Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nature ; 624(7990): 130-137, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993711

RESUMEN

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Asunto(s)
Regulación del Apetito , Tronco Encefálico , Ingestión de Alimentos , Retroalimentación Fisiológica , Alimentos , Saciedad , Estómago , Regulación del Apetito/fisiología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Ingestión de Alimentos/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Saciedad/fisiología , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Estómago/fisiología , Gusto/fisiología , Factores de Tiempo , Animales , Ratones
2.
Neuropeptides ; 98: 102319, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36669365

RESUMEN

Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that attenuates food intake and increases energy expenditure. We designed three series of new lipidized PrRP31 analogs of different lengths of fatty acids attached at amino acids 1 or 11 directly or via linkers, part of them acetylated at the N-terminus and/or modified with dichlorophenylalanine (PheCl2) at the C-terminus. We tested their affinity for and activation of signaling pathways relevant to receptors GPR10, NPFF-R2, and NPFF-R1, effect on food intake in fasted or freely fed mice and rats, and stability in rat plasma. We aimed to select a strong dual GPR10/NPFF-R2 agonist whose affinity for NPFF-1 was not enhanced. The selected potent analog was then tested for body weight-lowering potency after chronic administration in mice with diet-induced obesity. PrRP31 analogs lipidized by monocarboxylic fatty acids showed strong dual affinity for both GPR10 and NPFF-R2 and activated MAPK/ERK1/2, Akt and CREB in cells overexpressing GPR10 and NPFF-R2. The selected analog stabilized at N- and C-termini and palmitoylated through the TTDS linker to Lys11 is a powerful dual agonist GPR10/NPFF-R2 at not enhanced affinity for NPFF-R1. It showed strong anti-obesity properties in mice with diet-induced obesity and became a potential compound for further studies.


Asunto(s)
Neuropéptidos , Obesidad , Ratas , Ratones , Animales , Hormona Liberadora de Prolactina/metabolismo , Hormona Liberadora de Prolactina/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Dieta , Ácidos Grasos
3.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564184

RESUMEN

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Asunto(s)
Hormonas Hipotalámicas , Privación de Sueño , Ratas , Masculino , Humanos , Animales , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/metabolismo , Privación de Sueño/metabolismo , Trastornos del Humor/etiología , Calidad de Vida , Ratas Wistar , Hormonas Hipotalámicas/metabolismo , Sueño/fisiología , Neuronas/fisiología , Norepinefrina/metabolismo
4.
Sci Rep ; 12(1): 1696, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105898

RESUMEN

Prolactin-releasing peptide (PrRP) is an endogenous neuropeptide involved in appetite regulation and energy homeostasis. PrRP binds with high affinity to G-protein coupled receptor 10 (GPR10) and with lesser activity towards the neuropeptide FF receptor type 2 (NPFF2R). The present study aimed to develop long-acting PrRP31 analogues with potent anti-obesity efficacy. A comprehensive series of C18 lipidated PrRP31 analogues was characterized in vitro and analogues with various GPR10 and NPFF2R activity profiles were profiled for bioavailability and metabolic effects following subcutaneous administration in diet-induced obese (DIO) mice. PrRP31 analogues acylated with a C18 lipid chain carrying a terminal acid (C18 diacid) were potent GPR10-selective agonists and weight-neutral in DIO mice. In contrast, acylation with aliphatic C18 lipid chain (C18) resulted in dual GPR10-NPFF2R co-agonists that suppressed food intake and promoted a robust weight loss in DIO mice, which was sustained for at least one week after last dosing. Rapid in vivo degradation of C18 PrRP31 analogues gave rise to circulating lipidated PrRP metabolites maintaining dual GPR10-NPFF2R agonist profile and long-acting anti-obesity efficacy in DIO mice. Combined GPR10 and NPFF2R activation may therefore be a critical mechanism for obtaining robust anti-obesity efficacy of PrRP31 analogues.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Obesidad/tratamiento farmacológico , Hormona Liberadora de Prolactina/análogos & derivados , Hormona Liberadora de Prolactina/administración & dosificación , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuropéptido/agonistas , Pérdida de Peso/efectos de los fármacos , Acilación , Animales , Regulación del Apetito/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Resultado del Tratamiento
5.
Br J Pharmacol ; 179(4): 642-658, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34050926

RESUMEN

Neuroendocrine, behavioural and autonomic responses to stressful stimuli are orchestrated by complex neural circuits. The caudal nucleus of the solitary tract (cNTS) in the dorsomedial hindbrain is uniquely positioned to integrate signals of both interoceptive and psychogenic stress. Within the cNTS, glucagon-like peptide-1 (GLP-1) and prolactin-releasing peptide (PrRP) neurons play crucial roles in organising neural responses to a broad range of stressors. In this review we discuss the anatomical and functional overlap between PrRP and GLP-1 neurons. We outline their co-activation in response to stressful stimuli and their importance as mediators of behavioural and physiological stress responses. Finally, we review evidence that PrRP neurons are downstream of GLP-1 neurons and outline unexplored areas of the research field. Based on the current state-of-knowledge, PrRP and GLP-1 neurons may be compelling targets in the treatment of stress-related disorders. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Asunto(s)
Péptido 1 Similar al Glucagón , Núcleo Solitario , Neuronas/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Núcleo Solitario/metabolismo , Estrés Fisiológico/fisiología
6.
Curr Alzheimer Res ; 18(8): 607-622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34551697

RESUMEN

BACKGROUND: Prolactin-releasing peptide (PrRP) is a potential drug for the treatment of obesity and associated Type 2 Diabetes Mellitus (T2DM) due to its strong anorexigenic and antidiabetic properties. In our recent study, the lipidized PrRP analog palm11-PrRP31 was proven to exert beneficial effects in APP/PS1 mice, a model of Alzheimer´s Disease (AD)-like amyloid-ß (Aß) pathology, reducing the Aß plaque load, microgliosis and astrocytosis in the hippocampus and cortex. OBJECTIVE: In this study, we focused on the neuroprotective and anti-inflammatory effects of palm11-PrRP31 and its possible impact on synaptogenesis in the cerebellum of APP/PS1 mice, because others have suggested that cerebellar Aß plaques contribute to cognitive deficits in AD. METHODS: APP/PS1 mice were treated subcutaneously with palm11-PrRP31 for 2 months, then immunoblotting and immunohistochemistry were used to quantify pathological markers connected to AD, compared to control mice. RESULTS: In the cerebella of 8 months old APP/PS1 mice, we found widespread Aß plaques surrounded by activated microglia detected by ionized calcium-binding adapter molecule (Iba1), but no increase in astrocytic marker Glial Fibrillary Acidic Protein (GFAP) compared to controls. Interestingly, no difference in both presynaptic markers syntaxin1A and postsynaptic marker spinophilin was registered between APP/PS1 and control mice. Palm11-PrRP31 treatment significantly reduced the Aß plaque load and microgliosis in the cerebellum. Furthermore, palm11-PrRP31 increased synaptogenesis and attenuated neuroinflammation and apoptosis in the hippocampus of APP/PS1 mice. CONCLUSION: These results suggest palm11-PrRP31 is a promising agent for the treatment of neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cerebelo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Hormona Liberadora de Prolactina/farmacología
7.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445614

RESUMEN

The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.


Asunto(s)
Calcio/metabolismo , Lipoilación , Hormona Liberadora de Prolactina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Técnicas In Vitro , Hormona Liberadora de Prolactina/química , Hormona Liberadora de Prolactina/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido/genética
8.
Nat Commun ; 12(1): 5175, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462445

RESUMEN

Calcitonin receptor (Calcr)-expressing neurons of the nucleus tractus solitarius (NTS; CalcrNTS cells) contribute to the long-term control of food intake and body weight. Here, we show that Prlh-expressing NTS (PrlhNTS) neurons represent a subset of CalcrNTS cells and that Prlh expression in these cells restrains body weight gain in the face of high fat diet challenge in mice. To understand the relationship of PrlhNTS cells to hypothalamic feeding circuits, we determined the ability of PrlhNTS-mediated signals to overcome enforced activation of AgRP neurons. We found that PrlhNTS neuron activation and Prlh overexpression in PrlhNTS cells abrogates AgRP neuron-driven hyperphagia and ameliorates the obesity of mice deficient in melanocortin signaling or leptin. Thus, enhancing Prlh-mediated neurotransmission from the NTS dampens hypothalamically-driven hyperphagia and obesity, demonstrating that NTS-mediated signals can override the effects of orexigenic hypothalamic signals on long-term energy balance.


Asunto(s)
Obesidad/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Núcleo Solitario/metabolismo , Animales , Apetito , Dieta , Ingestión de Alimentos , Metabolismo Energético , Femenino , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Obesidad/genética , Obesidad/fisiopatología , Obesidad/psicología , Hormona Liberadora de Prolactina/genética , Receptores de Calcitonina/genética , Receptores de Calcitonina/metabolismo
9.
Physiol Behav ; 239: 113511, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34181929

RESUMEN

Competing motivational drives coordinate behaviors essential for survival. For example, interoceptive feedback from the body during a state of negative energy balance serves to suppress anxiety-like behaviors and promote exploratory behaviors in rats. Results from past research suggest that this shift in motivated behavior is linked to reduced activation of specific neural populations within the caudal nucleus of the solitary tract (cNTS). However, the potential impact of metabolic state and the potential role of cNTS neurons on conditioned avoidance behaviors has not been examined. The present study investigated these questions in male and female rats, using a task in which rats learn to avoid a context (i.e., a darkened chamber) after it is paired with a single mild footshock. When rats later were tested for passive avoidance of the shock-paired chamber, male rats tested in an overnight food-deprived state and female rats (regardless of feeding status) displayed significantly less avoidance compared to male rats that were fed ad libitum prior to testing. Based on prior evidence that prolactin-releasing peptide (PrRP)-positive noradrenergic neurons and glucagon-like peptide 1 (GLP1)-positive neurons within the cNTS are particularly sensitive to metabolic state, we examined whether these neural populations are activated in conditioned rats after re-exposure to the shock-paired chamber, and whether neural activation is modulated by metabolic state. Compared to the control condition, chamber re-exposure activated PrRP+ noradrenergic neurons and also activated neurons within the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST), which receives dense input from PrRP+ terminals, in both male and female rats when fed ad libitum. In parallel with sex differences in passive avoidance behavior, PrRP+ neurons were less activated in female vs. male rats after chamber exposure. GLP1+ neurons were not activated in either sex. In both sexes, overnight food deprivation before chamber re-exposure reduced activation of PrRP+ neurons, and also reduced vlBNST activation. Our results support the view that PrRP+ noradrenergic neurons and their inputs to the vlBNST contribute to the expression of passive avoidance memory, and that this contribution is modulated by metabolic state.


Asunto(s)
Neuronas Adrenérgicas , Núcleos Septales , Animales , Femenino , Masculino , Hormona Liberadora de Prolactina/metabolismo , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/metabolismo
10.
Gene ; 774: 145427, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33450349

RESUMEN

G-protein-coupled receptor GPR10 is expressed in brain areas regulating energy metabolism. In this study, the effects of GPR10 gene deficiency on energy homeostasis in mice of both sexes fed either standard chow or a high-fat diet (HFD) were studied, with a focus on neuronal activation of PrRP neurons, and adipose tissue and liver metabolism. GPR10 deficiency in males upregulated the phasic and tonic activity of PrRP neurons in the nucleus of the solitary tract. GPR10 knockout (KO) males on a standard diet displayed a higher body weight than their wild-type (WT) littermates due to an increase in adipose tissue mass; however, HFD feeding did not cause weight differences between genotypes. Expression of lipogenesis genes was suppressed in the subcutaneous adipose tissue of GPR10 KO males. In contrast, GPR10 KO females did not differ in body weight from their WT controls, but showed elevated expression of lipid metabolism genes in the liver and subcutaneous adipose tissue compared to WT controls. An attenuated non-esterified fatty acids change after glucose load compared to WT controls suggested a defect in insulin-mediated suppression of lipolysis in GPR10 KO females. Indirect calorimetry did not reveal any differences in energy expenditure among groups. In conclusion, deletion of GPR10 gene resulted in changes in lipid metabolism in mice of both sexes, however in different extent. An increase in adipose tissue mass observed in only GPR10 KO males may have been prevented in GPR10 KO females owing to a compensatory increase in the expression of metabolic genes.


Asunto(s)
Homeostasis/genética , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Receptores Acoplados a Proteínas G/genética , Animales , Metabolismo Energético/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Hormona Liberadora de Prolactina/metabolismo
11.
Neuropharmacology ; 180: 108289, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32890590

RESUMEN

Up to 80% of cancer patients are affected by the cancer anorexia-cachexia syndrome (CACS), which leads to excessive body weight loss, reduced treatment success and increased lethality. The area postrema/nucleus of the solitary tract (AP/NTS) region emerged as a central nervous key structure in this multi-factorial process. Neurons in this area are targeted by cytokines and signal to downstream sites involved in energy homeostasis. NTS neurons expressing prolactin-releasing peptide (PrRP) are implicated in the control of energy intake and hypothalamus-pituitary-adrenal (HPA) axis activation, which contributes to muscle wasting. To explore if brainstem PrRP neurons contribute to CACS, we selectively knocked down PrRP expression in the NTS of hepatoma tumor-bearing rats by an AAV/shRNA gene silencing approach. PrRP knockdown reduced body weight loss and anorexia compared to tumor-bearing controls treated with a non-silencing AAV. Gastrocnemius and total hind limb muscle weight was higher in PrPR knockdown rats. Corticosterone levels were increased in the early phase after tumor induction at day 6 in both groups but returned to baseline levels at day 21 in the PrRP knockdown group. While we did not detect significant changes in gene expression of markers for muscle protein metabolism (MuRF-1, myostatin, mTOR and REDD1), mTOR and REDD1 tended to be lower after disruption PrRP signalling. In conclusion, we identified brainstem PrRP as a possible neuropeptide mediator of CACS in hepatoma tumor-bearing rats. The central and peripheral downstream mechanisms require further investigation and might involve HPA axis activation.


Asunto(s)
Anorexia/metabolismo , Tronco Encefálico/metabolismo , Caquexia/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Animales , Anorexia/genética , Caquexia/genética , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen/métodos , Neoplasias Hepáticas/genética , Masculino , Hormona Liberadora de Prolactina/deficiencia , Hormona Liberadora de Prolactina/genética , Ratas , Ratas Endogámicas BUF
12.
J Neuroendocrinol ; 32(11): e12880, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32627906

RESUMEN

Dopamine from tuberoinfundibular dopaminergic (TIDA) neurones tonically inhibits prolactin (PRL) secretion. Lactational hyperprolactinaemia is associated with a reduced activity of TIDA neurones. However, it remains controversial whether the suckling-induced PRL surge is driven by an additional decrease in dopamine release or by stimulation from a PRL-releasing factor. In the present study, we further investigated the role of dopamine in the PRL response to suckling. Non-lactating (N-Lac), lactating 4 hour apart from pups (Lac), Lac with pups return and suckling (Lac+S), and post-lactating (P-Lac) rats were evaluated. PRL levels were elevated in Lac rats and increased linearly within 30 minutes of suckling in Lac+S rats. During the rise in PRL levels, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME) and neurointermediate lobe of the pituitary did not differ between Lac+S and Lac rats. However, dopamine and DOPAC were equally decreased in Lac and Lac+S compared to N-Lac and P-Lac rats. Suckling, in turn, reduced phosphorylation of tyrosine hydroxylase in the ME of Lac+S. Domperidone and bromocriptine were used to block and activate pituitary dopamine D2 receptors, respectively. Domperidone increased PRL secretion in both N-Lac and Lac rats, and suckling elicited a robust surge of PRL over the high basal levels in domperidone-treated Lac+S rats. Conversely, bromocriptine blocked the PRL response to suckling. The findings obtained in the present study provide evidence that dopamine synthesis and release are tonically reduced during lactation, whereas dopamine is still functional with respect to inhibiting PRL secretion. However, there appears to be no further reduction in dopamine release associated with the suckling-induced rise in PRL. Instead, the lower dopaminergic tone during lactation appears to be required to sensitise the pituitary to a suckling-induced PRL-releasing factor.


Asunto(s)
Animales Lactantes/fisiología , Dopamina/fisiología , Hipotálamo/fisiología , Lactancia/fisiología , Prolactina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Bromocriptina/farmacología , Domperidona/farmacología , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Femenino , Hipotálamo/efectos de los fármacos , Eminencia Media/efectos de los fármacos , Eminencia Media/metabolismo , Adenohipófisis Porción Intermedia/efectos de los fármacos , Adenohipófisis Porción Intermedia/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Ratas , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismo
13.
Elife ; 92020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32579512

RESUMEN

Neuropeptide signalling systems comprising peptide ligands and cognate receptors are evolutionarily ancient regulators of physiology and behaviour. However, there are challenges associated with determination of orthology between neuropeptides in different taxa. Orthologs of vertebrate neuropeptide-Y (NPY) known as neuropeptide-F (NPF) have been identified in protostome invertebrates, whilst prolactin-releasing peptide (PrRP) and short neuropeptide-F (sNPF) have been identified as paralogs of NPY/NPF in vertebrates and protostomes, respectively. Here we investigated the occurrence of NPY/NPF/PrRP/sNPF-related signalling systems in a deuterostome invertebrate phylum - the Echinodermata. Analysis of transcriptome/genome sequence data revealed loss of NPY/NPF-type signalling, but orthologs of PrRP-type neuropeptides and sNPF/PrRP-type receptors were identified in echinoderms. Furthermore, experimental studies revealed that the PrRP-type neuropeptide pQDRSKAMQAERTGQLRRLNPRF-NH2 is a potent ligand for a sNPF/PrRP-type receptor in the starfish Asterias rubens. Our findings indicate that PrRP-type and sNPF-type signalling systems are orthologous and originated as a paralog of NPY/NPF-type signalling in Urbilateria.


Asunto(s)
Neuropéptidos/metabolismo , Estrellas de Mar/fisiología , Animales , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Regulación de la Expresión Génica , Neuropéptido Y/química , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Hormona Liberadora de Prolactina/química , Hormona Liberadora de Prolactina/genética , Hormona Liberadora de Prolactina/metabolismo , Conformación Proteica
14.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R1014-R1023, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292065

RESUMEN

In rats, overnight fasting reduces the ability of systemic cholecystokinin-8 (CCK) to suppress food intake and to activate cFos in the caudal nucleus of the solitary tract (cNTS), specifically within glucagon-like peptide-1 (GLP-1) and noradrenergic (NA) neurons of the A2 cell group. Systemic CCK increases vagal sensory signaling to the cNTS, an effect that is amplified by leptin and reduced by ghrelin. Since fasting reduces plasma leptin and increases plasma ghrelin levels, we hypothesized that peripheral leptin administration and/or antagonism of ghrelin receptors in fasted rats would rescue the ability of CCK to activate GLP-1 neurons and a caudal subset of A2 neurons that coexpress prolactin-releasing peptide (PrRP). To test this, cFos expression was examined in ad libitum-fed and overnight food-deprived (DEP) rats after intraperitoneal CCK, after coadministration of leptin and CCK, or after intraperitoneal injection of a ghrelin receptor antagonist (GRA) before CCK. In fed rats, CCK activated cFos in ~60% of GLP-1 and PrRP neurons. Few or no GLP-1 or PrRP neurons expressed cFos in DEP rats treated with CCK alone, CCK combined with leptin, or GRA alone. However, GRA pretreatment increased the ability of CCK to activate GLP-1 and PrRP neurons and also enhanced the hypophagic effect of CCK in DEP rats. Considered together, these new findings suggest that reduced behavioral sensitivity to CCK in fasted rats is at least partially due to ghrelin-mediated suppression of hindbrain GLP-1 and PrRP neural responsiveness to CCK.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Colecistoquinina/administración & dosificación , Ingestión de Alimentos/efectos de los fármacos , Ayuno/metabolismo , Conducta Alimentaria/efectos de los fármacos , Ghrelina/sangre , Neuronas/efectos de los fármacos , Rombencéfalo/efectos de los fármacos , Animales , Péptido 1 Similar al Glucagón/metabolismo , Leptina/sangre , Masculino , Neuronas/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Receptores de Ghrelina/metabolismo , Rombencéfalo/metabolismo , Transducción de Señal
15.
Neuroscience ; 447: 113-121, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518655

RESUMEN

Cholecystokinin (CCK) released from the small intestine increases the activity of vagal afferents that relay satiety signals to the caudal nucleus of the solitary tract (cNTS). A caudal subset of A2 noradrenergic neurons within the cNTS that express prolactin-releasing peptide (PrRP) have been proposed to mediate CCK-induced satiety. However, the ability of exogenous CCK to activate cFos expression by PrRP neurons has only been reported in rats and mice after a very high dose (i.e., 50 µg/kg BW) that also activates the hypothalamic-pituitary-adrenal stress axis. The present study examined the ability of a much lower CCK dose (1.0 µg/kg BW, i.p) to activate PrRP-positive neurons in the rat cNTS. We further examined whether maintenance of rats on high fat diet (HFD; 45% kcal from fat) alters CCK-induced activation of PrRP neurons, since HFD blunts the ability of CCK to suppress food intake. Rats maintained on HFD for 7 weeks consumed more kcal and gained more BW compared to rats maintained on Purina chow (13.5% kcal from fat). CCK-treated rats displayed increased numbers of cFos-positive cNTS neurons compared to non-injected and saline-injected controls, with no effect of diet. In chow-fed rats, a significantly larger proportion of PrRP neurons were activated after CCK treatment compared to controls; conversely, CCK did not increase PrRP neuronal activation in HFD-fed rats. Collectively, these results indicate that a relatively low dose of exogenous CCK is sufficient to activate PrRP neurons in chow-fed rats, and that this effect is blunted in rats maintained for several weeks on HFD.


Asunto(s)
Neuronas Adrenérgicas , Colecistoquinina , Neuronas Adrenérgicas/metabolismo , Animales , Dieta Alta en Grasa , Ratones , Hormona Liberadora de Prolactina/metabolismo , Ratas , Núcleo Solitario/metabolismo
16.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653061

RESUMEN

Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.


Asunto(s)
Hormona Liberadora de Prolactina/metabolismo , Animales , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hormona Liberadora de Prolactina/química , Hormona Liberadora de Prolactina/farmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
17.
Anim Sci J ; 90(9): 1293-1302, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31310043

RESUMEN

The molecular mechanism underlying in the onset and maintenance of incubation behavior are not fully understood, and it is still unknown the reason why White Leghorn, a layer strain, hens never display incubation behavior. Therefore, to explore specific hypothalamic genes regulating incubation behavior, cap analysis of gene expression (CAGE) were applied to comparison between incubating Silkie and laying White Leghorn hens. In addition, mRNA expression of some differentially expressed genes (DEGs) and melanocortinergic appetite genes including agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) was also analyzed on Silkie hens under natural anorexia and starvation. The CAGE identified 217 hypothalamic DEGs in incubating Silkie hens, and that of two, transthyretin (TTR) and prolactin-releasing peptide (PrRP), suggested as appetite gene, were markedly up- and down-regulated in incubating hens, respectively. In addition, AgRP and POMC expression also increased in incubating bird. mRNA expression of TTR, PrRP, and appetite genes were not differed significantly by starvation, although TTR mRNA expression was relatively high in fasting hens. Consequently, transcriptome by CAGE identified a number of hypothalamic genes differentially expressed by incubation behavior in Silkie hens. Of these, it is suggested that TTR and PrRP may, at least in part, be related to adaptation to natural anorexia in incubating Silkie chickens.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Ingestión de Alimentos/genética , Conducta Materna/fisiología , Prealbúmina/metabolismo , Proopiomelanocortina/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Pollos , Femenino , Perfilación de la Expresión Génica , Genética Conductual , Hipotálamo/metabolismo , Prealbúmina/genética , Proopiomelanocortina/genética , Hormona Liberadora de Prolactina/genética , Inanición
18.
Elife ; 82019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30694175

RESUMEN

Leptin regulates energy balance and also exhibits neurotrophic effects during critical developmental periods. However, the actual role of leptin during development is not yet fully understood. To uncover the importance of leptin in early life, the present study restored leptin signaling either at the fourth or tenth week of age in mice formerly null for the leptin receptor (LepR) gene. We found that some defects previously considered irreversible due to neonatal deficiency of leptin signaling, including the poor development of arcuate nucleus neural projections, were recovered by LepR reactivation in adulthood. However, LepR deficiency in early life led to irreversible obesity via suppression of energy expenditure. LepR reactivation in adulthood also led to persistent reduction in hypothalamic Pomc, Cartpt and Prlh mRNA expression and to defects in the reproductive system and brain growth. Our findings revealed that early defects in leptin signaling cause permanent metabolic, neuroendocrine and developmental problems.


Asunto(s)
Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , Leptina/genética , Obesidad/genética , Receptores de Leptina/genética , Envejecimiento/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Metabolismo Energético/genética , Femenino , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Gónadas/patología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Hipotálamo/patología , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Obesidad/metabolismo , Obesidad/patología , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Hormona Liberadora de Prolactina/genética , Hormona Liberadora de Prolactina/metabolismo , Receptores de Leptina/deficiencia , Transducción de Señal
19.
Gen Comp Endocrinol ; 274: 1-7, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30571962

RESUMEN

Prolactin-releasing peptide2 (PrRP2) belongs to the RFamide peptide group and is a paralog of prolactin-releasing peptide (PrRP). Recent studies demonstrated that PrRP2, but not PrRP, regulates prolactin release in teleosts. The evolutionary origin of PrRP and PrRP2 dates back to at least early vertebrates because homologs of PrRP/PrRP2 were identified in lampreys, one of the earliest branch of vertebrates class Agnatha. However, PrRP/PrRP2 remains to be identified in hagfish, another representative species of class Agnatha. Here, we examined the distribution of PrRP2 in the brain and pituitary of the inshore hagfish Eptatretus burgeri to obtain further understanding of the neuroendocrine system of PrRP2. PrRP2-immunoreactive (ir) cell bodies were detected in the infundibular nucleus of hypothalamus (HYinf). PrRP2-ir fibers were restricted around PrRP2-ir cell bodies and were not detected in the dorsal wall of the neurohypophysis compared to the abundant PrRP2-ir fiber distribution in the brain and innervation to the pituitary in other vertebrates. To examine possible reciprocal connections of PrRP2 and other neuropeptides, we further conducted dual-label immunohistochemistry of PrRP2 and the PQRFamide (PQRFa) peptide or corticotropin-releasing hormone (CRH). Reciprocal connections are suggested between PrRP2 and PQRFa neurons as well as between PrRP2 and CRH neurons. The present study demonstrates, for the first time, that PrRP2 is expressed in the brain of inshore hagfish. The restricted distribution of PrRP2-ir fibers in the HYinf suggests that PrRP2 does not directly regulate the pituitary gland, but regulates the function of the HYinf where PQRFa and CRH are expressed.


Asunto(s)
Encéfalo/metabolismo , Anguila Babosa/metabolismo , Inmunohistoquímica/métodos , Hormona Liberadora de Prolactina/metabolismo , Animales , Especificidad de Anticuerpos , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Hipotálamo/metabolismo , Masculino , Hipófisis/metabolismo
20.
J Comp Neurol ; 526(14): 2149-2164, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30019398

RESUMEN

Glutamatergic neurons that express pre-proglucagon (PPG) and are immunopositive (+) for glucagon-like peptide-1 (i.e., GLP-1+ neurons) are located within the caudal nucleus of the solitary tract (cNTS) and medullary reticular formation in rats and mice. GLP-1 neurons give rise to an extensive central network in which GLP-1 receptor (GLP-1R) signaling suppresses food intake, attenuates rewarding, increases avoidance, and stimulates stress responses, partly via GLP-1R signaling within the cNTS. In mice, noradrenergic (A2) cNTS neurons express GLP-1R, whereas PPG neurons do not. In this study, confocal microscopy in rats confirmed that prolactin-releasing peptide (PrRP)+ A2 neurons are closely apposed by GLP-1+ axonal varicosities. Surprisingly, GLP-1+ appositions were also observed on dendrites of PPG/GLP-1+ neurons in both species, and electron microscopy in rats revealed that GLP-1+ boutons form asymmetric synaptic contacts with GLP-1+ dendrites. However, RNAscope confirmed that rat GLP-1 neurons do not express GLP-1R mRNA. Similarly, Ca2+ imaging of somatic and dendritic responses in mouse ex vivo slices confirmed that PPG neurons do not respond directly to GLP-1, and a mouse crossbreeding strategy revealed that <1% of PPG neurons co-express GLP-1R. Collectively, these data suggest that GLP-1R signaling pathways modulate the activity of PrRP+ A2 neurons, and also reveal a local "feed-forward" synaptic network among GLP-1 neurons that apparently does not use GLP-1R signaling. This local GLP-1 network may instead use glutamatergic signaling to facilitate dynamic and potentially selective recruitment of GLP-1 neural populations that shape behavioral and physiological responses to internal and external challenges.


Asunto(s)
Péptido 1 Similar al Glucagón/fisiología , Red Nerviosa/fisiología , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Sinapsis/fisiología , Animales , Femenino , Receptor del Péptido 1 Similar al Glucagón/biosíntesis , Receptor del Péptido 1 Similar al Glucagón/genética , Glutamato Descarboxilasa , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Proglucagón/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Núcleo Solitario/ultraestructura , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...