Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.598
Filtrar
1.
Nat Commun ; 15(1): 3918, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724524

RESUMEN

Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.


Asunto(s)
Hibridación Fluorescente in Situ , Células Madre Embrionarias de Ratones , ARN Mensajero , Animales , Hibridación Fluorescente in Situ/métodos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Perfilación de la Expresión Génica/métodos , Diferenciación Celular
2.
Methods Mol Biol ; 2800: 203-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709486

RESUMEN

Cell tracking is an essential step in extracting cellular signals from moving cells, which is vital for understanding the mechanisms underlying various biological functions and processes, particularly in organs such as the brain and heart. However, cells in living organisms often exhibit extensive and complex movements caused by organ deformation and whole-body motion. These movements pose a challenge in obtaining high-quality time-lapse cell images and tracking the intricate cell movements in the captured images. Recent advances in deep learning techniques provide powerful tools for detecting cells in low-quality images with densely packed cell populations, as well as estimating cell positions for cells undergoing large nonrigid movements. This chapter introduces the challenges of cell tracking in deforming organs and moving animals, outlines the solutions to these challenges, and presents a detailed protocol for data preparation, as well as for performing cell segmentation and tracking using the latest version of 3DeeCellTracker. This protocol is expected to enable researchers to gain deeper insights into organ dynamics and biological processes.


Asunto(s)
Rastreo Celular , Aprendizaje Profundo , Animales , Rastreo Celular/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento Celular , Encéfalo/citología , Imagen de Lapso de Tiempo/métodos
3.
Nat Commun ; 15(1): 3590, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678033

RESUMEN

Predatory bacteria feed upon other bacteria in various environments. Bdellovibrio exovorus is an obligate epibiotic predator that attaches on the prey cell surface, where it grows and proliferates. Although the mechanisms allowing feeding through the prey cell envelope are unknown, it has been proposed that the prey's proteinaceous S-layer may act as a defensive structure against predation. Here, we use time-lapse and cryo-electron microscopy to image the lifecycle of B. exovorus feeding on Caulobacter crescentus. We show that B. exovorus proliferates by non-binary division, primarily generating three daughter cells. Moreover, the predator feeds on C. crescentus regardless of the presence of an S-layer, challenging its assumed protective role against predators. Finally, we show that apparently secure junctions are established between prey and predator outer membranes.


Asunto(s)
Bdellovibrio , Caulobacter crescentus , Membrana Celular , Microscopía por Crioelectrón , Caulobacter crescentus/fisiología , Caulobacter crescentus/ultraestructura , Bdellovibrio/fisiología , Membrana Celular/ultraestructura , Membrana Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Glicoproteínas de Membrana/metabolismo , Imagen de Lapso de Tiempo
4.
J Vis Exp ; (205)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38526071

RESUMEN

During the development of the cerebral cortex, neurons and glial cells originate in the ventricular zone lining the ventricle and migrate toward the brain surface. This process is crucial for proper brain function, and its dysregulation can result in neurodevelopmental and psychiatric disorders after birth. In fact, many genes responsible for these diseases have been found to be involved in this process, and therefore, revealing how these mutations affect cellular dynamics is important for understanding the pathogenesis of these diseases. This protocol introduces a technique for time-lapse imaging of migrating neurons and glial progenitors in brain slices obtained from mouse embryos. Cells are labeled with fluorescent proteins using in utero electroporation, which visualizes individual cells migrating from the ventricular zone with a high signal-to-noise ratio. Moreover, this in vivo gene transfer system enables us to easily perform gain-of-function or loss-of-function experiments on the given genes by co-electroporation of their expression or knockdown/knockout vectors. Using this protocol, the migratory behavior and migration speed of individual cells, information that is never obtained from fixed brains, can be analyzed.


Asunto(s)
Neuroglía , Neuronas , Humanos , Animales , Ratones , Imagen de Lapso de Tiempo/métodos , Movimiento Celular/fisiología , Neuronas/fisiología , Encéfalo , Corteza Cerebral , Electroporación/métodos
5.
J Assist Reprod Genet ; 41(4): 967-978, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38470553

RESUMEN

PURPOSE: To study the effectiveness of whole-scenario embryo identification using a self-supervised learning encoder (WISE) in in vitro fertilization (IVF) on time-lapse, cross-device, and cryo-thawed scenarios. METHODS: WISE was based on the vision transformer (ViT) architecture and masked autoencoders (MAE), a self-supervised learning (SSL) method. To train WISE, we prepared three datasets including the SSL pre-training dataset, the time-lapse identification dataset, and the cross-device identification dataset. To identify whether pairs of images were from the same embryos in different scenarios in the downstream identification tasks, embryo images including time-lapse and microscope images were first pre-processed through object detection, cropping, padding, and resizing, and then fed into WISE to get predictions. RESULTS: WISE could accurately identify embryos in the three scenarios. The accuracy was 99.89% on the time-lapse identification dataset, and 83.55% on the cross-device identification dataset. Besides, we subdivided a cryo-thawed evaluation set from the cross-device test set to have a better estimation of how WISE performs in the real-world, and it reached an accuracy of 82.22%. There were approximately 10% improvements in cross-device and cryo-thawed identification tasks after the SSL method was applied. Besides, WISE demonstrated improvements in the accuracy of 9.5%, 12%, and 18% over embryologists in the three scenarios. CONCLUSION: SSL methods can improve embryo identification accuracy even when dealing with cross-device and cryo-thawed paired images. The study is the first to apply SSL in embryo identification, and the results show the promise of WISE for future application in embryo witnessing.


Asunto(s)
Fertilización In Vitro , Imagen de Lapso de Tiempo , Humanos , Fertilización In Vitro/métodos , Femenino , Imagen de Lapso de Tiempo/métodos , Aprendizaje Automático Supervisado , Embrión de Mamíferos , Embarazo , Procesamiento de Imagen Asistido por Computador/métodos , Blastocisto/citología , Blastocisto/fisiología , Transferencia de Embrión/métodos , Criopreservación/métodos
6.
J Ovarian Res ; 17(1): 63, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491534

RESUMEN

BACKGROUND: Artificial Intelligence entails the application of computer algorithms to the huge and heterogeneous amount of morphodynamic data produced by Time-Lapse Technology. In this context, Machine Learning (ML) methods were developed in order to assist embryologists with automatized and objective predictive models able to standardize human embryo assessment. In this study, we aimed at developing a novel ML-based strategy to identify relevant patterns associated with the prediction of blastocyst development stage on day 5. METHODS: We retrospectively analysed the morphokinetics of 575 embryos obtained from 80 women who underwent IVF at our Unit. Embryo morphokinetics was registered using the Geri plus® time-lapse system. Overall, 30 clinical, morphological and morphokinetic variables related to women and embryos were recorded and combined. Some embryos reached the expanded blastocyst stage on day 5 (BL Group, n = 210), some others did not (nBL Group, n = 365). RESULTS: The novel EmbryoMLSelection framework was developed following four-steps: Feature Selection, Rules Extraction, Rules Selection and Rules Evaluation. Six rules composed by a combination of 8 variables were finally selected, and provided a predictive power described by an AUC of 0.84 and an accuracy of 81%. CONCLUSIONS: We provided herein a new feature-signature able to identify with an high performance embryos with the best developmental competence to reach the expanded blastocyst stage on day 5. Clear and clinically relevant cut-offs were identified for each considered variable, providing an objective tool for early embryo developmental assessment.


Asunto(s)
Inteligencia Artificial , Desarrollo Embrionario , Femenino , Humanos , Estudios Retrospectivos , Blastocisto , Aprendizaje Automático , Técnicas de Cultivo de Embriones/métodos , Imagen de Lapso de Tiempo/métodos
7.
PeerJ ; 12: e16994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426134

RESUMEN

Background: Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective: The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods: Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results: During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion: The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.


Asunto(s)
Hígado , Ratas , Animales , Ratas Wistar , Imagen de Lapso de Tiempo , Hígado/diagnóstico por imagen , Ósmosis , Presión Osmótica
8.
Genes Genet Syst ; 992024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38382926

RESUMEN

The importance of the parent-progeny relationship tracking technique in single-cell analysis has grown with the passage of time. In this study, fundamental image-processing techniques were combined to develop software capable of inferring cell cycle alterations in fission yeast cells, which exhibit equipartition during division. These methods, exclusively relying on bright-field images as input, could track parent-progeny relationships after cell division by assessing the temporal morphological transformation of these cells. In the application of this technique, the software was employed for calculating intracellular fluorescent dots during every stage of the cell cycle, using a yeast strain expressing EGFP-fused Swi6, which binds to chromatin. The results obtained with this software were consistent with those of previous studies. This software facilitated single-cell-level tracking of parent-progeny relationships in cells exhibiting equipartition during division and enabled the monitoring of spatial fluctuations in a cell cycle-dependent protein. This method, expediting the analysis of extensive datasets, may also empower large-scale screening experiments that cannot be conducted manually.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Imagen de Lapso de Tiempo , Ciclo Celular , División Celular , Proteínas de Ciclo Celular/metabolismo
9.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355799

RESUMEN

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Asunto(s)
Animales Recién Nacidos , Embrión de Mamíferos , Desarrollo Embrionario , Gástrula , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos/embriología , Animales Recién Nacidos/genética , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Gástrula/citología , Gástrula/embriología , Gastrulación/genética , Riñón/citología , Riñón/embriología , Mesodermo/citología , Mesodermo/enzimología , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/embriología , Somitos/citología , Somitos/embriología , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Especificidad de Órganos/genética
10.
Sci Rep ; 14(1): 3418, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341451

RESUMEN

In recent years, microscopy has revolutionized the study of dynamic living cells. However, performing long-term live cell imaging requires stable environmental conditions such as temperature, pH, and humidity. While standard incubators have traditionally provided these conditions, other solutions, like stagetop incubators are available. To further enhance the accessibility of stable cell culture environments for live cell imaging, we developed a portable CO2 cell culture mini-incubator that can be easily adapted to any x-y inverted microscope stage, enabling long-term live cell imaging. This mini-incubator provides and maintains stable environmental conditions and supports cell viability comparable to standard incubators. Moreover, it allows for parallel experiments in the same environment, saving both time and resources. To demonstrate its functionality, different cell lines (VERO and MDA-MB-231) were cultured and evaluated using various assays, including crystal violet staining, MTT, and flow cytometry tests to assess cell adhesion, viability, and apoptosis, respectively. Time-lapse imaging was performed over an 85-h period with MDA-MB-231 cells cultured in the mini-incubator. The results indicate that this device is a viable solution for long-term imaging and can be applied in developmental biology, cell biology, and cancer biology research where long-term time-lapse recording is required.


Asunto(s)
Dióxido de Carbono , Técnicas de Cultivo de Célula , Imagen de Lapso de Tiempo , Técnicas de Cultivo de Célula/métodos , Incubadoras , Línea Celular
11.
Analyst ; 149(6): 1727-1737, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38375547

RESUMEN

Understanding the influence of oxygen tension on cellular functions and behaviors is crucial for investigating various physiological and pathological conditions. In vitro cell culture models, particularly those based on hydrogel extracellular matrices, have been developed to study cellular responses in specific oxygen microenvironments. However, accurately characterizing oxygen tension variations with great spatiotemporal resolutions, especially in three dimensions, remains challenging. This paper presents an approach for rapid time-lapse 3D oxygen tension measurements in hydrogels using a widely available inverted fluorescence microscope. Oxygen-sensitive fluorescent microbeads and widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) are utilized for oxygen tension estimation. To incorporate the third dimension, a motorized sample stage is implanted that enables automated image acquisition in the vertical direction. A machine learning algorithm based on K-means clustering is employed for microbead position identification. Using an upside-down microfluidic device, 3D oxygen gradients are generated within a hydrogel sample, and z-stack images are acquired using the FD-FLIM system. Analyses of the acquired images, involving microbead position identification, lifetime calculation, and oxygen tension conversion, are then performed offline. The results demonstrate the functionality of the developed approach for rapid time-lapse 3D oxygen tension measurements in hydrogels. Furthermore, the 3D oxygen tension adjacent to a tumor spheroid within a hydrogel during media exchange is characterized. The results further confirm that the 3D spatiotemporal oxygen tension profiles can be successfully measured quantitatively using the established setup and analysis process and that the approach may have great potential for investigating cellular activities within oxygen microenvironments.


Asunto(s)
Técnicas de Cultivo de Célula , Oxígeno , Imagen de Lapso de Tiempo , Microscopía Fluorescente/métodos , Hidrogeles
12.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331426

RESUMEN

The cariogenicity of Streptococcus mutans relates to its ability to form biofilms on dental surfaces. The aim of this work was to develop a flowcell system compatible with time-lapse confocal microscopy to compare the adhesion and accumulation of S. mutans cells on surfaces in unsupplemented media against media containing sucrose or sucralose (a non-metabolized sweetener) over a short period of time. Fluorescent S. mutans 3209/pVMCherry was suspended in unsupplemented media or media supplemented with 1% sucrose or 1% sucralose and passed through a 3D-printed flowcell system. Flowcells were imaged over 60 minutes using a confocal microscope. Image analysis was performed, including a newly developed object-movement-based method to measure biomass adhesion. Streptococcus mutans 3209/pVMCherry grown in 1% sucrose-supplemented media formed small, dense, relatively immobile clumps in the flowcell system measured by biovolume, surface area, and median object centroid movement. Sucralose-supplemented and un-supplemented media yielded large, loose, mobile aggregates. Architectural metrics and per-object movement were significantly different (P < 0.05) when comparing sucrose-supplemented media to either unsupplemented or sucralose-supplemented media. These results demonstrate the utility of a flowcell system compatible with time-lapse confocal microscopy and image analysis when studying initial biofilm formation and adhesion under different nutritional conditions.


Asunto(s)
Streptococcus mutans , Edulcorantes , Imagen de Lapso de Tiempo , Biopelículas , Sacarosa/farmacología , Microscopía Confocal
13.
STAR Protoc ; 5(1): 102795, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38165800

RESUMEN

Mosaic analysis with double markers (MADM) technology enables the sparse labeling of genetically defined neurons. We present a protocol for time-lapse imaging of cortical projection neuron migration in mice using MADM. We describe steps for the isolation, culturing, and 4D imaging of neuronal dynamics in MADM-labeled brain tissue. While this protocol is compatible with other single-cell labeling methods, the MADM approach provides a genetic platform for the functional assessment of cell-autonomous candidate gene function and the relative contribution of non-cell-autonomous effects. For complete details on the use and execution of this protocol, please refer to Hansen et al. (2022),1 Contreras et al. (2021),2 and Amberg and Hippenmeyer (2021).3.


Asunto(s)
Neuronas , Ratones , Animales , Imagen de Lapso de Tiempo
14.
Pharm Res ; 41(2): 387-400, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243127

RESUMEN

OBJECTIVE: This study aims to establish a Flow-through Visualization Dissolution System (FVDS) that combines time-lapse macro-imaging and a flow-through cell to simultaneously elucidate dissolution and disintegration profiles. METHODS: Three cefaclor extended-release tablets (CEC-1, CEC-2, CEC-3) from different manufacturers were subjected to dissolution tests using both the US Pharmacopeia basket method and the FVDS method. Two dissolution media plans were implemented in FVDS: i) Plan I involved dissolution in pH1.0 medium for 12 h; ii) Plan II initiated dissolution in pH1.0 medium for 1 h, followed by pH6.8 phosphate buffer for 11 h. The resulting dissolution data were fitted using classic mathematical models. Pixel information was further extracted from images obtained using FVDS and plotted over time. RESULTS: The basket method showed the cumulative dissolution of all three tablets in pH1.0, pH4.0 and water reached 80% within 6 h, but remained below 60% in the pH6.8 medium. The f2 values indicated CEC-2 was similar to CEC-1 in the pH4.0 medium, pH6.8 medium and water. Using FVDS with medium plan II, the cumulative dissolution of CEC-1 and CEC-2 reached about 80% showing similarity, while no similarity was observed between CEC-3 and CEC-1. The f2 factor of the percentage area change profiles also showed consistent results in the dissolution profile of medium plan II. However, FVDS with medium plan I cannot distinguish between CEC-2 and CEC-3. CONCLUSION: FVDS offers an alternative to traditional dissolution methods by integrating imaging analysis as a complementary tool to disintegration and dissolution testing methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Agua , Solubilidad , Imagen de Lapso de Tiempo , Comprimidos
15.
Fertil Steril ; 121(5): 730-736, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38185198

RESUMEN

In this review, we take a fresh look at embryo assessment and selection methods from the perspective of diagnosis and prognosis. On the basis of a systematic search in the literature, we examined the evidence on the prognostic value of different embryo assessment methods, including morphological assessment, blastocyst culture, time-lapse imaging, artificial intelligence, and preimplantation genetic testing for aneuploidy.


Asunto(s)
Técnicas de Cultivo de Embriones , Transferencia de Embrión , Fertilización In Vitro , Diagnóstico Preimplantación , Humanos , Fertilización In Vitro/métodos , Femenino , Diagnóstico Preimplantación/métodos , Embarazo , Técnicas de Cultivo de Embriones/métodos , Transferencia de Embrión/métodos , Resultado del Tratamiento , Imagen de Lapso de Tiempo/métodos , Valor Predictivo de las Pruebas , Infertilidad/terapia , Infertilidad/diagnóstico , Infertilidad/fisiopatología , Blastocisto , Pruebas Genéticas/métodos , Aneuploidia , Índice de Embarazo , Pronóstico
16.
Microbiology (Reading) ; 170(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261525

RESUMEN

Polymicrobial infection with Candida albicans and Staphylococcus aureus may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of S. aureus with C. albicans hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of C. albicans/S. aureus whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form C. albicans in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of C. albicans and S. aureus arise within each biofilm as a result of the different C. albicans morphotypes, resulting in distinct sub-regions. These data reveal that C. albicans cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.


Asunto(s)
Candida albicans , Infecciones Estafilocócicas , Hifa , Staphylococcus aureus , Imagen de Lapso de Tiempo , Biopelículas
17.
Sci Rep ; 14(1): 739, 2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185698

RESUMEN

IVF embryos have historically been evaluated by morphological characteristics. The time-lapse system (TLS) has become a promising tool, providing an uninterrupted evaluation of morphological and dynamic parameters of embryo development. Furthermore, TLS sheds light on unknown phenomena such as direct cleavage and incomplete morula compaction. We retrospectively analyzed the morphology (Gardner Score) and morphokinetics (KIDScore) of 835 blastocysts grown in a TLS incubator (Embryoscope+), which were biopsied for preimplantation genetic testing for aneuploidy (PGT-A). Only the embryos that reached the blastocyst stage were included in this study and time-lapse videos were retrospectively reanalysed. According to the pattern of initial cleavages and morula compaction, the embryos were classified as: normal (NC) or abnormal (AC) cleavage, and fully (FCM) or partially compacted (PCM) morulae. No difference was found in early cleavage types or morula compaction patterns between female age groups (< 38, 38-40 and > 40 yo). Most of NC embryos resulted in FCM (≅ 60%), while no embryos with AC resulted in FCM. Aneuploidy rate of AC-PCM group did not differ from that of NC-FCM group in women < 38 yo, but aneuploidy was significantly higher in AC-PCM compared to NC-FCM of women > 40 yo. However, the quality of embryos was lower in AC-PCM blastocysts in women of all age ranges. Morphological and morphokinetic scores declined with increasing age, in the NC-PCM and AC-PCM groups, compared to the NC-FCM. Similar aneuploidy rates among NC-FCM and AC-PCM groups support the hypothesis that PCM in anomalous-cleaved embryos can represent a potential correction mechanism, even though lower morphological/morphokinetic scores are seen on AC-PCM. Therefore, both morphological and morphokinetic assessment should consider these embryonic development phenomena.


Asunto(s)
Aneuploidia , Gastrópodos , Embarazo , Animales , Femenino , Humanos , Mórula , Estudios Retrospectivos , Imagen de Lapso de Tiempo , Ploidias , Blastocisto , Pruebas Genéticas , Fertilización In Vitro
18.
Nat Methods ; 21(2): 311-321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177507

RESUMEN

Time-lapse fluorescence microscopy is key to unraveling biological development and function; however, living systems, by their nature, permit only limited interrogation and contain untapped information that can only be captured by more invasive methods. Deep-tissue live imaging presents a particular challenge owing to the spectral range of live-cell imaging probes/fluorescent proteins, which offer only modest optical penetration into scattering tissues. Herein, we employ convolutional neural networks to augment live-imaging data with deep-tissue images taken on fixed samples. We demonstrate that convolutional neural networks may be used to restore deep-tissue contrast in GFP-based time-lapse imaging using paired final-state datasets acquired using near-infrared dyes, an approach termed InfraRed-mediated Image Restoration (IR2). Notably, the networks are remarkably robust over a wide range of developmental times. We employ IR2 to enhance the information content of green fluorescent protein time-lapse images of zebrafish and Drosophila embryo/larval development and demonstrate its quantitative potential in increasing the fidelity of cell tracking/lineaging in developing pescoids. Thus, IR2 is poised to extend live imaging to depths otherwise inaccessible.


Asunto(s)
Drosophila , Pez Cebra , Animales , Imagen de Lapso de Tiempo/métodos , Microscopía Fluorescente , Proteínas Fluorescentes Verdes/genética
19.
Bioresour Technol ; 393: 129989, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37931765

RESUMEN

The effect of tissue-specific biochemical heterogeneities of lignocellulosic biomass on biomass deconstruction is best understood through confocal laser scanning microscopy (CLSM) combined with immunohistochemistry. However, this process can be challenging, given the fragility of plant materials, and is generally not able to observe changes in the same section of biomass during both pretreatment and enzymatic hydrolysis. To overcome this challenge, a custom polydimethylsiloxane (PDMS) microfluidic imaging reactor was constructed using standard photolithographic techniques. As proof of concept, CLSM was performed on 60 µm-thick corn stem sections during pretreatment and enzymatic hydrolysis using the imaging reactor. Based on the fluorescence images, the less lignified parenchyma cell walls were more susceptible to pretreatment than the lignin-rich vascular bundles. During enzymatic hydrolysis, the highly lignified protoxylem cell wall was the most resistant, remaining unhydrolyzed even after 48 h. Therefore, imaging thin whole biomass sections was useful to obtain tissue-specific changes during biomass deconstruction.


Asunto(s)
Lignina , Microfluídica , Biomasa , Hidrólisis , Imagen de Lapso de Tiempo
20.
Arch Gynecol Obstet ; 309(4): 1191-1203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38063893

RESUMEN

Endometriosis has been shown to be associated with unfavorable development and maturation of oocytes, as well as aberrancies in embryonal development, including arrest after fertilization, following in vitro fertilization (IVF). Time-lapse monitoring (TLM) enables continuous and non-invasive monitoring of embryo morphokinetics during the IVF process and might be useful in the assessment of embryos from women with endometriosis. In this review, five eligible studies were evaluated to determine if embryo morphokinetics assessed under TLM differ in patients with endometriosis and subsequently predict blastocyst quality, implantation and success of pregnancy. The studies showed overall inferior morphokinetic parameters of embryos from endometriosis patients when compared to controls, independent of the severity of endometriosis. Embryos with optimal early morphokinetic parameters (t2, s2, t5, tSB, tEB) and late developmental events (compaction, morulation, and blastulation) had better implantation rates than those who had suboptimal ranges. However, due to few studies available with mostly retrospective data, the validity of these findings and their generalizability for clinical practice needs to be further assessed. Prospective studies with larger sample sizes are needed to determine whether using TLM for embryo selection in endometriosis improves pregnancy and live birth outcomes.


Asunto(s)
Endometriosis , Embarazo , Humanos , Femenino , Imagen de Lapso de Tiempo , Estudios Retrospectivos , Estudios Prospectivos , Fertilización In Vitro , Desarrollo Embrionario , Implantación del Embrión , Blastocisto , Técnicas de Cultivo de Embriones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...