Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38316244

RESUMEN

Diclofenac (DCF) and ibuprofen (IBU) are pharmaceutical compounds frequently detected in aquatic compartments worldwide. Several hazard effects including developmental abnormalities and redox balance impairment have been elucidated in aquatic species, but multiple endocrine evaluations are scarce. Therefore, the present study aimed to assess the disruptive physiological effects and toxicity of DCF and IBU isolated and combined, using females of the native freshwater teleost Astyanax lacustris. In regards to NSAIDs bioavailability, the results showed absence of degradation of IBU and DCF after 7 days of exposure. IBU LC50 for A. lacustris was 137 mgL-1 and females exposed to IBU isolated increased thyroxine (T4) concentration at 24 h and decreased after 96 h; DCF exposure decreased triiodothyronine (T3) concentration at 96 h. Circulating levels of 17ß-estradiol (E2), cortisol (F) and testosterone (T) were not affected by any treatment. HPG and HPI axis genes fshß, pomc and vtg were upregulated after 24 h of IBU exposure, and dio2 was downregulated in DCF fish exposed group after 96 h compared to the mixture. Protein concentration was reduced in muscle and increased in the liver by DCF and mixtures exposures at 24 h; while liver lipids were increased in the mixture groups after 96 h. The study point out the capacity of NSAIDs to affect endocrine endpoints in A. lacustris females and induce changes in energetic substrate content after acute exposure to isolated and mixed NSAIDs treatments. Lastly, the present investigation brings new insights into the toxicity and endocrine disruptive activity of NSAIDs in Latin America teleost species and the aquatic environment.


Asunto(s)
Characiformes , Femenino , Animales , Diclofenaco/toxicidad , Ibuprofeno/toxicidad , Antiinflamatorios no Esteroideos , Disponibilidad Biológica
2.
Sci Total Environ ; 917: 170296, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301789

RESUMEN

The aim of the study was to evaluate the effects of emerging environmental contaminants, the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and ibuprofen (IBP), on physiological functions in juvenile common carp (Cyprinus carpio). Fish were exposed for 6 weeks, and for the first time, NSAIDs were administered through diet. Either substance was tested at two concentrations, 20 or 2000 µg/kg, resulting in four different treatments (DCF 20, DCF 2000, IBP 20, IBP 2000). The effects on haematological and biochemical profiles, the biomarkers of oxidative stress, and endocrine disruption were studied, and changes in RNA transcription were also monitored to obtain a comprehensive picture of toxicity. Fish exposure to high concentrations of NSAIDs (DCF 2000, IBP 2000) elicited numerous statistically significant changes (p < 0.05) in the endpoints investigated, with DCF being almost always more efficient than IBP. Compared to control fish, a decrease in total leukocyte count attributed to relative lymphopenia was observed. Plasma concentrations of total proteins, ammonia, and thyroxine, and enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase, and alkaline phosphatase (ALP) were significantly elevated in either group, as were the activities of certain hepatic antioxidant enzymes (superoxide dismutase, glutathione-S-transferase) in the DCF 2000 group. The transcriptomic profile of selected genes in the tissues of exposed fish was affected as well. Significant changes in plasma total proteins, ammonia, ALT, and ALP, as well as in the transcription of genes related to thyroid function and the antioxidant defense of the organism, were found even in fish exposed to the lower DCF concentration (DCF 20). As it was chosen to match DCF concentrations commonly detected in aquatic invertebrates (i.e., the potential feed source of fish), it can be considered "environmentally relevant". Future research is necessary to shed more light on the dietary NSAID toxicity to fish.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Diclofenaco/toxicidad , Carpas/metabolismo , Ibuprofeno/toxicidad , Antioxidantes/metabolismo , Amoníaco/farmacología , Exposición Dietética , Antiinflamatorios no Esteroideos/toxicidad , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
3.
Biochem Biophys Res Commun ; 703: 149565, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38377940

RESUMEN

Ibuprofen, one of the most commonly prescribed nonsteroidal anti-inflammatory drugs, has not been fully assessed for embryonic toxicity in vertebrates. Here, we systematically assessed the embryotoxicity of ibuprofen in Xenopus laevis at various concentrations during embryogenesis. Embryos were treated with different concentrations of ibuprofen, ranging from 8 to 64 mg/L, at 23 °C for 96 h, and examined daily and evaluated at 72 hpf. Lethal or teratogenic effects were documented. For histological analysis, paraffin embedded embryos were transversely sectioned at a thickness of 10-µm and stained with hematoxylin and eosin. Total RNA was isolated from embryos at stages 6, 12, 22 and 36, and real-time quantitative PCR was performed. Ibuprofen-treated embryos showed delayed or failed dorsal lip formation and its closure at the beginning of gastrulation. This resulted in herniation of the endodermal mass after gastrulation under high concentrations of ibuprofen-treated embryos. Underdeveloped intestines with stage and/or intestinal malrotation, distorted microcephaly, and hypoplastic heart, lungs, and pronephric tubules were observed in ibuprofen-treated embryos. Cephalic, cardiac, and truncal edema were also observed in them. The severity of the deformities was observed in a concentration-dependent manner. The teratogenic index was 2.28. These gross and histological disruptions correlated well with the altered expression of each organ marker gene. In conclusion, ibuprofen induced delayed and disrupted gastrulation in the early developmental stage and multiorgan malformation later in the organogenesis stage of Xenopus laevis embryos.


Asunto(s)
Ibuprofeno , Teratógenos , Animales , Xenopus laevis , Ibuprofeno/toxicidad , Desarrollo Embrionario , Antiinflamatorios no Esteroideos/farmacología , Embrión no Mamífero
4.
Reprod Toxicol ; 123: 108499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984603

RESUMEN

Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug that has been found in recent years to cause ovarian damage. The aim of this study is to explore the molecular mechanisms of IBU damage to the ovary and drugs to combat it. We established in vivo (IBU doses of 50, 100 and 200 mg/kg-day) and in vitro (IBU concentrations of 50, 100 and 200 µM in culture medium) models of ovarian damage in mice simulating clinical doses and found that IBU not only caused ovarian damage in mice in a dose-response relationship, but also decreased estradiol (E2) and prostaglandin E2 (PGE2) levels in serum/media with increasing IBU doses. In damaged ovaries, the cyclooxygenase 2 (COX2)-PGE2 pathway is inhibited, the Hippo pathway is activated, circPVT1 is decreased, and miR-149 is elevated. TT-10 is an activator of YES-associated protein (YAP)-transcriptional enhancer factor domain activity. Then, 100 µM IBU-induced ovarian damage model was selected for YAP activation (Hippo pathway inhibition) experiment, and TT-10 was found to interfere with IBU-induced ovarian damage and increase E2 level in the medium, and 10 µM of TT-10 had the best protective effect. TT-10 also inhibited the Hippo pathway, activated the COX2-PGE2 pathway, elevated circPVT1 expression, and decreased miR-149 expression in the ovary. It has been hypothesized that clinical doses of IBU damage mouse ovaries by inhibiting COX2-PGE2 and activating the Hippo pathway, whereas TT-10 protects the ovaries through the inverse regulation of these two pathways.


Asunto(s)
Ibuprofeno , MicroARNs , Femenino , Ratones , Animales , Ibuprofeno/toxicidad , Dinoprostona/metabolismo , Ciclooxigenasa 2/metabolismo , Vía de Señalización Hippo , MicroARNs/genética
5.
Chemosphere ; 344: 140373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806324

RESUMEN

The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 µg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 µg/L for both ibuprofen and irgarol and 500 µg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 µg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 µg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Ibuprofeno/toxicidad , Ecosistema , Triazinas/análisis , Larva , Contaminantes Químicos del Agua/análisis , Embrión no Mamífero
6.
Environ Res ; 239(Pt 1): 117251, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37783323

RESUMEN

To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.


Asunto(s)
Desnitrificación , Ibuprofeno , Ibuprofeno/toxicidad , Reactores Biológicos , Nitratos , Azufre/química , Nitrógeno , Bacterias/metabolismo
7.
Chemosphere ; 340: 139895, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37604345

RESUMEN

Ibuprofen (IBP) is an anti-inflammatory drug found in aquatic environments, potentially toxic for the biota. We exposed the test fish C. decemmaculatus to two environmentally relevant concentrations (50 and 100 µg IBP/L) for 4 and 12 d and evaluated the effect on some biomarkers. Micronucleus test, nuclear abnormality test and comet assay indicated cyto-genotoxicity at both concentrations and exposure periods. Oxidative stress and biochemical biomarkers were not affected, excepting muscle AChE activity for 4 d. Muscle metabolic biomarkers showed significant decrease in ETS, lipid and protein content, while carbohydrate content was not affected. The CEA index increased at the lower IBP concentration for 4 and 12 d, possibly due to changes in body energy reserves. A full-factorial GLM performed to assess the effects of IBP and exposure times showed that the metabolic and genotoxicity biomarkers were the most sensitive to IBP toxicity, mainly at 50 µg IBP/L for 4 d.


Asunto(s)
Ciprinodontiformes , Ibuprofeno , Animales , Ibuprofeno/toxicidad , Biota , Ensayo Cometa , Daño del ADN
8.
Chemosphere ; 338: 139521, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37482319

RESUMEN

Aquatic species are continuously exposed to pharmaceuticals and changeable water conditions simultaneously, which can induce changes in the toxicity of pollutants. Cyanobacterium are an organism for which less ecotoxicological tests have been performed compared to green algae. In this study, we decided to check how selected non-steroidal anti-inflammatory drugs (NSAID) affect the grow of Synechocystis salina, picocyanobacterium isolated from the Baltic Sea, with salinity as potential modulator of toxicity. S. salina was exposed to diclofenac (DCF), ibuprofen (IBF) and naproxen (NPX) (nominal 100 mg L-1) in BG11 medium and sea salt supplemented BG11 medium (38 PSU) over 96 h in continuous light at 23 °C. No acute toxicity was found in both tested salinity levels. The comparable grow rate in exposed culture compared to control culture over 4 days indicate lack of stress for several generations which need to be overcome with substantial energy consumption. S. salina was found to be halotolerant and can be species for ecotoxicology test where salinity in an additional stressor. Furthermore, resistant of S. salina to target NSAIDs provide a competitive advantage over other phytoplankton species.


Asunto(s)
Ibuprofeno , Contaminantes Químicos del Agua , Ibuprofeno/toxicidad , Naproxeno/toxicidad , Diclofenaco/toxicidad , Salinidad , Antiinflamatorios no Esteroideos/toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
Toxicol Lett ; 383: 215-226, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37453669

RESUMEN

Ibuprofen (IBU) is an emerging environmental contaminant that, in high doses, can damage reproductive organs in humans and other mammals. Recently, its effects on the uterus have been investigated. It is known that the COX2-PGE2 pathway and Yes-associated protein (YAP) are involved in female reproductive organ development and form a COX2-PGE2-EP2-Gas-ß-catenin-YAP-COX2 positive feedback loop, in addition, TT-10, a pharmacological product, has been found to increase YAP. In this study, IBU was orally administrated to female mice for 7 d at doses of 0, 50, 100, and 200 mg/kg·bw/day (control, low, medium, and high doses, respectively). In addition, 0, 50, 100, and 200 µmol/L IBU was added in vitro to cultured uterine cells for 7 d at control, low, medium, and high doses, respectively; then, 0, 5, 10, and 20 µmol/L TT-10 were given to the in vitro uterine culture containing 100 µmol/L IBU to observe the effect of YAP activation. The results showed that medium and high doses of IBU inhibited the COX2-PGE2 pathway, decreasing YAP and increasing pYAP, leading to reduced circPVT1, elevated miR-149, and increased apoptosis, ultimately damaging the uterus. Conversely, 10 µmol/L TT-10 maximally enhanced YAP, which regulated COX2-PGE2 pathway activation, increased circPVT1, and decreased miR-149, and promoted cell proliferation, preventing uterine damage. This suggests that IBU may cause uterine damage by inhibiting the COX2-PGE2 pathway and YAP, and that appropriate doses of TT-10 may repair this damage by elevating YAP and stimulating COX2 via the feedback loop.


Asunto(s)
Dinoprostona , Ibuprofeno , MicroARNs , Enfermedades Uterinas , Animales , Femenino , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Ibuprofeno/toxicidad , Mamíferos/metabolismo , Enfermedades Uterinas/inducido químicamente , Enfermedades Uterinas/metabolismo , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico
10.
Environ Sci Pollut Res Int ; 30(30): 75281-75299, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37213015

RESUMEN

In the aim to determine neurotoxicity, new methods are being validated, including tests and test batteries comprising in vitro and in vivo approaches. Alternative test models such as the zebrafish (Danio rerio) embryo have received increasing attention, with minor modifications of the fish embryo toxicity test (FET; OECD TG 236) as a tool to assess behavioral endpoints related to neurotoxicity during early developmental stages. The spontaneous tail movement assay, also known as coiling assay, assesses the development of random movement into complex behavioral patterns and has proven sensitive to acetylcholine esterase inhibitors at sublethal concentrations. The present study explored the sensitivity of the assay to neurotoxicants with other modes of action (MoAs). Here, five compounds with diverse MoAs were tested at sublethal concentrations: acrylamide, carbaryl, hexachlorophene, ibuprofen, and rotenone. While carbaryl, hexachlorophene, and rotenone consistently induced severe behavioral alterations by ~ 30 h post fertilization (hpf), acrylamide and ibuprofen expressed time- and/or concentration-dependent effects. At 37-38 hpf, additional observations revealed behavioral changes during dark phases with a strict concentration-dependency. The study documented the applicability of the coiling assay to MoA-dependent behavioral alterations at sublethal concentrations, underlining its potential as a component of a neurotoxicity test battery.


Asunto(s)
Síndromes de Neurotoxicidad , Contaminantes Químicos del Agua , Animales , Pez Cebra , Rotenona , Carbaril , Hexaclorofeno , Ibuprofeno/toxicidad , Acrilamidas , Embrión no Mamífero
11.
Chemosphere ; 329: 138681, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059198

RESUMEN

Ibuprofen (IBP) is a typical nonsteroidal anti-inflammatory drug with a wide range of applications, large dosages, and environmental durability. Therefore, ultraviolet-activated sodium percarbonate (UV/SPC) technology was developed for IBP degradation. The results showed that IBP could be efficiently removed using UV/SPC. The IBP degradation was enhanced with prolonged UV irradiation time, with the decreasing IBP concentration and the increasing SPC dosage. The UV/SPC degradation of IBP was highly adaptable to pH ranging from 4.05 to 8.03. The degradation rate of IBP reached 100% within 30 min. The optimal experimental conditions for IBP degradation were further optimized using response surface methodology. IBP degradation rate reached 97.3% under the optimal experimental conditions: 5 µM of IBP, 40 µM of SPC, 7.60 pH, and UV irradiation for 20 min. Humic acid, fulvic acid, inorganic anions, and natural water matrix inhibited the IBP degradation to varying degrees. Scavenging experiments of reactive oxygen species indicated that hydroxyl radical played a major role in the UV/SPC degradation of IBP, while carbonate radical played a minor role. Six IBP degradation intermediates were detected, and hydroxylation and decarboxylation were proposed as the primary degradation pathways. An acute toxicity test, based on the inhibition of luminescence in Vibrio fischeri, indicated that the toxicity of IBP during UV/SPC degradation decreased by 11%. An electrical energy per order value of 3.57 kWh m-3 indicated that the UV/SPC process was cost-effective in IBP decomposition. These results provide new insights into the degradation performance and mechanisms of the UV/SPC process, which can potentially be used for practical water treatment in the future.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Radical Hidroxilo , Ibuprofeno/toxicidad , Carbonatos , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua/toxicidad , Oxidación-Reducción , Rayos Ultravioleta
12.
Aquat Toxicol ; 257: 106455, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36841069

RESUMEN

Pharmaceutical active compounds (PhACs) are emerging contaminants that pose a growing concern due to their ubiquitous presence and harmful impact on aquatic ecosystems. Among PhACs, the anti-inflammatory ibuprofen (IBU) and the antibiotic oxytetracycline (OTC) are two of the most used compounds whose presence has been reported in different aquatic environments worldwide. However, there is still scarce information about the cellular and molecular alterations provoked by IBU and OTC on aquatic photosynthetic microorganisms as microalgae, even more if we refer to their potential combined toxicity. To test the cyto- and genotoxicity provoked by IBU, OTC and their binary combination on Chlamydomonas reinhardtii, a flow cytometric panel was performed after 24 h of single and co-exposure to both contaminants. Assayed parameters were cell vitality, metabolic activity, intracellular ROS levels, and other programmed cell death (PCD)-related biomarkers as cytoplasmic and mitochondrial membrane potentials and caspase-like and endonuclease activities. In addition, a nuclear DNA fragmentation analysis by comet assay was carried out. For most of the parameters analysed (vitality, metabolic activity, cytoplasmic and mitochondrial membrane potentials, and DNA fragmentation) the most severe damages were observed in the cultures exposed to the binary mixture (IBU+OTC), showing a joint cyto- and genotoxicity effect. Both PhACs and their mixture caused a remarkable decrease in cell proliferation and metabolic activity and markedly increased intracellular ROS levels, parallel to a noticeable depolarization of cytoplasmic and mitochondrial membranes. Moreover, a strong increase in both caspase and endonuclease activities as well as a PCD-related loss of nuclear DNA integrity was observed in all treatments. Results analysis showed that the PhACs caused cell death on this non-target organism, involving mitochondrial membrane depolarization, enhanced ROS production and activation of PCD process. Thus, PCD should be an applicable toxicological target for unraveling the harmful effects of co-exposure to PhACs in aquatic organisms as microalgae.


Asunto(s)
Chlamydomonas reinhardtii , Oxitetraciclina , Contaminantes Químicos del Agua , Oxitetraciclina/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Chlamydomonas reinhardtii/metabolismo , Ibuprofeno/toxicidad , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Apoptosis , Caspasas/metabolismo , Biomarcadores/metabolismo , Endonucleasas/metabolismo
13.
Curr Drug Targets ; 24(4): 361-370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36600619

RESUMEN

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used pharmaceuticals and tons of kilos are produced annually. Ibuprofen is one of the core medicines of non-steroidal anti-inflammatory drug and is primarily used for reduced pain, fever and tissue inflammation. It is also available for the treatment of osteoarthritis, rheumatoid arthritis, tendonitis, etc. It is still one of the most prescribed non-steroidal anti-inflammatory drugs in contemporary times. Although ibuprofen is a drug that has been used for years, it is also known to have various serious toxic effects. OBJECTIVE: In this review, we aimed to clarify toxic and genotoxic effects of Ibuprofen by analyzing major journal indexes. METHODS: The search was concentrated on the Web of Science, PubMed, Science Direct, Scopus, EBSCO Host, and Google Scholar databases, including the keyword combinations "genotoxicity", "toxicity", "teratogenicity", "side effects", "Ibuprofen". RESULTS: In the search procedure, a total number of 11738 studies about the topic were reviewed. Consequently, 42 studies were classified as appropriate according to the inclusion criteria and were therefore included in the review. The results presented and discussed in this review indicate that Ibuprofen might represent a toxic, genotoxic and teratogenic risk for non-target, freshwater invertebrates, vertebrates and toxic for human especially in overdose or misuse situation. CONCLUSION: Ibuprofen generally was found to be toxic, mutagenic, teratogenic and genotoxic agent in various organisms. In human cases mostly overdose or misuse was found to be toxic. However acute toxicity was also reported in some human clinical studies. More detailed genotoxicity, teratogenicity and especially carcinogenic potential should be investigated to reach full decision of its safety.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Animales , Humanos , Ibuprofeno/toxicidad , Antiinflamatorios no Esteroideos/toxicidad , Artritis Reumatoide/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Daño del ADN
14.
Fish Physiol Biochem ; 49(5): 787-799, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36717424

RESUMEN

Globally, the prevalence and pollution of pharmaceutical drugs in aquatic environments have been steadily increasing. This study sought to evaluate the effects of 14 days of exposure to environmental-relevant doses (ibuprofen 0.5, 5, and 50 µg/L, and carbamazepine 0.005, 1, and 10 µg/L) of the nonsteroidal anti-inflammatory drugs ibuprofen and carbamazepine in the freshwater fish Oreochromis mossambicus. The results showed a significant (P < 0.05) decrease in O. mossambicus superoxide dismutase, catalase, biotransformation enzymes, glutathione-s-transferase, glutathione peroxidase, oxidative stress lipid peroxidation, protein carbonyl activity, cellular damage metallothionine, reduced glutathione, immunological activities, and respiratory burst activity. Consequently, the acquired data revealed that O. mossambicus treated with ibuprofen and carbamazepine shows more significant alterations in metabolic depression, biochemical parameters, and oxidative stress. In addition, increased neurotoxic effects were observed in ibuprofen and carbamazepine treated O. mossambicus.


Asunto(s)
Tilapia , Animales , Tilapia/metabolismo , Antioxidantes/metabolismo , Ibuprofeno/toxicidad , Ibuprofeno/metabolismo , Estrés Oxidativo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido , Carbamazepina/toxicidad , Carbamazepina/metabolismo
15.
Acta toxicol. argent ; 30(3): 156-162, dic. 2022.
Artículo en Portugués | LILACS | ID: biblio-1447116

RESUMEN

Resumo Os contaminantes emergentes (CE), sao substáncias químicas (fármacos, produtos de higiene pessoal, drogas ilícitas entre outros) que estao presentes no ambiente como consequéncia da atividade antrópica e a falta de adequagao dos processos convencionais de tratamento de água e esgoto que nao logram remové-los eficientemente. Na atualidade o uso disseminado e desmedido de fármacos no tratamento da pandemia de COVID 19 tem aumentado a preocupagao dos impactos decorrentes da contaminagao por fármacos em ambientes aquáticos, consequéncia da liberagao no ambiente de grandes quantidades destes compostos. Assim, estudos de ecotoxicidade aquática sao fundamentais para avaliar o efeito de substáncias químicas tóxicas nas análises de impactos ambientais, sobretudo quando utilizado organismos representativos da biota aquática local, garantindo assim, maior confiabilidade e representatividade dos resultados obtidos. Diante disto, o objetivo deste trabalho foi validar a utili-dade do Dendrocephalus brasiliensis (Branchoneta) espécie autóctone do nordeste brasileiro como organismo teste para estudos de ecotoxicidade de fármacos utilizados no tratamento da COVID 19. Testes ecotoxicológicos utilizando D. brasiliensis foram realizados utilizando solugóes dos fármacos paracetamol, hidroxicloroquina, ivermectina e ibuprofeno, em concentragóes de 0,0025 até 600,0 mg/L seguindo os protocolos descritos pela Associagao Brasileira para Normas Técnicas (ABNT) para toxicidade aguda, protocolo padronizado para a realizagao do ensaio ecotoxicológicos utilizando como organismo teste a Daphnia magna, o qual foi empregada como referencia para comparar o padrao de resposta. Com os resultados obtidos foi realizado o cálculo da CL50-48h considerando como desfecho a morte dos organismos, ivermectina (< 0,0025 - < 0,0025), hidroxicloroquina (3,70 - 14,09), ibuprofeno (12,25 - 107,52), paracetamol (8,53 - 9,61), resultados CL50-48h mg/l D. magna e D. brasiliensis respectivamente. Os resultados obtidos mostraram um padrao diferenciado dependente da espécie e do fármaco analisado observando-se uma menor sensibilidade frente a exposigao da D. brasiliensis em comparagao a D. magna demonstrando a valia da D. brasiliensis como organismo teste. Pesquisas futuras dirigidas a analisar as potenciais interagóes destes fármacos em concentragóes ambientais reais sao necessárias para completar a validagao e ter uma aproximagao dos eventos acometidos em ambientes impactados por estes fármacos.


Abstract Emerging contaminants (EC) are chemical substances (pharmaceuticals, personal hygiene products, illicit drugs, among others) that are present in the environment because of human activity and the lack of adequacy of conventional water and sewage treatment processes that do not manage to remove them efficiently. Currently, the widespread and excessive use of drugs in the treatment of the COVID 19 pandemic has increased concern about the impacts resulting from contamination by drugs in aquatic environments, because of the release into the environment of large amounts of these compounds. Thus, aquatic ecotoxicity studies are essential to evaluate the effect of toxic chemical substances in the analysis of environmental impacts, especially when using representative organisms of the local aquatic biota, thus ensuring greater reliability and representativeness of the results obtained. In view of this, the objective of this work was to validate the usefulness of Dendrocephalus brasiliensis (Branchoneta), an autoch-thonous species from northeastern Brazil as a test organism for ecotoxicity studies of drugs used in the treatment of COVID 19. Ecotoxicological tests using D. brasiliensis were performed using drug solutions paracetamol, hydroxychloroquine, ivermectin and ibuprofen, in concentrations from 0.0025 to 600.0 mg/L following the protocols described by the Brazilian Association for Technical Norms (ABNT) for acute toxicity, standardized protocol for carrying out the ecotoxicological assay using as a test organism Daphnia magna, which was used as a reference to compare the response pattern. Based on the results obtained, the LC50-48h was calculated considering the death of organisms, ivermectin (< 0.0025 - < 0.0025), hydroxychloroquine (3.70 - 14.09), ibuprofen (12.25 - 107.52), paracetamol (8.53 - 9.61), results LC50-48h mg/l D. magna and D. brasiliensis respectively. The results obtained showed a differenti-ated pattern depending on the species and the analyzed drug, observing a lower sensitivity to exposure of D. brasiliensis compared to D. magna, demonstrating the value of D. brasiliensis as a test organism. Future research aimed at analyzing the potential interac-tions of these drugs at real environmental concentrations is necessary to complete the validation and to have an approximation of the events affected in environments impacted by these drugs.


Asunto(s)
Contaminación Química del Agua , Ibuprofeno/toxicidad , Pruebas de Toxicidad/métodos , Acetaminofén/toxicidad , Anostraca
16.
Ecotoxicology ; 31(9): 1369-1381, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36208366

RESUMEN

Even though bivalve molluscs are recognized as bioindicators of freshwater quality, their responses to multiple stressors are unpredictable. This study aims to elucidate the inter-population peculiarities of the effect in the sub-chronic environmentally relevant exposure to novel contaminants. The specimens of Unio tumidus from reference (Pr) and contaminated (Ct) areas were treated with ibuprofen (IBU, 0.8 µg L-1), microplastic (MP, 1.0 mg L-1, size 0.1-0.5 mm), or their combination (Mix) for 14 days. Untreated mussels (PrC- and CtC-groups) served as controls. The PrC-group had higher levels of antioxidants Mn-SOD, Cu,Zn-SOD, catalase, and cholinesterase (AChE) as well as lesser levels of oxidative lesions (TBARS and protein carbonyls) in digestive glands, indicating lower environmental impact than in the CtC-group. However, lysosomal stability was similar in both control groups. Among antioxidants, Mn-SOD activity was affected most prominently, increasing in all exposed Ct-groups. TBARS level was increased only in PrMP-group compared to responsive control. IBU and Mix enhanced protein carbonyl concentration in the Pr-groups, and decreased it in the Ct-groups. AChE was induced in the CtIBU- and PrMix-groups, and lysosomal integrity increased in the CtIBU and CtMix-groups. Discriminant analyses indicated lesser differences between Pr-groups, demonstrating lower cumulative stress compared to Ct-groups. Generally, the most remarkable response was revealed in the CtIBU-group, and distortion of individual effects was established in combined exposures. The qualification of stress-neutral and stress-positive populations was proposed for Pr- and Ct-populations correspondingly. Inter-site peculiarities must be taken into consideration when the environmental impact of MP and pharmaceuticals is evaluated.


Asunto(s)
Bivalvos , Unio , Contaminantes Químicos del Agua , Animales , Unio/metabolismo , Microplásticos , Ibuprofeno/toxicidad , Plásticos/metabolismo , Antioxidantes/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Bivalvos/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo
17.
Bull Environ Contam Toxicol ; 109(6): 1010-1017, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36074127

RESUMEN

Pharmaceutical pollution of water bodies is among the top-notch environmental health risks all over the world. The aim of the present study was to investigate the effects of two common pharmaceuticals namely ibuprofen and gemfibrozil on zebrafish at environmentally relevant concentrations. In zebrafish liver, gemfibrozil caused a decrease in glutathione and glutathione transferase and an increase in catalase but had no effect on lipid peroxidation and protein carbonylation. Ibuprofen altered the antioxidant defense system, promoted protein carbonylation in zebrafish liver, and increased vitellogenin-like protein in the blood. Ibuprofen and particularly gemfibrozil induced lysosomes biogenesis. Lactate dehydrogenase in the blood was also found to be higher in the studied groups. Studied pharmaceuticals did not affect complex II of the electron respiratory chain. Ibuprofen affects zebrafish health status more profoundly than gemfibrozil. Our results showed that pharmaceuticals even in low, environmentally realistic concentrations, induced profound changes in the stress-responsive systems of zebrafish.


Asunto(s)
Gemfibrozilo , Contaminantes Químicos del Agua , Animales , Gemfibrozilo/toxicidad , Gemfibrozilo/metabolismo , Pez Cebra/metabolismo , Ibuprofeno/toxicidad , Estrés Oxidativo , Contaminantes Químicos del Agua/metabolismo , Preparaciones Farmacéuticas/metabolismo
18.
Int J Biol Macromol ; 221: 547-557, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36089084

RESUMEN

Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug released into water bodies causing toxic biological effects on living organisms. The current study aims to eliminate IBU from aqueous solutions by a novel carboxymethylcellulose/polypyrrole (CMC/PPY) composite with high removal efficiency. Pyrrole was polymerized to polypyrrole whose average size was about 20 nm on the CMC surface. The maximum removal percentage of IBU by CMC/PPY composite was optimized at initial concentration 10 mg/L, dosage 0.02 g, and pH 7 with adsorption capacity of 72.30 (mg/g) and removal of 83.17 %. IBU adsorption onto CMC/PPY theoretically fits into the Langmuir isotherm and Elovich-kinetic models. Fish and Phytotoxicity assessment were performed with zebrafish and seeds of Vigna mungo (VM) and Vigna radiata (VR). The toxicity study reveals that before adsorption, IBU shows high toxicity towards the zebrafish mortality (33 %), growth inhibition (58.52 % for VM, 60.84 % for VR), and germination (86.66 % for VM and 90 % for VR). As CMC/PPY adsorbs IBU, toxicity drastically decreases. Before adsorption, LC50 was 233.02 mg/L. After adsorption, the LC50 increases to 2325.07 mg/L as IBU molecules get adsorbed by CMC/PPY. These findings show the feasibility of preparing CMC/PPY composite to effectively remove pharmaceutical pollutant IBU from aqueous solutions with their toxicological assessment.


Asunto(s)
Ibuprofeno , Contaminantes Químicos del Agua , Animales , Ibuprofeno/toxicidad , Ibuprofeno/química , Polímeros/toxicidad , Carboximetilcelulosa de Sodio/toxicidad , Carboximetilcelulosa de Sodio/química , Pirroles/toxicidad , Pez Cebra , Contaminantes Químicos del Agua/química , Adsorción , Agua/química , Preparaciones Farmacéuticas
19.
Sci Total Environ ; 849: 157921, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35952865

RESUMEN

One of the main contributors to pharmaceutical pollution of surface waters are non-steroidal anti-inflammatory drugs (NSAIDs) that contaminate the food chain and affect non-target water species. As there are not many studies focusing on toxic effects of NSAIDs on freshwater fish species and specially effects after dietary exposure, we selected rainbow trout (Oncorhynchus mykiss) as the ideal model to examine the impact of two NSAIDs - diclofenac (DCF) and ibuprofen (IBP). The aim of our study was to test toxicity of environmentally relevant concentrations of these drugs together with exposure doses of 100× higher, including their mixture; and to deepen knowledge about the mechanism of toxicity of these drugs. This study revealed kidneys as the most affected organ with hyalinosis, an increase in oxidative stress markers, and changes in gene expression of heat shock protein 70 to be signs of renal toxicity. Furthermore, hepatotoxicity was confirmed by histopathological analysis (i.e. dystrophy, congestion, and inflammatory cell increase), change in biochemical markers, increase in heat shock protein 70 mRNA, and by oxidative stress analysis. The gills were locally deformed and showed signs of inflammatory processes and necrotic areas. Given the increase in oxidative stress markers and heat shock protein 70 mRNA, severe impairment of oxygen transport may be one of the toxic pathways of NSAIDs. Regarding the microbiota, an overgrowth of Gram-positive species was detected; in particular, significant dysbiosis in the Fusobacteria/Firmicutes ratio was observed. In conclusion, the changes observed after dietary exposure to NSAIDs can influence the organism homeostasis, induce ROS production, potentiate inflammations, and cause gut dysbiosis. Even the environmentally relevant concentration of NSAIDs pose a risk to the aquatic ecosystem as it changed O. mykiss health parameters and we assume that the toxicity of NSAIDs manifests itself at the level of mitochondria and proteins.


Asunto(s)
Microbioma Gastrointestinal , Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Antiinflamatorios no Esteroideos/metabolismo , Biomarcadores/metabolismo , Diclofenaco/metabolismo , Brotes de Enfermedades , Disbiosis , Ecosistema , Proteínas HSP70 de Choque Térmico/metabolismo , Ibuprofeno/metabolismo , Ibuprofeno/toxicidad , Inflamación/inducido químicamente , Oncorhynchus mykiss/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Preparaciones Farmacéuticas/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/metabolismo
20.
Sci Total Environ ; 848: 157783, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926623

RESUMEN

Ibuprofen is a nonsteroidal anti-inflammatory drug that can be found in freshwater ecosystems. Due to its current presence in aquatic ecosystems, this pharmaceutical has aroused concerns about its impact on aquatic biota. As a result, ibuprofen is the one of the most frequently studied pharmaceuticals. However, most of these studies focus on short-term observations of biomarkers and physiological endpoints. This paper presents the outcomes of whole-life-cycle observations and six-month observations of the population dynamics of Daphnia magna reared under the influence of 1 µg/L, 2 µg/L and 4 µg/L of ibuprofen. Individuals reared under the influence of ibuprofen grew slowly, matured later and lived longer. Moreover, they displayed a higher reproduction rate and carried smaller broods but delivered larger neonates. Ibuprofen in concentrations of 1 µg/L and 2 µg/L had the most significant effect on the above traits. The observed impact of ibuprofen at the individual level did not transfer to population size and dynamics. All the populations represented a typical boom and bust cycle with restricted reproduction during the periods of highest population size. This is the first study to explore the linkage between the life histories of aquatic invertebrates and the actual response of their populations to the occurrence of ibuprofen in the environment. The study emphasizes the need to apply the protocol of whole life-cycle observation in tandem with population scrutiny, since such a protocol can reveal the virtual responses of aquatic biota to the presence of chemicals in the environment.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Antiinflamatorios no Esteroideos/farmacología , Ecosistema , Ibuprofeno/toxicidad , Preparaciones Farmacéuticas , Reproducción , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...