Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.766
Filtrar
1.
Exp Eye Res ; 243: 109904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642600

RESUMEN

Aqueous humor (AQH) is a transparent fluid with characteristics similar to those of the interstitial fluid, which fills the eyeball posterior and anterior chambers and circulates in them from the sites of production to those of drainage. The AQH volume and pressure homeostasis is essential for the trophism of the ocular avascular tissues and their normal structure and function. Different AQH outflow pathways exist, including a main pathway, quite well defined anatomically and referred to as the conventional pathway, and some accessory pathways, more recently described and still not fully morphofunctionally understood, generically referred to as unconventional pathways. The conventional pathway is based on the existence of a series of conduits starting with the trabecular meshwork and Schlemm's Canal and continuing with a system of intrascleral and episcleral venules, which are tributaries to veins of the anterior segment of the eyeball. The unconventional pathways are mainly represented by the uveoscleral pathway, in which AQH flows through clefts, interstitial conduits located in the ciliary body and sclera, and then merges into the aforementioned intrascleral and episcleral venules. A further unconventional pathway, the lymphatic pathway, has been supported by the demonstration of lymphatic microvessels in the limbal sclera and, possibly, in the uvea (ciliary body, choroid) as well as by the ocular glymphatic channels, present in the neural retina and optic nerve. It follows that AQH may be drained from the eyeball through blood vessels (TM-SC pathway, US pathway) or lymphatic vessels (lymphatic pathway), and the different pathways may integrate or compensate for each other, optimizing the AQH drainage. The present review aims to define the state-of-the-art concerning the structural organization and the functional anatomy of all the AQH outflow pathways. Particular attention is paid to examining the regulatory mechanisms active in each of them. The new data on the anatomy and physiology of AQH outflow pathways is the key to understanding the pathophysiology of AQH outflow disorders and could open the way for novel approaches to their treatment.


Asunto(s)
Humor Acuoso , Sistema Linfático , Humor Acuoso/fisiología , Humor Acuoso/metabolismo , Humanos , Sistema Linfático/fisiología , Esclerótica/irrigación sanguínea , Malla Trabecular/metabolismo , Vasos Linfáticos/fisiología , Venas/fisiología , Úvea , Animales , Presión Intraocular/fisiología , Linfa/fisiología , Cuerpo Ciliar/irrigación sanguínea , Cuerpo Ciliar/metabolismo
2.
J Physiol Sci ; 74(1): 14, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431563

RESUMEN

Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker. The SCN resets peripheral clocks through sympathetic nerves or adrenal glucocorticoids (GCs). IOP's circadian rhythm is governed by circadian time signals, sympathetic noradrenaline (NE), and GCs, rather than the local clock. The activity of Na+/K+-ATPase in non-pigmented epithelial cells in the ciliary body can influence the nocturnal increase in IOP by enhancing AH inflow. Conversely, NE, not GCs, can regulate the IOP rhythm by suppressing TM macrophage phagocytosis and AH outflow. The activation of the ß1-adrenergic receptor (AR)-mediated EPAC-SHIP1 signal through the ablation of phosphatidylinositol triphosphate may govern phagocytic cup formation. These findings could offer insights for better glaucoma management, such as chronotherapy.


Asunto(s)
Glaucoma , Presión Intraocular , Humanos , Malla Trabecular , Humor Acuoso/fisiología , Ritmo Circadiano/fisiología , Glucocorticoides
3.
Graefes Arch Clin Exp Ophthalmol ; 262(2): 537-543, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37831170

RESUMEN

PURPOSE: To investigate changes in distal outflow tract vessels caused by VEGF-A and their impact on outflow. METHODS: We compared VEGF-A perfused porcine anterior segments with and without trabecular meshwork (TM) to control eyes. In the first experiment (n=48), we analyzed live changes of the outflow tract with spectral-domain optical coherence tomography (SD-OCT) over 3 h and reconstructed them in 3D. In a second experiment (n=32), we measured the intraocular pressure (IOP) variation in response to VEGF-A over 48 h and computed the outflow facility. RESULTS: VEGF-A increased the vessel volume of the distal outflow tract by 16.8±10.6% while control eyes remained unchanged (0.5±6.8%). Volume changes occurred within the first 100 min before plateauing at 140 min. VEGF-A enhanced the outflow facility in eyes without TM by 38.6±25.5% at 24 h as compared to controls (p<0.05). CONCLUSION: VEGF-A dilated vessels of the distal outflow tract and increased the outflow facility even after TM removal, pointing to a regulatory mechanism independent of proximal structures.


Asunto(s)
Humor Acuoso , Factor A de Crecimiento Endotelial Vascular , Animales , Porcinos , Humor Acuoso/fisiología , Factor A de Crecimiento Endotelial Vascular/farmacología , Malla Trabecular , Presión Intraocular
4.
Ann Biomed Eng ; 52(4): 898-907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38155316

RESUMEN

Glaucoma surgery with implantation of aqueous humor draining microstents may compromise long-term corneal health by disrupting aqueous humor circulation. The effect of stent numbers on this circulation was interrogated to determine the number of stents associated with minimal circulation disruption. An in vitro anterior eye model perfusion system was constructed with multiple exit ports. A 3-D model of the anterior eye was imported into ABAQUS CFD, analyzes were carried out for unsteady laminar flow and solved using Navier-Stokes equations. DT Vision Foundry was used to analyze velocity contour plot images. The field variable results output for the CFD model were fluid wall shear, fluid pressure and fluid velocity. In vitro, "aqueous" fluid flow is high through a single stent and "aqueous" stagnation is greatest in the quadrants 180° away. Increasing stent port numbers, results in an exponential decrease in the stagnant flow locations. High wall shear stress was seen in the single stent model and is markedly reduced after a second and subsequent stents are introduced. We identify two factors potentially contributing to corneal compromise post glaucoma drainage surgery: aqueous humor stagnation, remote to the stent site and higher exit flows imparting increased stent exit shear stress (particularly with a single stent). With 4 stents, there is minimal disruption of anterior chamber circulation (mimicking physiological conditions). Furthermore we propose that aqueous humor circulation disruption via the usual single-exit port approach disrupts aqueous humor circulation with long-term consequences for corneal health.


Asunto(s)
Humor Acuoso , Glaucoma , Humanos , Humor Acuoso/fisiología , Presión Intraocular , Glaucoma/cirugía , Procedimientos Quirúrgicos Mínimamente Invasivos , Perfusión
5.
PLoS One ; 18(11): e0294607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37988400

RESUMEN

Aqueous humor dynamics are commonly assessed by infusing fluid into the eye and measuring intraocular pressure (IOP). From the pressure-flow relationship, conventional outflow facility is estimated to study glaucomatous processes that lower facility or identify therapeutics that enhance facility in hopes of restoring healthy IOP levels. The relative merits and limitations of constant flow (CF), gravity-driven constant pressure (CPg), and pump-driven constant pressure (CPp) infusion techniques were explored via simulations of a lumped parameter viscoelastic model of the eye. Model parameter values were based on published perfusion system properties and outflow facility data from rodents. Step increases in pressure or flow were simulated without and with IOP noise recorded from enucleated eyes, anesthetized animals, and conscious animals. Steady-state response levels were determined using published window and ratio criteria. Model simulations show that all perfusion techniques estimate facility accurately and that ocular fluid dynamics set a hard limit on how fast measurements can be taken. This limit can be approached with CPg and CPp systems by increasing their gain but not with CF systems, which invariably take longest to settle. Facility experiment duration is further lengthened by inclusion of IOP noise, and data filtering is needed for steady-state detection with in vivo noise. The ratio criterion was particularly affected because noise in the flow data is amplified by the higher gain of CPg and CPp systems. A recursive regression method is introduced, which can ignore large transient IOP fluctuations that interfere with steady-state detection by fitting incoming data to the viscoelastic eye model. The fitting method greatly speeds up data collection without loss of accuracy, which could enable outflow facility measurements in conscious animals. The model may be generalized to study response dynamics to fluid infusion in other viscoelastic compartments of the body and model insights extended to optimize experiment design.


Asunto(s)
Glaucoma , Presión Intraocular , Animales , Glaucoma/diagnóstico , Tonometría Ocular , Humor Acuoso/fisiología , Perfusión/métodos
6.
Sci Rep ; 13(1): 18233, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880357

RESUMEN

We conducted a study to assess the pressure difference between the aqueous and vitreous humors in rabbit eyes using a direct intraocular pressure (IOP) measurement method. A micro-optic-fiber pressure sensor was utilized for this purpose. Preliminary experiments with enucleated porcine eyes confirmed the sensor's accuracy in measuring both aqueous and vitreous humor pressure. The main study involved six healthy albino rabbits, where the sensor measured the pressure in the anterior chamber (aIOP) and posterior vitreous-cavity (pIOP). These measurements were compared to aIOP values obtained through rebound tonometry. Additionally, pre- and postoperative pressure comparisons were made after performing a vitrectomy. Results revealed a significant disparity between aqueous and vitreous humor pressures. Prior to vitrectomy, pIOP was 22.8 mmHg, over twice as high as aIOP (11.0 mmHg), but decreased to a similar level following the procedure. Comparison between the sensor measurements and rebound tonometry showed agreement in aIOP values. In conclusion, our study demonstrates that vitreous humor pressure is consistently higher than aqueous humor pressure, reaching the upper limit of normal IOP. Furthermore, vitrectomy effectively reduces pIOP, aligning it with aIOP. These findings contribute valuable insights into intraocular pressure dynamics and have implications for clinical interventions targeting ocular pressure regulation.


Asunto(s)
Presión Intraocular , Cuerpo Vítreo , Animales , Porcinos , Conejos , Cuerpo Vítreo/cirugía , Vitrectomía , Tonometría Ocular , Humor Acuoso/fisiología
7.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414529

RESUMEN

Impaired development and maintenance of Schlemm's canal (SC) are associated with perturbed aqueous humor outflow and intraocular pressure. The angiopoietin (ANGPT)/TIE2 signaling pathway regulates SC development and maintenance, whereas the molecular mechanisms of crosstalk between SC and the neural crest (NC)-derived neighboring tissue, the trabecular meshwork (TM), are poorly understood. Here, we show NC-specific forkhead box (Fox)c2 deletion in mice results in impaired SC morphogenesis, loss of SC identity, and elevated intraocular pressure. Visible-light optical coherence tomography analysis further demonstrated functional impairment of the SC in response to changes in intraocular pressure in NC-Foxc2 -/- mice, suggesting altered TM biomechanics. Single-cell RNA-sequencing analysis identified that this phenotype is predominately characterized by transcriptional changes associated with extracellular matrix organization and stiffness in TM cell clusters, including increased matrix metalloproteinase expression, which can cleave the TIE2 ectodomain to produce soluble TIE2. Moreover, endothelial-specific Foxc2 deletion impaired SC morphogenesis because of reduced TIE2 expression, which was rescued by deleting the TIE2 phosphatase VE-PTP. Thus, Foxc2 is critical in maintaining SC identity and morphogenesis via TM-SC crosstalk.


Asunto(s)
Glaucoma , Malla Trabecular , Animales , Ratones , Humor Acuoso/fisiología , Glaucoma/genética , Glaucoma/patología , Presión Intraocular , Canal de Schlemm , Malla Trabecular/patología , Malla Trabecular/fisiología
8.
Graefes Arch Clin Exp Ophthalmol ; 261(5): 1359-1368, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36565327

RESUMEN

BACKGROUND: Glaucoma is a blinding disease largely caused by dysregulation of outflow through the trabecular meshwork (TM), resulting in elevated intraocular pressure (IOP). We hypothesized that transplanting TM cells into a decellularized, tissue-engineered anterior segment eye culture could restore the outflow structure and function. METHODS: Porcine eyes were decellularized with freeze-thaw cycles and perfusion of surfactant. We seeded control scaffolds with CrFK cells transduced with lentiviral vectors to stably express eGFP and compared them to scaffolds seeded with primary TM cells as well as to normal, unaltered eyes. We tracked the repopulation behavior, performed IOP maintenance challenges, and analyzed the histology. RESULTS: Transplanted cells localized to the TM and progressively infiltrated the extracellular matrix, reaching a distribution comparable to normal, unaltered eyes. After a perfusion rate challenge to mimic a glaucomatous pressure elevation, transplanted and normal eyes reestablished a normal intraocular pressure (transplanted = 16.5 ± 0.9 mmHg, normal = 16.9 ± 0.9). However, eyes reseeded with eGFP-expressing CrFK cells could not regulate IOP, remaining high and unstable (27.0 ± 6.2 mmHg) instead. CONCLUSION: Tissue-engineered anterior segment scaffolds can serve as readily available, scalable ocular perfusion cultures. This could reduce dependency on scarce donor globes in outflow research and may allow engineering perfusion cultures with specific geno- and phenotypes.


Asunto(s)
Humor Acuoso , Glaucoma , Porcinos , Animales , Técnicas de Cultivo de Órganos , Humor Acuoso/fisiología , Presión Intraocular , Malla Trabecular/patología , Glaucoma/patología , Segmento Anterior del Ojo/patología
9.
Exp Eye Res ; 220: 109103, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525299

RESUMEN

The key risk factor for glaucoma is elevation of intraocular pressure (IOP) and alleviating it is the only effective therapeutic approach to inhibit further vision loss. IOP is regulated by the flow of aqueous humour across resistive tissues, and a reduction in outflow facility, is responsible for the IOP elevation in glaucoma. Measurement of outflow facility is therefore important when investigating the pathophysiology of glaucoma and testing candidate treatments for lowering IOP. Due to similar anatomy and response to pharmacological treatments, mouse eyes are a common model of human aqueous humour dynamics. The ex vivo preparation, in which an enucleated mouse eye is mounted in a temperature controlled bath and cannulated, has been well characterised and is widely used. The postmortem in situ model, in which the eyes are perfused within the cadaver, has received relatively little attention. In this study, we investigate the postmortem in situ model using the iPerfusion system, with a particular focus on i) the presence or absence of pressure-independent flow, ii) the effect of evaporation on measured flow rates and iii) the magnitude and pressure dependence of outflow facility and how these properties are affected by postmortem changes. Measurements immediately after cannulation and following multi-pressure facility measurement demonstrated negligible pressure-independent flow in postmortem eyes, in contrast to assumptions made in previous studies. Using a humidity chamber, we investigated whether the humidity of the surrounding air would influence measured flow rates. We found that at room levels of humidity, evaporation of saline droplets on the eye resulted in artefactual flow rates with a magnitude comparable to outflow, which were eliminated by a high relative humidity (>85%) environment. Average postmortem outflow facility was ∼4 nl/min/mmHg, similar to values observed ex vivo, irrespective of whether a postmortem delay was introduced prior to cannulation. The intra-animal variability of measured outflow facility values was also reduced relative to previous ex vivo data. The pressure-dependence of outflow facility was reduced in the postmortem relative to ex vivo model, and practically eliminated when eyes were cannulated >40 min after euthanisation. Overall, our results indicate that the moderately increased technical complexity associated with postmortem perfusion provides reduced variability and reduced pressure-dependence in outflow facility, when experimental conditions are properly controlled.


Asunto(s)
Humor Acuoso , Glaucoma , Animales , Humor Acuoso/fisiología , Presión Intraocular , Ratones , Perfusión/métodos , Tonometría Ocular , Malla Trabecular
10.
Biomed Res Int ; 2022: 2805402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372570

RESUMEN

Eye temperature and intraocular pressure are two measurable parameters that can be monitored as a health index with aging. Deviations from the normal range of intraocular pressure and temperature lead to the formation of many diseases. This study has been carried out to evaluate the relations between the physiological and anatomical changes of the eye with aging using mathematical modeling. 2D computer-aided design of the human eye has been developed for two major groups: 21 to 30 years and 41 to 50 years. The computer simulation has been carried out to determine the effects of physiological changes of tear evaporation, fluid dynamics, blood flow, and metabolism of eye tissues with aging. The simulation has been carried out in the standing and the supine position of a human body. The rate of temperature change is - 0.0075 K per year in the standing position and - 0.007 K per year in the supine position because of the modeled anatomical and physiological effects. All the three simulation parameters of this study, the temperature of the human eye, the intraocular pressure, and the aqueous humor flow velocity, have been compared with the recent practical and simulation-based experiments to validate our results.


Asunto(s)
Humor Acuoso , Hidrodinámica , Envejecimiento , Humor Acuoso/fisiología , Simulación por Computador , Humanos , Presión Intraocular
11.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129590

RESUMEN

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Asunto(s)
Humor Acuoso/fisiología , Consenso , Glaucoma/metabolismo , Presión Intraocular/fisiología , Hipertensión Ocular/metabolismo , Malla Trabecular/metabolismo , Animales , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Ratones , Hipertensión Ocular/fisiopatología , Tonometría Ocular
12.
Invest Ophthalmol Vis Sci ; 63(2): 24, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35147658

RESUMEN

Purpose: We investigated the intraocular pressure (IOP)-lowering effect of topical sepetaprost (SPT), a dual agonist of the FP and EP3 receptors. We explored whether certain receptors mediated the hypotensive effect of SPT and outflow facility changes in C57BL/6 mice (wild-type [WT]) and FP and EP3 receptor-deficient mice (FPKO and EP3KO mice, respectively). Methods: IOP was measured using a microneedle. Outflow facility was measured using a two-level, constant-pressure perfusion method. Results: SPT significantly reduced IOP for 8 hours after administration to WT mice. The 2-hour IOP reductions afforded by latanoprost were 15.3 ± 2.5, 1.8 ± 2.0, and 12.3 ± 2.4% in WT, FPKO, and EP3KO mice, respectively; the SPT figures were 13.6 ± 2.1, 5.9 ± 2.7, and 6.6 ± 2.6%, respectively. Latanoprost-mediated IOP reduction was significantly decreased in FPKO mice, and SPT-mediated IOP reduction was reduced in both FPKO and EP3KO mice. At 6 hours after administration, latanoprost did not significantly reduce the IOP in any tested mouse strain. SPT-mediated IOP reduction was reduced in both FPKO and EP3KO mice. IOP reduction at 6 hours was significantly higher after simultaneous administration of selective FP and EP3 receptor agonists, but IOP did not fall on administration of (only) a selective EP3 receptor agonist. SPT significantly increased outflow facility in WT mice, but less so in FPKO and EP3KO mice. Conclusions: The IOP-lowering effect of SPT lasted longer than that of latanoprost. Our data imply that this may be attributable to augmented outflow facility mediated by the FP and EP3 receptors.


Asunto(s)
Antihipertensivos/uso terapéutico , Presión Intraocular/efectos de los fármacos , Oxepinas/uso terapéutico , Subtipo EP3 de Receptores de Prostaglandina E/fisiología , Receptores de Prostaglandina/fisiología , Administración Oftálmica , Animales , Humor Acuoso/fisiología , Dinoprostona/análogos & derivados , Dinoprostona/uso terapéutico , Presión Intraocular/fisiología , Latanoprost/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Soluciones Oftálmicas , Receptores de Prostaglandina/agonistas , Subtipo EP3 de Receptores de Prostaglandina E/agonistas , Factores de Tiempo , Tonometría Ocular
13.
Invest Ophthalmol Vis Sci ; 63(1): 21, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-35040876

RESUMEN

Purpose: Rodent and primate models are commonly used in glaucoma research; however, both have their limitations. The tree shrew (Tupaia belangeri) is an emerging animal model for glaucoma research owing in part to having a human-like optic nerve head anatomy, specifically a collagenous load-bearing lamina. However, the anterior segment anatomy and function have not been extensively studied in the tree shrew. Thus, the purpose of this study was to provide the first detailed examination of the anterior segment anatomy and aqueous outflow facility in the tree shrew. Methods: Aqueous outflow dynamics were measured in five ostensibly normal eyes from three tree shrews using the iPerfusion system over a range of pressures. Gross histological assessment and immunohistochemistry were performed to characterize anterior segment anatomy and to localize several key molecules related to aqueous outflow. Results: Anterior segment anatomy in tree shrews is similar to humans, demonstrating a scleral spur, a multilayered trabecular meshwork and a circular Schlemm's canal with a single lumen. Average outflow facility was 0.193 µL/min/mm Hg (95% confidence interval, 0.153-0.244), and was stable over time. Outflow facility was more similar between contralateral eyes (approximately 5% average difference) than between eyes of different animals. No significant dependence of outflow facility on time or pressure was detected (pressure-flow nonlinearity parameter of 0.01 (95% % confidence interval, -0.29 to 0.31 CI µL/min/mm Hg). Conclusions: These studies lend support to the usefulness of the tree shrew as a novel animal model in anterior segment glaucoma and pharmacology research. The tree shrew's cost, load-bearing collagenous lamina cribrosa, and lack of washout or anterior chamber deepening provides a distinct experimental and anatomic advantage over the current rodent and nonhuman primate models used for translational research.


Asunto(s)
Segmento Anterior del Ojo/anatomía & histología , Humor Acuoso/fisiología , Glaucoma/patología , Presión Intraocular/fisiología , Animales , Segmento Anterior del Ojo/fisiología , Modelos Animales de Enfermedad , Femenino , Glaucoma/metabolismo , Masculino , Tupaia
14.
Arterioscler Thromb Vasc Biol ; 42(3): 348-351, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35021855

RESUMEN

BACKGROUND: Schlemm's canal (SC) is a large vessel residing in the iridocorneal angle and is required to regulate aqueous humor outflow. Normal SC structure and function is indispensable for maintaining normal intraocular pressure, and elevated intraocular pressure is a risk factor for development of glaucoma. Recent reports have identified a key role of the angiopoietin-Tie2 pathway for SC development and function; however, the role of the orphan receptor Tie1 has not been clarified. METHODS: We used Tie1 knock out mice to study the function of Tie1 in SC development and function. Real-time quantitative polymerase chain reaction and Western blot analyses were used to verify Tie1 deletion. High-resolution microscopy of mouse SC whole mount and cross sections were used to study SC morphology. Measurement of intraocular pressure in live mice was used to study the impact of Tie1 on SC function. RESULTS: Tie1 is highly expressed in both human and mouse SC. Tie1 knock out mice display hypomorphic SC and elevated intraocular pressure as a result of attenuated SC development. CONCLUSIONS: Tie1 is indispensable for SC development and function, supporting it as a novel target for future SC-targeted glaucoma therapies and a candidate gene for glaucoma in humans.


Asunto(s)
Cámara Anterior/enzimología , Cámara Anterior/crecimiento & desarrollo , Endotelio Corneal/enzimología , Receptor TIE-1/metabolismo , Animales , Humor Acuoso/fisiología , Glaucoma/etiología , Humanos , Presión Intraocular/fisiología , Vasos Linfáticos/anomalías , Vasos Linfáticos/enzimología , Vasos Linfáticos/fisiología , Ratones , Ratones Noqueados , Modelos Animales , Receptor TIE-1/deficiencia , Receptor TIE-1/genética
15.
Exp Eye Res ; 214: 108891, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896309

RESUMEN

The human anterior segment perfusion culture model is a valuable tool for studying the trabecular meshwork (TM) and aqueous humor outflow in glaucoma. The traditional model relies on whole eye globes resulting in high cost and limited availability. Here, we developed a glue-based method which enabled us to use human corneal rims for perfusion culture experiments. Human corneal rim perfusion culture plates were 3D printed. Human corneal rims containing intact TM were attached and sealed to the plate using low viscosity and high viscosity glues, respectively. The human corneal rims were perfused using the constant flow mode, and the pressure changes were recorded using a computerized system. Outflow facility, TM stiffness, and TM morphology were evaluated. When perfused at rates from 1.2 to 3.6 µl/min, the outflow facility was 0.359 ± 0.216 µl/min/mmHg among 10 human corneal rims. The stiffness of the TM in naïve human corneal rim was similar to that of perfusion cultured human corneal rim. Also, the stiffness of TM of corneal rims perfused with dexamethasone was significantly higher than the control. Human corneal rims with glue contamination in the TM could be differentiated by high baseline intraocular pressure as well as high TM stiffness. Histology studies showed that the TM tissues perfused with plain medium appeared normal. We believed that our glued-based method is a useful tool and low-cost alternative to the traditional anterior segment perfusion culture model.


Asunto(s)
Humor Acuoso/fisiología , Córnea/citología , Modelos Biológicos , Técnicas de Cultivo de Órganos , Malla Trabecular/citología , Módulo de Elasticidad , Humanos , Presión Intraocular/fisiología , Microscopía de Fuerza Atómica , Adhesivos Tisulares , Donantes de Tejidos , Malla Trabecular/fisiología
16.
J Mol Diagn ; 23(12): 1714-1721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656762

RESUMEN

Retinoblastoma is a malignant tumor of the infant retina. Nearly half of patients are predisposed to retinoblastoma by a germline RB1 pathogenic variant. Nonhereditary retinoblastoma is mainly caused by inactivation of both RB1 alleles at a somatic level. Several polymorphisms have been reported as biomarkers of retinoblastoma risk, aggressiveness, or invasion. The most informative genetic testing is obtained from tumor DNA. Historically, access to tumor DNA has been warranted by the frequent indication of enucleation, which has decreased because of advances in conservative approaches. Recent studies showed that tumor cell-free DNA can be analyzed in aqueous humor from retinoblastoma patients. This report describes a next-generation sequencing method relying on unique molecular identifiers for a highly sensitive detection of retinoblastoma genetic predisposition and biomarkers in a single analysis. It is the first use of unique molecular identifiers for retinoblastoma genetics. This gene panel enables the detection of RB1 point variants, large genome rearrangements, and loss of heterozygosity. It is adapted for genomic DNA extracted from blood or tumor DNA extracted from tumor fragment, aqueous humor, or plasma. The access to tumor cell-free DNA improves the diagnosis of genetic predisposition in case of conservative ocular therapy and provides access to biomarkers guiding the treatment strategy. The analysis of a gene panel is cost-effective and can be easily implemented in diagnostic laboratories.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Retina/genética , Retinoblastoma/genética , Humor Acuoso/fisiología , Biomarcadores de Tumor/sangre , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Pérdida de Heterocigocidad , Masculino , Polimorfismo de Nucleótido Simple , Proteínas de Unión a Retinoblastoma/genética , Ubiquitina-Proteína Ligasas/genética
17.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638643

RESUMEN

Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-ß signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified ß-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by ß-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm's canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17ß-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17ß-estradiol in AH supports a role for estrogen signaling in IOP regulation.


Asunto(s)
Estrógenos/genética , Presión Intraocular/genética , Transducción de Señal/genética , Animales , Humor Acuoso/fisiología , Bovinos , Línea Celular , Matriz Extracelular/genética , Glaucoma de Ángulo Abierto/genética , Humanos , Porcinos , Malla Trabecular/fisiología
18.
J Biol Chem ; 297(3): 101070, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34389355

RESUMEN

Transforming growth factor-beta 2 (TGF-ß2) is highly concentrated in the aqueous humor of primary open-angle glaucoma patients. TGF-ß2 causes fibrosis of outflow tissues, such as the trabecular meshwork (TM), and increases intraocular pressure by increasing resistance to aqueous humor outflow. Recently, histone deacetylase (HDAC) activity was investigated in fibrosis in various tissues, revealing that HDAC inhibitors suppress tissue fibrosis. However, the effect of HDAC inhibitors on fibrosis in the eye was not determined. Here, we investigated the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on TGF-ß2-induced increased resistance to aqueous humor outflow. We found that SAHA suppressed TGF-ß2-induced outflow resistance in perfused porcine eyes. Moreover, SAHA cotreatment suppressed TGF-ß2-induced ocular hypertension in rabbits. The permeability of monkey TM (MTM) and Schlemm's canal (MSC) cell monolayers was decreased by TGF-ß2 treatment. SAHA inhibited the effects of TGF-ß2 on the permeability of these cells. TGF-ß2 also increased the expression of extracellular matrix proteins (fibronectin and collagen type I or IV) in MTM, MSC, and human TM (HTM) cells, while SAHA inhibited TGF-ß2-induced extracellular matrix protein expression in these cells. SAHA also inhibited TGF-ß2-induced phosphorylation of Akt and ERK, but did not inhibit Smad2/3 phosphorylation, the canonical pathway of TGF-ß signaling. Moreover, SAHA induced the expression of phosphatase and tensin homolog, a PI3K/Akt signaling factor, as well as bone morphogenetic protein 7, an endogenous antagonist of TGF-ß. These results imply that SAHA prevents TGF-ß2-induced increases in outflow resistance and regulates the non-Smad pathway of TGF-ß signaling in TM and MSC cells.


Asunto(s)
Factor de Crecimiento Transformador beta2/metabolismo , Vorinostat/metabolismo , Vorinostat/farmacología , Animales , Humor Acuoso/metabolismo , Humor Acuoso/fisiología , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Macaca fascicularis , Masculino , Hipertensión Ocular/metabolismo , Fosforilación , Cultivo Primario de Células , Conejos , Transducción de Señal , Porcinos , Malla Trabecular/efectos de los fármacos , Factor de Crecimiento Transformador beta2/fisiología , Factores de Crecimiento Transformadores/metabolismo
19.
Biomech Model Mechanobiol ; 20(6): 2061-2070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34302202

RESUMEN

The main aim of glaucoma treatment is to reduce the intraocular pressure (IOP). One of the most common surgical treatments of glaucoma is the implantation of a glaucoma drainage device to drain the aqueous humor from the anterior chamber to a filtration bleb, where the aqueous humor is absorbed. In some cases, the excess of drainage causes ocular hypotony, which constitutes a sight-threatening complication. To prevent hypotony after this intervention, surgeons frequently introduce a suture into the device tube, which increases the hydraulic resistance of the tube and, therefore, the IOP. This study aims to provide an analytical model to correct hypotony following implantation surgery of a glaucoma drainage device, which may help glaucoma surgeons decide on hypotony treatment. The results indicate that the IOP after implanting a cylindrical tube around 300 µm in diameter is essentially the same as that built up in the filtering bleb and can hardly be controlled by introducing a straight suture unless the suture diameter is slightly lower than that of the tube. On the contrary, when the tube diameter is smaller than, for example, 100 µm, significant reductions of the IOP can be obtained by introducing a thin suture into the tube.


Asunto(s)
Implantes de Drenaje de Glaucoma/efectos adversos , Modelos Biológicos , Hipotensión Ocular/etiología , Hipotensión Ocular/terapia , Implantación de Prótesis/efectos adversos , Humor Acuoso/fisiología , Humanos , Presión Intraocular , Hipotensión Ocular/fisiopatología
20.
Invest Ophthalmol Vis Sci ; 62(7): 23, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34156426

RESUMEN

Purpose: The purpose of this study was to determine the importance of the xCT is a subunit. The cystine/glutamate antiporter is actually system xc-xCT subunit of the cystine/glutamate antiporter in maintaining redox balance by investigating the effects of the loss of xCT on lens transparency and cystine/cysteine balance in the aqueous humour. Methods: C57Bl/6 wild-type and xCT knockout mice at five age groups (6 weeks to 12 months) were used. Lens transparency was examined using a slit-lamp and morphological changes visualized by immunolabelling and confocal microscopy. Quantification of glutathione in lenses and cysteine and cystine levels in the aqueous was conducted by liquid chromatography tandem mass spectrometry (LC-MS/MS). Results: Slit-lamp examinations revealed that 3-month-old wild-type mice and xCT knockout mice lenses exhibited an anterior localized cataract. The frequency of this cataract significantly increased in the knockout mice compared to the wild-type mice. Morphological studies revealed a localized swelling of the lens fiber cells at the anterior pole. Glutathione levels in whole lenses were similar between wild-type and knockout mice. However, glutathione levels were significantly decreased at 3 months in the knockout mice in the lens epithelium compared to the wild-type mice. Aqueous cysteine levels remained similar between wild-type and knockout mice at all age groups, whereas cystine levels were significantly increased in 3-, 9-, and 12-month-old knockout mice compared to wild-type mice. Conclusions: Loss of xCT resulted in the depletion of glutathione in the epithelium and an oxidative shift in the cysteine/cystine ratio of the aqueous. Together, these oxidative changes may contribute to the accelerated development of an anterior cataract in knockout mice, which appears to be a normal feature of aging in wild-type mice.


Asunto(s)
Envejecimiento/fisiología , Humor Acuoso , Catarata , Cistina/metabolismo , Ácido Glutámico/metabolismo , Cristalino , Animales , Antiportadores/metabolismo , Humor Acuoso/diagnóstico por imagen , Humor Acuoso/fisiología , Catarata/diagnóstico , Catarata/metabolismo , Catarata/fisiopatología , Cristalino/diagnóstico por imagen , Cristalino/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal/métodos , Oxidación-Reducción , Estrés Oxidativo , Microscopía con Lámpara de Hendidura/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...