Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107302

RESUMEN

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Asunto(s)
Guanosina Trifosfato , IMP Deshidrogenasa , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/química , IMP Deshidrogenasa/antagonistas & inhibidores , Regulación Alostérica , Guanosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Dominio Catalítico , Modelos Moleculares , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Guanosina Pentafosfato/metabolismo , Inosina Monofosfato/metabolismo , Inosina Monofosfato/química , Unión Proteica , Adenosina Trifosfato/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo
2.
Phytomedicine ; 132: 155833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39008915

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and is characterised by extensive invasive and metastatic potential. Previous studies have shown that vitexicarpin extracted from the fruits of Vitex rotundifolia can impede tumour progression. However, the molecular mechanisms involved in CRC treatment are still not fully established. PURPOSE: Our study aimed to investigate the anticancer activity, targets, and molecular mechanisms of vitexicarpin in CRC hoping to provide novel therapies for patients with CRC. STUDY DESIGN/METHODS: The impact of vitexicarpin on CRC was assessed through various experiments including MTT, clone formation, EDU, cell cycle, and apoptosis assays, as well as a tumour xenograft model. CETSA, label-free quantitative proteomics, and Biacore were used to identify the vitexicarpin targets. WB, Co-IP, Ubiquitination assay, IF, molecular docking, MST, and cell transfection were used to investigate the mechanism of action of vitexicarpin in CRC cells. Furthermore, we analysed the expression patterns and correlation of target proteins in TCGA and GEPIA datasets and clinical samples. Finally, wound healing, Transwell, tail vein injection model, and tissue section staining were used to demonstrate the antimetastatic effect of vitexicarpin on CRC in vitro and in vivo. RESULTS: Our findings demonstrated that vitexicarpin exhibits anticancer activity by directly binding to inosine monophosphate dehydrogenase 2 (IMPDH2) and that it promotes c-Myc ubiquitination by disrupting the interaction between IMPDH2 and c-Myc, leading to epithelial-mesenchymal transition (EMT) inhibition. Vitexicarpin hinders the migration and invasion of CRC cells by reversing EMT both in vitro and in vivo. Additionally, these results were validated by the overexpression and knockdown of IMPDH2 in CRC cells. CONCLUSION: These results demonstrated that vitexicarpin regulates the interaction between IMPDH2 and c-Myc to inhibit CRC proliferation and metastasis both in vitro and in vivo. These discoveries introduce potential molecular targets for CRC treatment and shed light on new mechanisms for c-Myc regulation in tumours.


Asunto(s)
Neoplasias Colorrectales , Flavonoides , Ubiquitinación , Vitex , Animales , Humanos , Masculino , Ratones , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/antagonistas & inhibidores , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ubiquitinación/efectos de los fármacos , Vitex/química , Ensayos Antitumor por Modelo de Xenoinjerto , Flavonoides/farmacología
3.
J Cancer Res Clin Oncol ; 150(8): 377, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085725

RESUMEN

BACKGROUND: Hepatoblastoma (HB) is the most common pediatric liver tumor, presenting significant therapeutic challenges due to its high rates of recurrence and metastasis. While Inosine Monophosphate Dehydrogenase 2(IMPDH2) has been associated with cancer progression, its specific role and clinical implications in HB have not been fully elucidated. METHODS: This study utilized Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Tissue Microarray (TMA) for validation. Following this, IMPDH2 was suppressed, and a series of in vitro assays were conducted. Flow cytometry was employed to assess apoptosis and cell cycle arrest. Additionally, the study explored the synergistic therapeutic effects of mycophenolate mofetil (MMF) and doxorubicin (DOX) on HB cell lines. RESULTS: The study identified a marked overexpression of IMPDH2 in HB tissues, which was strongly correlated with reduced Overall Survival (OS) and Event-Free Survival (EFS). IMPDH2 upregulation was also found to be associated with key clinical-pathological features, including pre-chemotherapy alpha-fetoprotein (AFP) levels, presence of preoperative metastasis, and the pre-treatment extent of tumor (PRETEXT) staging system. Knockdown of IMPDH2 significantly inhibited HB cell proliferation and tumorigenicity, inducing cell cycle arrest at the G0/G1 phase. Notably, the combination of MMF, identified as a specific IMPDH2 inhibitor, with DOX, substantially enhanced the therapeutic response. CONCLUSION: The overexpression of IMPDH2 was closely linked to adverse outcomes in HB patients and appeared to accelerate cell cycle progression. These findings suggest that IMPDH2 may serve as a valuable prognostic indicator and a potential therapeutic target for HB. IMPACT: The present study unveiled a significant overexpression of inosine monophosphate dehydrogenase 2 (IMPDH2) in hepatoblastoma (HB) tissues, particularly in association with metastasis and recurrence of the disease. The pronounced upregulation of IMPDH2 was found to be intimately correlated with adverse outcomes in HB patients. This overexpression appears to accelerate the progression of the cell cycle, suggesting that IMPDH2 may serve as a promising candidate for both a prognostic marker and a therapeutic target in the context of HB.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Proliferación Celular , Hepatoblastoma , IMP Deshidrogenasa , Neoplasias Hepáticas , Humanos , Hepatoblastoma/patología , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/metabolismo , Hepatoblastoma/genética , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/antagonistas & inhibidores , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Femenino , Masculino , Puntos de Control del Ciclo Celular/efectos de los fármacos , Preescolar , Doxorrubicina/farmacología , Niño , Ratones , Animales , Línea Celular Tumoral , Lactante , Pronóstico , Ratones Desnudos
4.
ACS Chem Biol ; 19(6): 1339-1350, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38829020

RESUMEN

N-Pyridinylthiophene carboxamide (compound 21) displays activity against peripheral nerve sheath cancer cells and mouse xenografts by an unknown mechanism. Through medicinal chemistry, we identified a more active derivative, compound 9, and found that only analogues with structures similar to nicotinamide retained activity. Genetic screens using compound 9 found that both NAMPT and NMNAT1, enzymes in the NAD salvage pathway, are necessary for activity. Compound 9 is metabolized by NAMPT and NMNAT1 into an adenine dinucleotide (AD) derivative in a cell-free system, cultured cells, and mice, and inhibition of this metabolism blocked compound activity. AD analogues derived from compound 9 inhibit IMPDH in vitro and cause cell death by inhibiting IMPDH in cells. These findings nominate these compounds as preclinical candidates for the development of tumor-activated IMPDH inhibitors to treat neuronal cancers.


Asunto(s)
NAD , Niacinamida , Tiofenos , Animales , NAD/metabolismo , Humanos , Ratones , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Niacinamida/farmacología , Niacinamida/química , Tiofenos/farmacología , Tiofenos/química , Tiofenos/metabolismo , Línea Celular Tumoral , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/metabolismo , Neoplasias de la Vaina del Nervio/patología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/antagonistas & inhibidores
5.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892179

RESUMEN

IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.


Asunto(s)
Glioblastoma , IMP Deshidrogenasa , Telomerasa , Humanos , Telomerasa/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Línea Celular Tumoral , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Apoptosis/efectos de los fármacos
6.
J Mol Graph Model ; 131: 108807, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908255

RESUMEN

The human inosine monophosphate dehydrogenase (hIMPDH) is a metabolic enzyme that possesses a unique ability to self-assemble into higher-order structures, forming cytoophidia. The hIMPDH II isoform is more active in chronic myeloid leukemia (CML) cancer cells, making it a promising target for anti-leukemic therapy. However, the structural details and molecular mechanisms of the dynamics of hIMPDHcytoophidia assembly in vitro need to be better understood, and it is crucial to reconstitute the computational nucleoplasm model with cytophilic-like polymers in vitro to characterize their structure and function. Finally, a computational model and its dynamics of the nucleoplasm for CML cells have been proposed in this short review. This research on nucleoplasm aims to aid the scientific community's understanding of how metabolic enzymes like hIMPDH function in cancer and normal cells. However, validating and justifying the computational results from modeling and simulation with experimental data is essential. The new insights gained from this research could explain the structure/topology, geometrical, and electronic consequences of hIMPDH inhibitors on leukemic and normal cells. They could lead to further advancements in the knowledge of nucleoplasmic chemical reaction dynamics.


Asunto(s)
Antineoplásicos , IMP Deshidrogenasa , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/química , IMP Deshidrogenasa/metabolismo , Núcleo Celular/metabolismo , Leucemia/tratamiento farmacológico , Simulación de Dinámica Molecular , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Diseño de Fármacos , Modelos Moleculares
7.
ACS Infect Dis ; 10(6): 2262-2275, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38787329

RESUMEN

The prevalence of Helicobacter pylori infection has been increasing rapidly due to the genetic heterogeneity and antibacterial resistance shown by the bacteria, affecting over 50% of the world population and over 80% of the Indian population, in particular. In this regard, novel drug targets are currently being explored, one of which is the crucial metabolic enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) involved in the de novo nucleotide biosynthesis pathway, in order to combat the infection and devise efficient therapeutic strategies. The present study reports the development of methylpyrazole-substituted benzimidazoles as small molecule inhibitors of H. pylori IMPDH with a nanomolar range of enzyme inhibition. A set of 19 small molecules have been designed, synthesized, and further evaluated for their inhibitory potential against H. pylori IMPDH using in silico, in vitro, biochemical, and biophysical techniques. Compound 7j was found to inhibit H. pylori IMPDH with an IC50 value of 0.095 ± 0.023 µM, which is close to 1.5-fold increase in the inhibitory activity, in comparison to the previously reported benzimidazole-based hit C91. Moreover, kinetic characterization has provided significant insights into the uncompetitive inhibition shown by these small molecules on H. pylori IMPDH, thus providing details about the enzyme inhibition mechanism. In conclusion, methylpyrazole-based small molecules indicate a promising path to develop cheap and bioavailable drugs to efficiently treat H. pylori infection in the coming years, in comparison to the currently available therapy.


Asunto(s)
Antibacterianos , Bencimidazoles , Infecciones por Helicobacter , Helicobacter pylori , IMP Deshidrogenasa , Pirazoles , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Bencimidazoles/farmacología , Bencimidazoles/química , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Pirazoles/farmacología , Pirazoles/química , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA