Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.334
Filtrar
1.
BMC Infect Dis ; 24(1): 433, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654215

RESUMEN

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, necessitating the administration of polymyxin E (colistin) as a last-line antibiotic. Meanwhile, the mortality rate associated with colistin-resistant K. pneumoniae infections is seriously increasing. On the other hand, importance of administration of carbapenems in promoting colistin resistance in K. pneumoniae is unknown. CASE PRESENTATION: We report a case of K. pneumoniae-related pyogenic liver abscess in which susceptible K. pneumoniae transformed into carbapenem- and colistin-resistant K. pneumoniae during treatment with imipenem. The case of pyogenic liver abscess was a 50-year-old man with diabetes and liver transplant who was admitted to Abu Ali Sina Hospital in Shiraz. The K. pneumoniae isolate responsible for community-acquired pyogenic liver abscess was isolated and identified. The K. pneumoniae isolate was sensitive to all tested antibiotics except ampicillin in the antimicrobial susceptibility test and was identified as a non-K1/K2 classical K. pneumoniae (cKp) strain. Multilocus sequence typing (MLST) identified the isolate as sequence type 54 (ST54). Based on the patient's request, he was discharged to continue treatment at another center. After two months, he was readmitted due to fever and progressive constitutional symptoms. During treatment with imipenem, the strain acquired blaOXA-48 and showed resistance to carbapenems and was identified as a multidrug resistant (MDR) strain. The minimum inhibitory concentration (MIC) test for colistin was performed by broth microdilution method and the strain was sensitive to colistin (MIC < 2 µg/mL). Meanwhile, on blood agar, the colonies had a sticky consistency and adhered to the culture medium (sticky mucoviscous colonies). Quantitative real-time PCR and biofilm formation assay revealed that the CRKP strain increased capsule wzi gene expression and produced slime in response to imipenem. Finally, K. pneumoniae-related pyogenic liver abscess with resistance to a wide range of antibiotics, including the last-line antibiotics colistin and tigecycline, led to sepsis and death. CONCLUSIONS: Based on this information, can we have a theoretical hypothesis that imipenem is a promoter of resistance to carbapenems and colistin in K. pneumoniae? This needs more attention.


Asunto(s)
Antibacterianos , Carbapenémicos , Colistina , Infecciones por Klebsiella , Klebsiella pneumoniae , Absceso Piógeno Hepático , Pruebas de Sensibilidad Microbiana , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Masculino , Absceso Piógeno Hepático/microbiología , Absceso Piógeno Hepático/tratamiento farmacológico , Persona de Mediana Edad , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Colistina/farmacología , Colistina/uso terapéutico , Tipificación de Secuencias Multilocus , Imipenem/uso terapéutico , Imipenem/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética
2.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653725

RESUMEN

AIMS: Acinetobacter baumannii is a nosocomial pathogen known to be multidrug-resistant (MDR), especially to drugs of the carbapenem class. Several factors contribute to resistance, including efflux pumps, ß-lactamases, alteration of target sites, and permeability defects. In addition, outer membrane proteins (OMPs), like porins are involved in the passage of antibiotics, and their alteration could lead to resistance development. This study aimed to explore the possible involvement of porins and OMPs in developing carbapenem resistance due to differential expression. METHODS AND RESULTS: The antibiotic-susceptible and MDR isolates of A. baumannii were first studied for differences in their transcriptional levels of OMP expression and OMP profiles. The antibiotic-susceptible isolates were further treated with imipenem, and it was found that the omp genes were differentially expressed. Six of the nine genes studied were upregulated at 1 h of exposure to imipenem. Their expression gradually decreased with time, further confirmed by their OMP profile and two-dimensional gel electrophoresis. CONCLUSIONS: This study could identify OMPs that were differentially expressed on exposure to imipenem. Hence, this study provides insights into the role of specific OMPs in antibiotic resistance in A. baumannii.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Imipenem , Pruebas de Sensibilidad Microbiana , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Imipenem/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Acinetobacter/microbiología , Humanos , Porinas/genética , Porinas/metabolismo
3.
PLoS One ; 19(4): e0298577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635685

RESUMEN

BACKGROUND: Infections caused by Stenotrophomonas maltophilia and related species are increasing worldwide. Unfortunately, treatment options are limited, whereas the antimicrobial resistance is increasing. METHODS: We included clinical isolates identified as S. maltophilia by VITEK 2 Compact. Ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, quinolones, and tetracycline family members were evaluated by broth microdilution method and compared with first-line treatment drugs. Minimum inhibitory concentrations (MICs) were reported for all antibiotics. We sequenced the Whole Genome of cefiderocol resistant strains (CRSs) and annotated their genes associated with cefiderocol resistance (GACR). Presumptive phylogenetic identification employing the 16S marker was performed. RESULTS: One hundred and one clinical strains were evaluated, sulfamethoxazole and trimethoprim, levofloxacin and minocycline showed susceptibilities of 99.01%, 95.04% and 100% respectively. Ceftazidime was the antibiotic with the highest percentage of resistance in all samples (77.22%). Five strains were resistant to cefiderocol exhibiting MIC values ≥ 2 µg/mL (4.95%). The ß-lactamase inhibitors meropenem/vaborbactam and imipenem/relebactam, failed to inhibit S. maltophilia, preserving both MIC50 and MIC90 ≥64 µg/mL. Ceftazidime/avibactam restored the activity of ceftazidime decreasing the MIC range. Tigecycline had the lowest MIC range, MIC50 and MIC90. Phylogeny based on 16S rRNA allowed to identify to cefiderocol resistant strains as putative species clustered into Stenotrophomonas maltophilia complex (Smc). In these strains, we detected GARCs such as Mutiple Drug Resistance (MDR) efflux pumps, L1-type ß-lactamases, iron transporters and type-1 fimbriae. CONCLUSION: Antimicrobial resistance to first-line treatment is low. The in vitro activity of new ß-lactamase inhibitors against S. maltophilia is poor, but avibactam may be a potential option. Cefiderocol could be considered as a potential new option for multidrug resistant infections. Tetracyclines had the best in vitro activity of all antibiotics evaluated.


Asunto(s)
Ácidos Borónicos , Ceftazidima , Stenotrophomonas maltophilia , Ceftazidima/farmacología , Cefiderocol , Meropenem , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Stenotrophomonas , Filogenia , ARN Ribosómico 16S , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Combinación de Medicamentos , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
4.
BMC Infect Dis ; 24(1): 412, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641583

RESUMEN

BACKGROUND: Vibrio furnissii is an emerging human pathogen closely related to V. fluvialis that causes acute gastroenteritis. V. furnissii infection has been reported to be rarer than V. fluvialis, but a multi-drug resistance plasmid has recently been discovered in V. furnissii. METHODS: During daily monitoring at a general hospital in Beijing, China, seven V. furnissii strains were collected from patients aged over 14 years who presented with acute diarrhoea between April and October 2018. Genome analysis and comparison were performed for virulence and antimicrobial resistance genes, plasmids and transposon islands, together with phylogenetic analysis. Antimicrobial resistance to 19 antibiotics was investigated using the microbroth dilution method. Virulence phenotypes were investigated based on type VI secretion system (T6SS) expression and using a bacterial killing assay and a haemolysin assay. RESULTS: Phylogenetic analysis based on single-nucleotide polymorphisms revealed a closer relationship between V. furnissii and V. fluvialis than between other Vibrio spp. The seven V. furnissii isolates were in different monophyletic clades in the phylogenetic tree, suggesting that the seven cases of gastroenteritis were independent. High resistance to cefazolin, tetracycline and streptomycin was found in the V. furnissii isolates at respective rates of 100.0%, 57.1% and 42.9%, and intermediate resistance to ampicillin/sulbactam and imipenem was observed at respective rates of 85.7% and 85.7%. Of the tested strains, VFBJ02 was resistant to both imipenem and meropenem, while VFBJ01, VFBJ02, VFBJ05 and VFBJ07 were multi-drug resistant. Transposon islands containing antibiotic resistance genes were found on the multi-drug resistance plasmid in VFBJ05. Such transposon islands also occurred in VFBJ07 but were located on the chromosome. The virulence-related genes T6SS, vfh, hupO, vfp and ilpA were widespread in V. furnissii. The results of the virulence phenotype assays demonstrated that our isolated V. furnissii strains encoded an activated T6SS and grew in large colonies with strong beta-haemolysis on blood agar. CONCLUSION: This study showed that diarrhoea associated with V. furnissii occurred sporadically and was more common than expected in the summer in Beijing, China. The antibiotic resistance of V. furnissii has unique characteristics compared with that of V. fluvialis. Fluoroquinolones and third-generation cephalosporins, such as ceftazidime and doxycycline, were effective at treating V. furnissii infection. Continua laboratory-based surveillance is needed for the prevention and control of V. furnissii infection, especially the dissemination of the antibiotic resistance genes in this pathogen.


Asunto(s)
Gastroenteritis , Vibrio , Humanos , Anciano , Virulencia/genética , Filogenia , Vibrio/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Diarrea/microbiología , Imipenem/farmacología
5.
Mikrobiyol Bul ; 58(2): 135-147, 2024 Apr.
Artículo en Turco | MEDLINE | ID: mdl-38676582

RESUMEN

Pseudomonas aeruginosa is a non-fermentative gram-negative bacillus. Many virulence factors play a role in the pathogenesis of P.aeruginosa. The aim of this study was to early detection of ST111, ST175, ST235, ST253, ST395 which are named high-risk clones with increased epidemic potential due to multidrug resistance in P.aeruginosa isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method and to evaluate the relationship between high-risk clones and the presence of P.aeruginosa virulence factors and carbapenemase production genes.P.aeruginosa isolates (n= 100) found to be resistant to at least imipenem or meropenem antibiotics isolated from the various clinical samples in the medical microbiology laboratory between 01.01.2021 and 07.06.2022 were included in the study. For the detection of virulence genes uniplex polymerase chain reaction (PCR) for toxA and multiplex PCR for algD, plcN, lasB, plcH were performed in P.aeruginosa isolates. In the detection of carbapenemase genes, two separate multiplex PCRs used for blaKPC , blaNDM , blaVIM , blaOXA-48 and for blaIMP , blaSPM , blaSIM , blaGIM , blaGES . Investigation of the peaks specific to high-risk clones was performed by using VITEK®-MS (bioMérieux, France) system. P.aeruginosa isolates were mostly isolated from intensive care units (45%) and respiratory tract samples (46%). The antibiotic to which the isolates were found to be most susceptible was amikacin, while highest resistance was detected for piperacillin. In PCR results, toxA, lasB, plcH, plcN and algD were detected as 89%, 99%, 98%, 100%, 100%, respectively. When the presence of characteristic peaks belonging to high-risk clones was evaluated with MALDI-TOF MS, ST253 (7%) and ST175 (2%) were detected. The peaks specific to ST235 and ST395 clones were not detected in our study. blaVIM was detected in two isolates and blaGES-5 carbapenemase was detected in two isolates. Virulence factors were detected at high rates in both high-risk clones and other strains and no significant relationship was found between high-risk clones and virulence factors. Early detection of high-risk clones, identification of antimicrobial resistance mechanisms will help to develop strategic treatment options and prevent their worldwide spread.


Asunto(s)
Reacción en Cadena de la Polimerasa , Pseudomonas aeruginosa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Virulencia , beta-Lactamasas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Humanos , beta-Lactamasas/genética , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Imipenem/farmacología , Meropenem/farmacología , Virulencia/genética
6.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622558

RESUMEN

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Asunto(s)
Acinetobacter baumannii , Carbapenémicos , Carbapenémicos/farmacología , Meropenem/farmacología , Simulación del Acoplamiento Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Levofloxacino/farmacología , Antibacterianos/farmacología , Imipenem/farmacología , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
7.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600509

RESUMEN

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Asunto(s)
COVID-19 , Coinfección , Infecciones por Escherichia coli , Humanos , Escherichia coli , Ertapenem/farmacología , Levofloxacino/farmacología , Meropenem/farmacología , Tigeciclina/farmacología , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Imipenem/farmacología , Porinas/genética , Porinas/farmacología , Pruebas de Sensibilidad Microbiana
8.
Antimicrob Agents Chemother ; 68(5): e0017424, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38557171

RESUMEN

Mycobacterium abscessus (MAB) infections pose a growing public health threat. Here, we assessed the in vitro activity of the boronic acid-based ß-lactamase inhibitor, vaborbactam, with different ß-lactams against 100 clinical MAB isolates. Enhanced activity was observed with meropenem and ceftaroline with vaborbactam (1- and >4-fold MIC50/90 reduction). CRISPRi-mediated blaMAB gene knockdown showed a fourfold MIC reduction to ceftaroline but not the other ß-lactams. Our findings demonstrate vaborbactam's potential in combination therapy against MAB infections.


Asunto(s)
Antibacterianos , Ácidos Borónicos , Cefoxitina , Ceftarolina , Cefalosporinas , Imipenem , Meropenem , Pruebas de Sensibilidad Microbiana , Mycobacterium abscessus , Mycobacterium abscessus/efectos de los fármacos , Meropenem/farmacología , Ácidos Borónicos/farmacología , Antibacterianos/farmacología , Cefalosporinas/farmacología , Imipenem/farmacología , Cefoxitina/farmacología , Humanos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Inhibidores de beta-Lactamasas/farmacología
9.
Int J Antimicrob Agents ; 63(5): 107150, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513748

RESUMEN

OBJECTIVES: To analyse the impact of the most clinically relevant ß-lactamases and their interplay with low outer membrane permeability on the activity of cefiderocol, ceftazidime/avibactam, aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/xeruborbactam and meropenem/nacubactam against recombinant Escherichia coli strains. METHODS: We constructed 82 E. coli laboratory transformants expressing the main ß-lactamases circulating in Enterobacterales (70 expressing single ß-lactamase and 12 producing double carbapenemase) under high (E. coli TG1) and low (E. coli HB4) permeability conditions. Antimicrobial susceptibility testing was determined by reference broth microdilution. RESULTS: Aztreonam/avibactam, cefepime/zidebactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam were active against all E. coli TG1 transformants. Imipenem/relebactam, meropenem/vaborbactam, cefepime/taniborbactam and cefepime/enmetazobactam were also highly active, but unstable against most of MBL-producing transformants. Combination of ß-lactamases with porin deficiency (E. coli HB4) did not significantly affect the activity of aztreonam/avibactam, cefepime/zidebactam, cefiderocol or meropenem/nacubactam, but limited the effectiveness of the rest of carbapenem- and cefepime-based combinations. Double-carbapenemase production resulted in the loss of activity of most of the compounds tested, an effect particularly evident for those E. coli HB4 transformants in which MBLs were present. CONCLUSIONS: Our findings highlight the promising activity that cefiderocol and new ß-lactam/ß-lactamase inhibitors have against recombinant E. coli strains expressing widespread ß-lactamases, including when these are combined with low permeability or other enzymes. Aztreonam/avibactam, cefiderocol, cefepime/zidebactam and meropenem/nacubactam will help to mitigate to some extent the urgency of new compounds able to resist MBL action, although NDM enzymes represent a growing challenge against which drug development efforts are still needed.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Ácidos Borínicos , Ácidos Carboxílicos , Cefepima , Cefiderocol , Ceftazidima , Cefalosporinas , Ciclooctanos , Combinación de Medicamentos , Escherichia coli , Lactamas , Pruebas de Sensibilidad Microbiana , Triazoles , Inhibidores de beta-Lactamasas , beta-Lactamasas , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Cefalosporinas/farmacología , Inhibidores de beta-Lactamasas/farmacología , Compuestos de Azabiciclo/farmacología , Antibacterianos/farmacología , Ciclooctanos/farmacología , Ceftazidima/farmacología , Cefepima/farmacología , Ácidos Borónicos/farmacología , Meropenem/farmacología , Aztreonam/farmacología , Imipenem/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Compuestos Heterocíclicos con 1 Anillo/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos
10.
Arch Microbiol ; 206(4): 169, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489041

RESUMEN

Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Imipenem/farmacología , Imipenem/uso terapéutico , Colistina/farmacología , Colistina/uso terapéutico , Acinetobacter baumannii/genética , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
11.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38544327

RESUMEN

AIMS: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections poses a significant threat to human health, necessitating urgent development of new antimicrobial agents. Silver nanoparticles (AgNPs), which are among the most widely used engineered nanomaterials, have been extensively studied. However, the impact of AgNPs on CRKP and the potential for drug resistance development remain inadequately explored. METHODS AND RESULTS: In this study, broth dilution method was used to determine the minimum inhibitory concentration (MIC) was determined using the broth dilution method. Results indicated MIC values of 93.1 ± 193.3 µg ml-1 for AgNPs, 2.3 ± 5.1 µg ml-1 for AgNO3, and 25.1 ± 48.3 µg ml-1 for imipenem (IMI). The combined inhibitory effect of AgNPs and IMI on CRKP was assessed using the checkerboard method. Moreover, after 6-20 generations of continuous culture, the MIC value of AgNPs increased 2-fold. Compared to IMI, resistance of Kl. pneumoniae to AgNPs developed more slowly, with a higher fold increase in MIC observed after 20 generations. Whole-genome sequencing revealed four nonsynonymous single nucleotide polymorphism mutations in CRKP after 20 generations of AgNP treatment. CONCLUSION: We have demonstrated that AgNPs significantly inhibit CRKP isolates and enhance the antibacterial activity of imipenem against Kl. pneumoniae. Although the development of AgNP resistance is gradual, continued efforts are necessary for monitoring and studying the mechanisms of AgNP resistance.


Asunto(s)
Antibacterianos , Carbapenémicos , Imipenem , Klebsiella pneumoniae , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Imipenem/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Plata/farmacología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Humanos , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Farmacorresistencia Bacteriana/genética
12.
Tuberculosis (Edinb) ; 146: 102482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364332

RESUMEN

Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) causes opportunistic pulmonary and soft tissue infections that are difficult to cure with existing treatments. Omadacycline, a new tetracycline antibiotic, exhibits potent in vitro and in vivo activity against Mab. As regimens containing multiple antibiotics are required to produce a durable cure for Mab disease, we assessed efficacies of three three-drug combinations in a pre-clinical mouse model of pulmonary Mab disease to identify companion drugs with which omadacycline exhibits the highest efficacy. Additionally, we assessed the susceptibility of Mab recovered from mouse lungs after four weeks of exposure to the three triple-drug regimens. Among the three-drug regimens, omadacycline + imipenem + amikacin produced the largest reduction in Mab burden, whereas omadacycline + imipenem + linezolid exhibited the most effective early bactericidal activity. Omadacycline + linezolid + clofazimine, a regimen that can be administered orally, lacked early bactericidal activity but produced a gradual reduction in the lung Mab burden over time. The robust efficacy exhibited by these three regimens in the mouse model supports their further evaluation in patients with Mab lung disease. As we were unable to isolate drug-resistant Mab mutants at the completion of four weeks of treatment, these triple-drug combinations show promise of producing durable cure and minimizing selection of resistant mutants.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Animales , Ratones , Linezolid/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Imipenem/farmacología , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana
13.
Antimicrob Agents Chemother ; 68(3): e0139923, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38329330

RESUMEN

Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain ß-lactams (e.g., imipenem) and ß-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 ß-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on ß-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of ß-lactamase-related degradation.


Asunto(s)
Inhibidores de beta-Lactamasas , beta-Lactamas , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/farmacología , Doripenem , Agar , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Penicilinas , Ácido Clavulánico/farmacología , Imipenem/farmacología , Agua , Pruebas de Sensibilidad Microbiana
14.
Int J Antimicrob Agents ; 63(4): 107113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354826

RESUMEN

BACKGROUND: Aztreonam-avibactam is under clinical development for treatment of infections caused by carbapenem-resistant Enterobacterales (CRE), especially those resistant to recently approved ß-lactamase inhibitor combinations (BLICs). OBJECTIVES: To evaluate a large collection of CRE isolates, including those non-susceptible to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam. METHODS: Overall, 24 580 Enterobacterales isolates were consecutively collected (1/patient) in 2020-2022 from 64 medical centres located in Western Europe (W-EU), Eastern Europe (E-EU), Latin America (LATAM), and the Asia-Pacific region (APAC). Of those, 1016 (4.1%) were CRE. Isolates were susceptibility tested by broth microdilution. CRE isolates were screened for carbapenemase genes by whole genome sequencing. RESULTS: Aztreonam-avibactam inhibited 99.6% of CREs at ≤8 mg/L. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam were active against 64.6%, 57.4%, and 50.7% of CRE isolates, respectively; most of the non-susceptible isolates carried metallo-beta-lactamases. Aztreonam-avibactam was active against ≥98.9% of isolates non-susceptible to these BLICs. The activity of these BLICs varied by region, with highest susceptibility rates observed in W-EU (76.9% for ceftazidime-avibactam, 72.5% for meropenem-vaborbactam, 63.8% for imipenem-relebactam) and the lowest susceptibility rates identified in the APAC region (39.9% for ceftazidime-avibactam, 37.8% for meropenem-vaborbactam, and 27.5% for imipenem-relebactam). The most common carbapenemase types overall were KPC (44.6% of CREs), NDM (29.9%), and OXA-48-like (16.0%). KPC predominated in LATAM (64.1% of CREs in the region) and W-EU (61.1%). MBL occurrence was highest in APAC (59.5% of CREs in the region), followed by LATAM (34.0%), E-EU (28.9%), and W-EU (23.6%). CONCLUSIONS: Aztreonam-avibactam demonstrated potent activity against CRE isolates resistant to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam independent of the carbapenemase produced.


Asunto(s)
Aztreonam , Ácidos Borónicos , Inhibidores de beta-Lactamasas , Humanos , Aztreonam/farmacología , Meropenem , Inhibidores de beta-Lactamasas/farmacología , América Latina , Antibacterianos/farmacología , Ceftazidima/farmacología , Compuestos de Azabiciclo/farmacología , beta-Lactamasas/genética , Europa (Continente)/epidemiología , Combinación de Medicamentos , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana
15.
Antimicrob Agents Chemother ; 68(4): e0154823, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38415988

RESUMEN

The impact of penicillin-binding protein 3 (PBP3) modifications that may be identified in Escherichia coli was evaluated with respect to susceptibility to ß-lactam/ß-lactamase inhibitor combinations including ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, aztreonam-avibactam, cefepime-taniborbactam, and to cefiderocol. A large series of E. coli recombinant strains producing broad-spectrum ß-lactamases was evaluated. While imipenem-relebactam showed a similar activity regardless of the PBP3 background, susceptibility to other molecules tested was affected at various levels. This was particularly the case for ceftazidime-avibactam, aztreonam-avibactam, and cefepime-taniborbactam.


Asunto(s)
Aztreonam , Ácidos Borínicos , Ácidos Borónicos , Ácidos Carboxílicos , Cefiderocol , Ceftazidima , Aztreonam/farmacología , Meropenem/farmacología , Cefepima/farmacología , Proteínas de Unión a las Penicilinas , Escherichia coli , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/química , Combinación de Medicamentos , Imipenem/farmacología , Imipenem/química , Pruebas de Sensibilidad Microbiana
16.
Int J Antimicrob Agents ; 63(5): 107119, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38417706

RESUMEN

OBJECTIVES: Imipenem-relebactam (IMR), a novel ß-lactam/ß-lactamase inhibitor combination, is recommended for infections caused by difficult-to-treat Pseudomonas aeruginosa. This study aimed to investigate the evolution trajectory of IMR resistance under the selection of levofloxacin in P. aeruginosa. METHODS: Antimicrobial susceptibility testing, complete genome sequencing and gene manipulation experiments were performed. Quantitative reverse transcription PCR for specific genes and porin levels were detected. Evolution trajectory was simulated in vitro by induction assay. RESULTS: P. aeruginosa HS347 and HS355 were isolated from abdominal drainage of two neighbouring patients (S and Z) undergoing surgery of colon carcinoma in Shanghai, China, with the latter patient having received levofloxacin. They were closely related ST16 strains, and both carried blaKPC-2 plasmids highly similar to those of P. aeruginosa endemic clones from Zhejiang province, where patient Z had received enteroscopy before this admission. Acquisition of resistance was observed for both IMR and fluoroquinolones in HS355, likely prompted by treatment with levofloxacin. The T274I substitution in MexS (putative oxidoreductase), upregulated efflux pump operon mexEF-oprN and decreased production of porin OprD leading to cross-resistance to fluoroquinolones and IMR, which was also verified by in vitro mutant selection under levofloxacin selection. CONCLUSIONS: The emergence of a rare blaKPC-2-plasmid-bearing ST16 clone implies the horizonal spread and inter-regional dissemination of a high-risk plasmid-clone combination, representing a public health challenge. Levofloxacin exposure can select for mexS inactivating mutation, which in turn leads to IMR resistance phenotype, implicating the role of an unrelated, widely used antimicrobial agent in insidiously triggering the development of cross resistance to a latest ß-lactam/ß-lactamase inhibitor combination.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Imipenem , Levofloxacino , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamasas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Levofloxacino/farmacología , Humanos , Compuestos de Azabiciclo/farmacología , Imipenem/farmacología , beta-Lactamasas/genética , Antibacterianos/farmacología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , China , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Inhibidores de beta-Lactamasas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética
17.
J Med Chem ; 67(5): 3400-3418, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38387069

RESUMEN

The use of ß-lactam (BL) and ß-lactamase inhibitor combination to overcome BL antibiotic resistance has been validated through clinically approved drug products. However, unmet medical needs still exist for the treatment of infections caused by Gram-negative (GN) bacteria expressing metallo-ß-lactamases. Previously, we reported our effort to discover pan inhibitors of three main families in this class: IMP, VIM, and NDM. Herein, we describe our work to improve the GN coverage spectrum in combination with imipenem and relebactam. This was achieved through structure- and property-based optimization to tackle the GN cell penetration and efflux challenges. A significant discovery was made that inhibition of both VIM alleles, VIM-1 and VIM-2, is essential for broad GN coverage, especially against VIM-producing P. aeruginosa. In addition, pharmacokinetics and nonclinical safety profiles were investigated for select compounds. Key findings from this drug discovery campaign laid the foundation for further lead optimization toward identification of preclinical candidates.


Asunto(s)
Antibacterianos , Inhibidores de beta-Lactamasas , Humanos , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Inhibidores de beta-Lactamasas/química , Antibacterianos/química , Imipenem/farmacología , beta-Lactamasas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
18.
BMC Microbiol ; 24(1): 52, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331716

RESUMEN

Resistance mechanisms are a shelter for Acinetobacter baumannii to adapt to our environment which causes difficulty for the infections to be treated and WHO declares this organism on the top of pathogens priority for new drug development. The most common mechanism that develops drug resistance is the overexpression of the efflux pump, especially Resistance-nodulation-cell division (RND) family, to almost most antibiotics. The study is designed to detect RND efflux pump genes in A. baumannii, and its correlation to multidrug resistance, in particular, the carbapenems resistance Acinetobacter baumannii (CRAB), and using different inhibitors that restore the antibiotic susceptibility of imipenem. Clinical A. baumannii isolates were recovered from different Egyptian hospitals in Intensive care unit (ICU). The expression of genes in two strains was analyzed using RT-PCR before and after inhibitor treatment. About 100 clinical A. baumannii isolates were recovered and identified and recorded as MDR strains with 75% strains resistant to imipenem. adeB, adeC, adeK, and adeJ were detected in thirty- seven the carbapenems resistance Acinetobacter baumannii (CRAB) strains. Cinnamomum verum oil, Trimethoprim, and Omeprazole was promising inhibitor against 90% of the carbapenems resistance Acinetobacter baumannii (CRAB) strains with a 2-6-fold decrease in imipenem MIC. Downregulation of four genes was associated with the addition of those inhibitors to imipenem for two the carbapenems resistance Acinetobacter baumannii (CRAB) (ACN15 and ACN99) strains, and the effect was confirmed in 24 h killing kinetics. Our investigation points to the carbapenems resistance Acinetobacter baumannii (CRAB) strain's prevalence in Egyptian hospitals with the idea to revive the imipenem activity using natural and chemical drugs as inhibitors that possessed high synergistic activity.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Trimetoprim/metabolismo , Trimetoprim/farmacología , Trimetoprim/uso terapéutico , Cinnamomum zeylanicum/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Acinetobacter/tratamiento farmacológico , Antibacterianos/uso terapéutico , Imipenem/farmacología , Imipenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
19.
BMC Infect Dis ; 24(1): 209, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360618

RESUMEN

BACKGROUND: In Japan, carbapenem-resistant Enterobacterales (CRE) infections were incorporated into the National Epidemiological Surveillance of Infectious Diseases (NESID) in 2014, necessitating mandatory reporting of all CRE infections cases. Subsequently, pathogen surveillance was initiated in 2017, which involved the collection and analysis of CRE isolates from reported cases to assess carbapenemase gene possession. In this surveillance, CRE is defined as (i) minimum inhibitory concentration (MIC) of meropenem ≥2 mg/L (MEPM criteria) or (ii) MIC of imipenem ≥2 mg/L and MIC of cefmetazole ≥64 mg/L (IPM criteria). This study examined whether the current definition of CRE surveillance captures cases with a clinical and public health burden. METHODS: CRE isolates from reported cases were collected from the public health laboratories of local governments, which are responsible for pathogen surveillance. Antimicrobial susceptibility tests were conducted on these isolates to assess compliance with the NESID CRE definition. The NESID data between April 2017 and March 2018 were obtained and analyzed using antimicrobial susceptibility test results. RESULTS: In total, 1681 CRE cases were identified during the study period, and pathogen surveillance data were available for 740 (44.0%) cases. Klebsiella aerogenes and Enterobacter cloacae complex were the dominant species, followed by Klebsiella pneumoniae and Escherichia coli. The rate of carbapenemase gene positivity was 26.5% (196/740), and 93.4% (183/196) of these isolates were of the IMP type. Meanwhile, 315 isolates were subjected to antimicrobial susceptibility testing. Among them, 169 (53.7%) fulfilled only the IPM criteria (IPM criteria-only group) which were susceptible to meropenem, while 146 (46.3%) fulfilled the MEPM criteria (MEPM criteria group). The IPM criteria-only group and MEPM criteria group significantly differed in terms of carbapenemase gene positivity (0% vs. 67.8%), multidrug resistance rates (1.2% vs. 65.8%), and mortality rates (1.8% vs 6.9%). CONCLUSION: The identification of CRE cases based solely on imipenem resistance has had a limited impact on clinical management. Emphasizing resistance to meropenem is crucial in defining CRE, which pose both clinical and public health burden. This emphasis will enable the efficient allocation of limited health and public health resources and preservation of newly developed antimicrobials.


Asunto(s)
Antiinfecciosos , Imipenem , Humanos , Meropenem/farmacología , Imipenem/farmacología , Vigilancia en Salud Pública , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Cefmetazol , Escherichia coli , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
20.
Sci Rep ; 14(1): 3148, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326428

RESUMEN

Antimicrobial resistance has emerged as one of the leading public health threats of the twenty-first century. Gram-negative pathogens have been a major contributor to the declining efficacy of antibiotics through both acquired resistance and tolerance. In this study, a pan-drug resistant (PDR), NDM-1 and CTX-M-15 co-producing isolate of K. pneumoniae, CDC Nevada, (Kp Nevada) was exposed to the clinical combination of aztreonam + ceftazidime/avibactam (ATM/CAZ/AVI) to overcome metallo-ß-lactamases. Unexpectedly, the ß-lactam combination resulted in long filamentous cell formation induced by PBP3 inhibition over 168 h in the hollow fiber infection model experiments with eventual reversion of the total population upon drug removal. However, the addition of imipenem to the two drug ß-lactam combination was highly synergistic with suppression of all drug resistant subpopulations over 5 days. Scanning electron microscopy and fluorescence microscopy for all imipenem combinations in time kill studies suggested a role for imipenem in suppression of long filamentous persisters, via the formation of metabolically active spheroplasts. To complement the imaging studies, salient transcriptomic changes were quantified using RT-PCR and novel cassette assay evaluated ß-lactam permeability. This showed significant upregulation of both spheroplast protein Y (SPY), a periplasmic chaperone protein that has been shown to be related to spheroplast formation, and penicillin binding proteins (PBP1, PBP2, PBP3) for all combinations involving imipenem. However, with aztreonam alone, pbp1, pbp3 and spy remained unchanged while pbp2 levels were downregulated by > 25%. Imipenem displayed 207-fold higher permeability as compared with aztreonam (mean permeability coefficient of 17,200 nm/s). Although the clinical combination of aztreonam/avibactam and ceftazidime has been proposed as an important treatment of MBL Gram-negatives, we report the first occurrence of long filamentous persister formation. To our knowledge, this is the first study that defines novel ß-lactam combinations involving imipenem via maximal suppression of filamentous persisters to combat PDR CDC Nevada K. pneumoniae.


Asunto(s)
Compuestos de Azabiciclo , Ceftazidima , Klebsiella pneumoniae , Ceftazidima/farmacología , Klebsiella pneumoniae/metabolismo , Aztreonam/farmacología , Antibacterianos/farmacología , Imipenem/farmacología , beta-Lactamasas/metabolismo , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...