming of cellular metabolism and a lower expression of several genes related to photosynthetic activity. Therefore, although caution should be taken to discard potential deleterious pleiotropic effects, cystatins may be used as transgenes with impact on agricultural crops by conferring enhanced levels of resistance to phytophagous pests.


Asunto(s)
Resistencia a la Enfermedad/genética , Expresión Génica , Hordeum/genética , Hordeum/parasitología , Interacciones Huésped-Parásitos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Perfilación de la Expresión Génica , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/parasitología , Plantas Modificadas Genéticamente , Transcriptoma
19.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257097

RESUMEN

Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.


Asunto(s)
Áfidos/patogenicidad , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Interacciones Huésped-Parásitos , Lipooxigenasa/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Animales , Áfidos/fisiología , Fertilidad , Hordeum/enzimología , Hordeum/parasitología , Lipooxigenasa/metabolismo , Aceites Volátiles/metabolismo , Proteínas de Plantas/metabolismo
20.
Plant Cell Environ ; 40(11): 2628-2643, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28452058

RESUMEN

Aphids are phloem-feeding insects that cause yield loss on a wide range of crops, including cereals such as barley. Whilst most aphid species are limited to one or few host species, some are able to reproduce on many plants belonging to different families. Interestingly, aphid probing behaviour can be observed on both host and non-host species, indicating that interactions take place at the molecular level that may impact host range. Here, we aimed to gain insight into the interaction of barley with aphid species differing in their ability to infest this crop by analysing transcriptional responses. Firstly, we determined colonization efficiency, settlement and probing behaviour for the aphid species Rhopalosiphum padi, Myzus persicae and Myzus cerasi, which defined host, poor-host and non-host interactions, respectively. Analyses of barley transcriptional responses revealed gene sets differentially regulated upon the different barley-aphid interactions and showed that the poor-host interaction with M. persicae resulted in the strongest regulation of genes. Interestingly, we identified several thionin genes strongly up-regulated upon interaction with M. persicae, and to a lesser extent upon R. padi interaction. Ectopic expression of two of these genes in Nicotiana benthamiana reduced host susceptibility to M. persicae, indicating that thionins contribute to defences against aphids.


Asunto(s)
Áfidos/fisiología , Resistencia a la Enfermedad/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/genética , Hordeum/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Tioninas/farmacología , Animales , Áfidos/patogenicidad , Análisis por Conglomerados , Genes de Plantas , Hordeum/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Especificidad de la Especie , Nicotiana/genética , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Virulencia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...