Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Cardiol ; 18(5): 349-367, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33340010

RESUMEN

The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.


Asunto(s)
Arritmias Cardíacas , Electrofisiología Cardíaca , Optogenética , Imagen de Colorante Sensible al Voltaje , Animales , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Electrofisiología Cardíaca/métodos , Electrofisiología Cardíaca/tendencias , Técnicas de Imagen Cardíaca/instrumentación , Técnicas de Imagen Cardíaca/métodos , Técnicas de Imagen Cardíaca/tendencias , Modelos Animales de Enfermedad , Cardiopatías/diagnóstico por imagen , Cardiopatías/fisiopatología , Cardiopatías/terapia , Humanos , Opsinas/farmacología , Opsinas/fisiología , Imagen Óptica/instrumentación , Imagen Óptica/tendencias , Optogenética/instrumentación , Optogenética/métodos , Optogenética/tendencias , Medicina de Precisión , Investigación Biomédica Traslacional , Imagen de Colorante Sensible al Voltaje/instrumentación , Imagen de Colorante Sensible al Voltaje/métodos , Imagen de Colorante Sensible al Voltaje/tendencias
2.
Nat Rev Neurosci ; 20(12): 719-727, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31705060

RESUMEN

A central goal in neuroscience is to determine how the brain's neuronal circuits generate perception, cognition and emotions and how these lead to appropriate behavioural actions. A methodological platform based on genetically encoded voltage indicators (GEVIs) that enables the monitoring of large-scale circuit dynamics has brought us closer to this ambitious goal. This Review provides an update on the current state of the art and the prospects of emerging optical GEVI imaging technologies.


Asunto(s)
Tecnología Biomédica/tendencias , Transferencia Resonante de Energía de Fluorescencia/tendencias , Neuronas/química , Optogenética/tendencias , Imagen de Colorante Sensible al Voltaje/tendencias , Animales , Tecnología Biomédica/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Neuronas/fisiología , Optogenética/métodos , Imagen de Colorante Sensible al Voltaje/métodos
3.
Curr Opin Neurobiol ; 50: 146-153, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29501950

RESUMEN

In order to understand how brain activity produces adaptive behavior we need large-scale, high-resolution recordings of neuronal activity. Fluorescent genetically encoded voltage indicators (GEVIs) offer the potential for these recordings to be performed chronically from targeted cells in a minimally invasive manner. As the number of GEVIs successfully tested for in vivo use grows, so has the number of open questions regarding the improvements that would facilitate broad adoption of this technology that surpasses mere 'proof of principle' studies. Our aim in this review is not to provide a status check of the current state of the field, as excellent publications covering this topic already exist. Here, we discuss specific questions regarding GEVI development and application that we think are crucial in achieving this goal.


Asunto(s)
Encéfalo/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia/tendencias , Proteínas Luminiscentes/genética , Imagen de Colorante Sensible al Voltaje/tendencias , Animales , Encéfalo/diagnóstico por imagen , Humanos , Proteínas Luminiscentes/metabolismo , Imagen de Colorante Sensible al Voltaje/métodos
4.
Herzschrittmacherther Elektrophysiol ; 29(1): 14-23, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29242981

RESUMEN

The development and successful implementation of cutting-edge imaging technologies to visualise cardiac anatomy and function is a key component of effective diagnostic efforts in cardiology. Here, we describe a number of recent exciting advances in the field of cardiology spanning from macro- to micro- to nano-scales of observation, including magnetic resonance imaging, computed tomography, optical mapping, photoacoustic imaging, and electron tomography. The methodologies discussed are currently making the transition from scientific research to routine clinical use, albeit at different paces. We discuss the most likely trajectory of this transition into clinical research and standard diagnostics, and highlight the key challenges and opportunities associated with each of the methodologies.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Corazón/diagnóstico por imagen , Tomografía con Microscopio Electrónico/métodos , Tomografía con Microscopio Electrónico/tendencias , Predicción , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/tendencias , Nanotecnología/métodos , Nanotecnología/tendencias , Técnicas Fotoacústicas/métodos , Técnicas Fotoacústicas/tendencias , Investigación/tendencias , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/tendencias , Imagen de Colorante Sensible al Voltaje/métodos , Imagen de Colorante Sensible al Voltaje/tendencias
5.
J Neurosci ; 36(39): 9977-89, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27683896

RESUMEN

UNLABELLED: A longstanding goal in neuroscience is to understand how spatiotemporal patterns of neuronal electrical activity underlie brain function, from sensory representations to decision making. An emerging technology for monitoring electrical dynamics, voltage imaging using genetically encoded voltage indicators (GEVIs), couples the power of genetics with the advantages of light. Here, we review the properties that determine indicator performance and applicability, discussing both recent progress and technical limitations. We then consider GEVI applications, highlighting studies that have already deployed GEVIs for biological discovery. We also examine which classes of biological questions GEVIs are primed to address and which ones are beyond their current capabilities. As GEVIs are further developed, we anticipate that they will become more broadly used by the neuroscience community to eavesdrop on brain activity with unprecedented spatiotemporal resolution. SIGNIFICANCE STATEMENT: Genetically encoded voltage indicators are engineered light-emitting protein sensors that typically report neuronal voltage dynamics as changes in brightness. In this review, we systematically discuss the current state of this emerging method, considering both its advantages and limitations for imaging neural activity. We also present recent applications of this technology and discuss what is feasible now and what we anticipate will become possible with future indicator development. This review will inform neuroscientists of recent progress in the field and help potential users critically evaluate the suitability of genetically encoded voltage indicator imaging to answer their specific biological questions.


Asunto(s)
Potenciales de Acción/fisiología , Transferencia Resonante de Energía de Fluorescencia/tendencias , Proteínas Luminiscentes/genética , Potenciales de la Membrana/fisiología , Optogenética/tendencias , Imagen de Colorante Sensible al Voltaje/tendencias , Animales , Mapeo Encefálico/métodos , Humanos , Evaluación de la Tecnología Biomédica
6.
Biotechniques ; 60(6): 268-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27286802
7.
Circ Res ; 110(4): 609-23, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22343556

RESUMEN

Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well-documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here, we review technological and scientific developments during the past several years and look toward the future. First, we explore key components of a modern optical mapping set-up, focusing on: (1) new camera technologies; (2) powerful light-emitting-diodes (from ultraviolet to red) for illumination; (3) improved optical filter technology; (4) new synthetic and optogenetic fluorescent probes; (5) optical mapping with motion and contraction; (6) new multiparametric optical mapping techniques; and (7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria, and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances.


Asunto(s)
Señalización del Calcio , Sistema de Conducción Cardíaco/metabolismo , Cardiopatías/metabolismo , Miocardio/metabolismo , Imagen de Colorante Sensible al Voltaje , Potenciales de Acción , Animales , Diseño de Equipo , Colorantes Fluorescentes/química , Sistema de Conducción Cardíaco/fisiopatología , Cardiopatías/diagnóstico , Cardiopatías/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Miocitos Cardíacos/metabolismo , Factores de Tiempo , Imagen de Colorante Sensible al Voltaje/instrumentación , Imagen de Colorante Sensible al Voltaje/métodos , Imagen de Colorante Sensible al Voltaje/tendencias
9.
Curr Opin Neurobiol ; 20(5): 610-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20691581

RESUMEN

The discovery of the light-gated cation channel Channelrhodopsin-2 (ChR2) and the use of the rediscovered light-driven Cl-pump halorhodopsin (HR) as optogenetic tools--genetically encoded switches that enable neurons to be turned on or off with bursts of light--refines the functional study of neurons in larger networks. Cell-specific expression allows a fast optical scanning approach to determine neuronal crosstalk following plasticity at the single synapse level or long-range projections in locomotion and somatosensory networks. Both rhodopsins proved to work functionally and could evoke behavioral responses in lower model organisms, reinstall rudimentary visual perception in blind mice and were set in a biomedical context with the investigation of neurodegenerative diseases.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Rodopsinas Microbianas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Imagen de Colorante Sensible al Voltaje/tendencias , Animales , Modelos Animales de Enfermedad , Humanos , Red Nerviosa/química , Red Nerviosa/metabolismo , Neuronas/química , Neuronas/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...