Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042
Filtrar
1.
Clin Chim Acta ; 558: 119678, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641194

RESUMEN

Recurrent implantation failure (RIF) is a significant obstacle in assisted reproductive procedures, primarily because of compromised receptivity. As such, there is a need for a dependable and accurate clinical test to evaluate endometrial receptiveness, particularly during embryo transfer. MicroRNAs (miRNAs) have diverse functions in the processes of implantation and pregnancy. Dysregulation of miRNAs results in reproductive diseases such as recurrent implantation failure (RIF). The endometrium secretes several microRNAs (miRNAs) during the implantation period, which could potentially indicate whether the endometrium is suitable for in vitro fertilization (IVF). The goal of this review is to examine endometrial miRNAs as noninvasive biomarkers that successfully predict endometrium receptivity in RIF.


Asunto(s)
Implantación del Embrión , MicroARNs , Humanos , Femenino , MicroARNs/genética , Implantación del Embrión/genética , Útero/metabolismo , Líquidos Corporales/metabolismo , Líquidos Corporales/química , Endometrio/metabolismo , Embarazo , Fertilización In Vitro , Biomarcadores/metabolismo
2.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574734

RESUMEN

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción AP-2 , Factores de Transcripción , Animales , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Femenino , Implantación del Embrión/genética , Redes Reguladoras de Genes , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Regiones Promotoras Genéticas/genética , Tretinoina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética
3.
Mol Cell Probes ; 74: 101955, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479679

RESUMEN

Recurrent implantation failure (RIF) is a condition with a multifactorial basis. Recent research has focused on the role of genetic factors in the pathophysiology of RIF. Of particular note, miRNAs have been found to contribute to the pathogenesis of RIF. Several miRNA polymorphisms have been investigated in this context. Moreover, dysregulation of expression of a number of miRNAs, including miR-374a-5p, miR-145-5p, miR-30b-5p, miR-196b-5p, miR-22, miR-181 and miR-145 has been found in RIF. This review concentrates on the role of miRNAs in RIF to help in identification of the molecular basis for this condition and design of more effective methods for management of RIF, especially in a personalized manner that relies on the expression profiles of miRNAs in the peripheral blood or endometrium.


Asunto(s)
MicroARNs , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Implantación del Embrión/genética
4.
Front Endocrinol (Lausanne) ; 15: 1314214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495790

RESUMEN

Successful pregnancy requires the tolerance of the maternal immune system for the semi-allogeneic embryo, as well as a synchrony between the receptive endometrium and the competent embryo. The annexin family belongs to calcium-regulated phospholipid-binding protein, which functions as a membrane skeleton to stabilize the lipid bilayer and participate in various biological processes in humans. There is an abundance of the annexin family at the maternal-fetal interface, and it exerts a crucial role in embryo implantation and the subsequent development of the placenta. Altered expression of the annexin family and dysfunction of annexin proteins or polymorphisms of the ANXA gene are involved in a range of pregnancy complications. In this review, we summarize the current knowledge of the annexin A protein family at the maternal-fetal interface and its association with female reproductive disorders, suggesting the use of ANXA as the potential therapeutic target in the clinical diagnosis and treatment of pregnancy complications.


Asunto(s)
Implantación del Embrión , Complicaciones del Embarazo , Embarazo , Femenino , Humanos , Implantación del Embrión/genética , Placenta/metabolismo , Endometrio/metabolismo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo , Anexinas/genética , Anexinas/metabolismo
5.
J Clin Invest ; 134(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426493

RESUMEN

Early gestational loss occurs in approximately 20% of all clinically recognized human pregnancies and is an important cause of morbidity. Either embryonic or maternal defects can cause loss, but a functioning and receptive uterine endometrium is crucial for embryo implantation. We report that the switch/sucrose nonfermentable (SWI/SNF) remodeling complex containing polybromo-1 (PBRM1) and Brahma-related gene 1 (BRG1) is essential for implantation of the embryonic blastocyst on the wall of the uterus in mice. Although preimplantation development is unaffected, conditional ablation of Pbrm1 in uterine stromal cells disrupts progesterone pathways and uterine receptivity. Heart and neural crest derivatives expressed 2 (Hand2) encodes a basic helix-loop-helix (bHLH) transcription factor required for embryo implantation. We identify an enhancer of the Hand2 gene in stromal cells that requires PBRM1 for epigenetic histone modifications/coactivator recruitment and looping with the promoter. In Pbrm1cKO mice, perturbation of chromatin assembly at the promoter and enhancer sites compromises Hand2 transcription, adversely affects fibroblast growth factor signaling pathways, prevents normal stromal-epithelial crosstalk, and disrupts embryo implantation. The mutant female mice are infertile and provide insight into potential causes of early pregnancy loss in humans.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Animales , Femenino , Humanos , Ratones , Embarazo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cromatina/metabolismo , Implantación del Embrión/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Útero
6.
Genes (Basel) ; 15(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38397233

RESUMEN

The primary goal of this investigation was to identify mRNA targets affected by dysregulated miRNAs in RIF. This was accomplished by comprehensively analyzing mRNA and miRNA expression profiles in two groups: female subjects with normal reproductive function (control, n = 5) and female subjects experiencing recurrent implantation failure (RIF, n = 5). We conducted transcriptome sequencing and small RNA sequencing on endometrial tissue samples from these cohorts. Subsequently, we validated a selection of intriguing findings using real-time PCR with samples from the same cohort. In total, our analysis revealed that 929 mRNAs exhibited differential expression patterns between the control and RIF patient groups. Notably, our investigation confirmed the significant involvement of dysregulated genes in the context of RIF. Furthermore, we uncovered promising correlation patterns within these mRNA/miRNA pairs. Functional categorization of these miRNA/mRNA pairs highlighted that the differentially expressed genes were predominantly associated with processes such as angiogenesis and cell adhesion. We identified new target genes that are regulated by miR-665, including Blood Vessel Epicardial Substance (BVES) and Adenosylhomocysteinase like 2 (AHCYL2). Our findings suggest that abnormal regulation of genes involved in angiogenesis and cell adhesion, including BVES and AHCYL2, contributes to the endometrial dysfunction observed in women with recurrent implantation failure (RIF) compared to healthy women.


Asunto(s)
Implantación del Embrión , MicroARNs , Femenino , Humanos , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Implantación del Embrión/genética , Endometrio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Sci Rep ; 14(1): 3900, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365979

RESUMEN

The establishment of the fetomaternal interface depends on precisely regulated communication between the conceptus and the uterine environment. Recent evidence suggests that microRNAs (miRNAs) may play an important role in embryo-maternal dialogue. This study aimed to determine the expression profile of endometrial miRNAs during days 26-28 of equine pregnancy. Additionally, the study aimed to predict target genes for differentially expressed miRNAs (DEmiRs) and their potential role in embryo attachment, adhesion, and implantation. Using next-generation sequencing, we identified 81 DEmiRs between equine endometrium during the pre-attachment period of pregnancy (day 26-28) and endometrium during the mid-luteal phase of the estrous cycle (day 10-12). The identified DEmiRs appear to have a significant role in regulating the expression of genes that influence cell fate and properties, as well as endometrial receptivity formation. These miRNAs include eca-miR-21, eca-miR-126-3p, eca-miR-145, eca-miR-451, eca-miR-491-5p, members of the miR-200 family, and the miRNA-17-92 cluster. The target genes predicted for the identified DEmiRs are associated with ion channel activity and sphingolipid metabolism. Furthermore, it was noted that the expression of mucin 1 and leukemia inhibitory factor, genes potentially regulated by the identified DEmiRs, was up-regulated at day 26-28 of pregnancy. This suggests that miRNAs may play a role in regulating specific genes to create a favorable uterine environment that is necessary for proper attachment, adhesion, and implantation of the embryo in mares.


Asunto(s)
Implantación del Embrión , MicroARNs , Embarazo , Caballos/genética , Animales , Femenino , Implantación del Embrión/genética , Endometrio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Útero/metabolismo , Embrión de Mamíferos/metabolismo
8.
J Assist Reprod Genet ; 41(3): 781-793, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38270749

RESUMEN

PURPOSE: Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation? METHODS: We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells. RESULTS: Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids. CONCLUSION: Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.


Asunto(s)
MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Técnicas de Cocultivo , Desarrollo Embrionario/genética , Endometrio/metabolismo
9.
Lab Invest ; 104(4): 100327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237738

RESUMEN

Impaired endometrial decidualization is the primary cause of recurrent implantation failure (RIF). RNA methylation modification, especially NSUN family mediated m5C, is crucial for various physiological events, such as maternal-to-zygotic transition, gametogenesis, embryonic development, organismal lifespan, and cell cycle. However, the regulatory mechanisms between NSUN family mediated m5C modification and RIF remain unknown. We acquired NSUN2 expression data of 15 human endometrium samples at proliferative and secretory stages from reproductive cell atlas. The overall pattern of m5C sites and genes was elucidated through m5C-BS-seq, whereas the overall m5C levels in different groups were revealed by dot blot assay. BrdU and western blotting assays were carried out to evaluate the role of NSUN2 in proliferation and autophagy. The effects of NSUN2-mediated m5C modification on embryo attachment were evaluated by an in vitro model of a confluent monolayer of Ishikawa cells cocultured with BeWo spheroids, and its downstream targets were evaluated by real-time reverse-transcription PCR and western blotting in Ishikawa cells. The molecular mechanism for NSUN2 regulating its downstream targets' expression was determined by Cut&Tag and coimmunoprecipitation assays. NSUN2 was increased in SOX9+ cells and widespread in epithelial cell type at the proliferative stage by previous single-cell RNA sequencing data. NSUN2 overexpression (NSUN2OE) in the Ishikawa cell line elevated m5C levels and promoted cell proliferation and autophagy. NSUN2OE reduced attachment efficiency of BeWo cell spheres. Overexpressed NSUN2 was found to increase STAT1 and MMP14 mRNA expressions by inducing exon skipping. NSUN2 interacted with CLDN4 through m5C modification, and NSUN2OE or NSUN2 knockdown resulted in a similar variation tendency of CLDN4. Overexpression of NSUN2 increased CLDN4 H3K9ac modification by downregulating SIRT4 expression at the protein level, leading to the upregulation of CLDN4 mRNA expression. Our results uncovered a novel intricate regulatory mechanism between NSUN2-mediated m5C and RIF and suggested a potential new therapeutic strategy for RIF.


Asunto(s)
Implantación del Embrión , Endometrio , Embarazo , Femenino , Humanos , Implantación del Embrión/genética , Metilación , Línea Celular , ARN Mensajero/metabolismo , Metiltransferasas/metabolismo
10.
Cell Rep ; 43(2): 113701, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38277271

RESUMEN

Human embryo implantation is remarkably inefficient, and implantation failure remains among the greatest obstacles in treating infertility. Gene expression data from human embryos have accumulated rapidly in recent years; however, identification of the subset of genes that determine successful implantation remains a challenge. We leverage clinical morphologic grading-known for decades to correlate with implantation potential-and transcriptome analyses of matched embryonic and abembryonic samples to identify factors and pathways enriched and depleted in human blastocysts of good and poor morphology. Unexpectedly, we discovered that the greatest difference was in the state of extraembryonic primitive endoderm (PrE) development, with relative deficiencies in poor morphology blastocysts. Our results suggest that implantation success is most strongly influenced by the embryonic compartment and that deficient PrE development is common among embryos with decreased implantation potential. Our study provides a valuable resource for those investigating the markers and mechanisms of human embryo implantation.


Asunto(s)
Desarrollo Embrionario , Endodermo , Humanos , Desarrollo Embrionario/genética , Implantación del Embrión/genética , Blastocisto/metabolismo , Embrión de Mamíferos
11.
Reprod Biol Endocrinol ; 22(1): 16, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297297

RESUMEN

During embryo implantation, blastocyst interacts with the receptivity endometrium and the endometrial epithelium secretes nurturing fluid to support embryonic development. Interferon-λ (IFN-λ) is a novel, non-redundant regulator that participates in the fetal-maternal interaction; however, the precise molecular mechanism underlying its impact on uterine receptivity remains elusive. Here, microarray profiling revealed that 149 specific miRNAs were differentially expressed in the human endometrial cells following IFN-λ treatment. In particular, miR-124-3p expression was significantly reduced after IFN-λ treatment (p < 0.05). An in vivo mouse pregnancy model showed that miR-124-3p overexpression notably decreased embryo implantation rate and led to an aberrant epithelial phenotype. Furthermore, miR-124-3p negatively impacted the migration and proliferation of endometrial cells, and hindered embryonic developmental competence in terms of blastocyst formation and global DNA re-methylation. Downstream analysis showed that LIF, MUC1 and BCL2 are potential target genes for miR-124-3p, which was confirmed using western blotting and immunofluorescence assays. In conclusion, IFN-λ-driven downregulation of miR-124-3p during embryo implantation modulates uterine receptivity. The dual functional role of miR-124-3p suggests a cross-talk model wherein, maternal endometrial miRNA acts as a transcriptomic modifier of the peri-implantation endometrium and embryo development.


Asunto(s)
Interferón lambda , MicroARNs , Embarazo , Femenino , Humanos , Ratones , Animales , Implantación del Embrión/genética , Útero/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Endometrio/metabolismo , Desarrollo Embrionario/genética
12.
J Assist Reprod Genet ; 41(2): 493-504, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049704

RESUMEN

BACKGROUND: Endometrial receptivity (ER), a pivotal event for successful embryo implantation, refers to the capacity of endometrium to allow the adhesion of the trophectoderm of the blastocyst to endometrial cells. In this paper, we set to elucidate whether the peptides encoded by lncRNAs could influence trophoblast cells' adhesion to endometrial cells. METHODS: WGCNA construction and bioinformatics were used to find out the ER-related lncRNAs with coding potential. Protein analysis was done by immunoblotting and immunofluorescence (IF) microscopy. CCK-8 and Calcein-AM/PI double staining assays were employed to evaluate cell viability. The effect of the peptide on trophoblast spheroids' adhesion to endometrial cells was evaluated. The RNA sequencing (RNA-seq) analysis was applied to identify downstream molecular processes. RESULTS: lncRNA LINC00339 was found to be related to ER development and it had been predicted to have protein-coding potential. LINC00339 had high occupancy of ribosomes and was confirmed to encode a 49-aa peptide (named LINC00339-205-49aa). LINC00339-205-49aa could promote the attachment of JAR trophoblast spheroids to Ishikawa endometrial cells in vitro. LINC00339-205-49aa also upregulated the expression of E-cadherin in Ishikawa cells. Mechanistically, MAPK and PI3K-Akt signaling pathways were involved in the modulation of LINC00339-205-49aa, which were activated by LINC00339-205-49aa in Ishikawa cells. CONCLUSION: These data demonstrate that a previously uncharacterized peptide encoded by lncRNA LINC00339 has the ability to enhance JAR trophoblast spheroids' adhesion to Ishikawa endometrial cells, highlighting a new opportunity for the development of drugs to improve ER.


Asunto(s)
ARN Largo no Codificante , Femenino , Humanos , ARN Largo no Codificante/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Endometrio/metabolismo , Implantación del Embrión/genética , Trofoblastos/metabolismo , Línea Celular Tumoral , Transducción de Señal/genética , Adhesión Celular/genética , Péptidos
13.
Gene Expr Patterns ; 51: 119346, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940010

RESUMEN

Exosome Complex Components 1 and 2 (EXOSC1 and 2) are two proteins in the RNA Exosome complex whose main function is 5' → 3' RNA degradation and processing. The RNA exosome complex is comprised of nine subunits that form two separate components: the S1/KH cap and the PH-core. EXOSC1 and 2 are both part of the S1/KH cap and are involved in binding nascent RNA. As part of a systemic characterization of early lethal alleles produced by the Knockout Mouse Project, we have examined Exosc1 and Exosc2 homozygous null (mutant) embryos to determine developmental and molecular phenotypes of embryos lacking their functions. Our studies reveal that Exosc1 null embryos implant and form an egg cylinder but are developmentally delayed and fail to initiate gastrulation by embryonic day 7.5. In contrast, Exosc2 null embryos are lethal during peri-implantation stages, and while they do form a morphologically normal blastocyst at E3.5, they cannot be recovered at post-implantation stages. We show the absence of stage-specific developmental and altered lineage-specification in both Exosc1 and Exosc2 mutant embryos and conclude that these genes are essential for the successful progression through early mammalian development.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Exosomas , Ratones , Animales , Ratones Noqueados , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Blastocisto/metabolismo , Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Mamíferos
14.
Reprod Sci ; 31(4): 1028-1033, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37964074

RESUMEN

MicroRNAs (miRNAs) and mRNAs can serve as indicators of the chromosomal state of an embryo, with different profiles observed in euploid and aneuploid blastocysts. Examining the levels of miRNAs associated with aneuploidy and euploidy, as well as mRNAs related to implantation, can aid in predicting blastocyst chromosomal normality and improving assisted reproductive technology (ART) outcomes. This study analyzed chromosomal abnormality of 25 blastocysts using fluorescence in situ hybridization (FISH) and also the expression of genes ERBB4, SELL, ITGB3, and ITGAV, as well as miRNAs, miR-339, miR-27b, miR-661, miR-30c, miR-191, miR-345, miR-142, miR-141, miR-20a, and miR-372. We found that 17 out of 25 embryos were aneuploid. Moreover, results revealed lower expression levels of miR-30c and miR-372 in aneuploid embryos compared to euploid ones, while ITGAV and ITGB3 showed significantly higher expression in aneuploid embryos. These findings suggest that miR-372, miR-30c, ITGAV, and ITGB3 expression in trophectoderm cells can serve as biomarkers for assessing embryo health.


Asunto(s)
MicroARNs , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Hibridación Fluorescente in Situ , Diagnóstico Preimplantación/métodos , Implantación del Embrión/genética , Aneuploidia , Blastocisto/metabolismo , Estudios Retrospectivos
15.
Anat Histol Embryol ; 53(1): e12976, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37724608

RESUMEN

Mouse embryos in the early-implantation stage require manipulation under a microscope. While the extraction of DNA, RNA and proteins from a single sample allows for both determination of genetic type and analysis of gene expression, whole mount analysis is not possible. In this study, we explored the applicability of PCR using extraembryonic tissues, especially the decidual side tissue after isolating the embryos from implantation sites to establish a method for determining the genetic type of embryos. The implantation site was resected at each day from the date of vaginal plug confirmation, separated into embryos and deciduae. Genomic DNA were isolated separately from the embryos and the deciduae. PCR was performed using these genomic DNA, and the band patterns were compared after electrophoresis. As a result, we demonstrated that detecting embryo-derived cells in the decidua allows determination of the sex and presence of transgenes without harming the mouse embryos themselves, from 8.5 days of age. This method enables the determination of the genetic type of mouse embryos without damaging. This technique would expand the adaptations for analysis of mouse implanted embryos.


Asunto(s)
Decidua , Implantación del Embrión , Femenino , Ratones , Animales , Decidua/metabolismo , Implantación del Embrión/genética , ADN/metabolismo
16.
Adv Biol (Weinh) ; 8(1): e2300110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690851

RESUMEN

Recurrent implantation failure (RIF) remains a complex and poorly characterized disorder despite significant advancements in assisted reproductive technology. This study utilizes single-cell transcriptome sequencing (scRNA-seq) to characterize the mid-secretory endometrium of RIF patients. Stromal fibroblast-enriched and epithelium-enriched populations are collected using a two-step dissociation process. After quality control, 25,315 individual cells from 3 RIF patients are analyzed. The analysis identifies 12 distinct cell types, including 6 subtypes of epithelial cells. Significantly, the study reveals the replacement of glandular epithelia with MAP2K6+ EPCAMDIM epithelia in the endometrial glands of RIF patients. Furthermore, the study demonstrates that endometrial gland organoids derived from RIF patients exhibit diminished responses to sex steroids compared to the controls. Single-cell regulatory network inference and clustering (SCENIC) analysis identifies cell-specific cis-regulatory elements and constructed regulatory networks in both groups, showing alterations gene-regulatory networks in RIF patients. Cell-cell communication analysis distinguishes intercellular communication between the two groups, shedding light on disrupted cellular interactions associated with RIF. In summary, these findings provide valuable insights into the cellular and molecular mechanisms underlying RIF, highlighting the roles of epithelial cells in the implantation process.


Asunto(s)
ARN , Transcriptoma , Femenino , Humanos , Transcriptoma/genética , ARN/metabolismo , Implantación del Embrión/genética , Endometrio/metabolismo , Redes Reguladoras de Genes
17.
Int J Gynaecol Obstet ; 165(1): 148-154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38112221

RESUMEN

OBJECTIVE: The aim of our study was that to assess the allelic and genotype frequencies of nine prothrombotic gene variants in patients with a history of pregnancy loss and recurrent pregnancy loss (RPL). Women who underwent assisted reproductive technology (ART) with ongoing pregnancy and those with recurrent implantation failure (RIF) were also included. METHODS: Nine prothrombotic gene variants were evaluated: factor V Leiden (FVL), factor V, H1299R variant (FVR2), factor II (FII) G20210A, methylene-tetrahydrofolate reductase (MTHFR) C677T and A1298C, beta-fibrinogen -455G>A, factor XIII (FXIII) V34L, human platelet antigen-1 (HPA-1) L33P variants, and plasminogen activator inhibitor-1 (PAI-1) 4G/5G. The following study groups were assessed: (1) women who experienced one (n = 334) or two (n = 264) episodes of pregnancy loss; (2) 468 women who experienced RPL; (3) 214 women who underwent ART followed by ongoing pregnancies; and (4) 282 women who experienced RIF after ART, that is, three or more consecutive implantation failures following high-quality embryo transfers to the uterus with an appropriate endometrium. As control group, 430 subjects from the general population were enrolled. RESULTS: FVL, the -455G>A variant of beta-fibrinogen, and PAI-1 4G were associated with a higher risk of developing RPL compared with the general population. Furthermore, FVL, FVR2, FII G20210A and MTHFR C677T conferred a significantly higher risk of RIF in women who performed ART compared with the general population. No statistical differences between the general population and other study groups were observed. CONCLUSIONS: Specific prothrombotic genetic variants are more frequently expressed in women with RPL and RIF, supporting their role in the development of polimicrothrombosis and impairing the invasion during embryo implantation.


Asunto(s)
Aborto Habitual , Trombofilia , Embarazo , Humanos , Femenino , Inhibidor 1 de Activador Plasminogénico/genética , Estudios Retrospectivos , Aborto Habitual/genética , Factor V/genética , Implantación del Embrión/genética , Protrombina/genética , Fibrinógeno/genética , Trombofilia/genética
18.
Clin Chim Acta ; 553: 117731, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128815

RESUMEN

Recurrent implantation failure (RIF), defined as the inability to achieve conception following multiple consecutive in-vitro fertilization (IVF) attempts, represents a complex and multifaceted challenge in reproductive medicine. The emerging role of non-coding RNAs in RIF etiopathogenesis has only gained prominence over the last decade, illustrating a new dimension to our understanding of the intricate network underlying RIF. Successful embryo implantation demands a harmonious synchronization between an adequately decidualized endometrium, a competent blastocyst, and effective maternal-embryonic interactions. Emerging evidence has clarified the involvement of a sophisticated network of non-coding RNAs, including microRNAs, circular RNAs, and long non-coding RNAs, in orchestrating these pivotal processes. Disconcerted expression of these molecules can disrupt the delicate equilibrium required for implantation, amplifying the risk of RIF. This comprehensive review presents an in-depth investigation of the complex role played by non-coding RNAs in the pathogenesis of RIF. Furthermore, it underscores the vast potential of non-coding RNAs as diagnostic biomarkers and therapeutic targets, with the ultimate goal of enhancing implantation success rates in IVF cycles. As ongoing research continues to unravel the intercalated web of molecular interactions, exploiting the power of non-coding RNAs may offer promising avenues for mitigating the challenges posed by RIF and improving the outcomes of assisted reproduction.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Femenino , Humanos , Implantación del Embrión/genética , Fertilización In Vitro , MicroARNs/metabolismo , Endometrio/metabolismo , Endometrio/patología , ARN Largo no Codificante/metabolismo
19.
Pathol Res Pract ; 253: 155057, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147725

RESUMEN

Recurrent implantation failure (RIF) is a complex clinical entity with several molecular pathways contributing to its pathogenesis. Long non-coding RNAs (lncRNAs) have recently been found to affect the normal implantation, thus aberrant expression of these transcripts is involved in RIF. Altered expression of HOXA11-AS, NONHSAT193031.1, NONHSAT053761.2, NONHSAT083203.2, LUCAT1, PART1, TUNAR, LINC02190, lncSAMD11-1:1 and H19 has been reported in this condition. Moreover, polymorphisms within some lncRNAs have been shown to be associated with miscarriage/RIF. The current review article summarizes the recent data about the role of lncRNAs in RIF. This information would pave the way for identification of the molecular events in this context.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Implantación del Embrión/genética , Factores de Transcripción/metabolismo
20.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069116

RESUMEN

The growing prevalence of in vitro fertilization-embryo transfer procedures has resulted in an increased incidence of recurrent implantation failure (RIF), necessitating focused research in this area. STAT3, a key factor in maternal endometrial remodeling and stromal proliferation, is crucial for successful embryo implantation. While the relationship between STAT3 and RIF has been studied, the impact of single nucleotide polymorphisms (SNPs) in miRNAs, well-characterized gene expression modulators, on STAT3 in RIF cases remains uncharacterized. Here, we investigated 161 RIF patients and 268 healthy control subjects in the Korean population, analyzing the statistical association between miRNA genetic variants and RIF risk. We aimed to determine whether SNPs in specific miRNAs, namely miR-218-2 rs11134527 G>A, miR-34a rs2666433 G>A, miR-34a rs6577555 C>A, and miR-130a rs731384 G>A, were significantly associated with RIF risk. We identified a significant association between miR-34a rs6577555 C>A and RIF prevalence (implantation failure [IF] ≥ 2: adjusted odds ratio [AOR] = 2.264, 95% CI = 1.007-5.092, p = 0.048). These findings suggest that miR-34a rs6577555 C>A may contribute to an increased susceptibility to RIF. However, further investigations are necessary to elucidate the precise mechanisms underlying the role of miR-34a rs6577555 C>A in RIF. This study sheds light on the genetic and molecular factors underlying RIF, offering new avenues for research and potential advancements in the diagnosis and treatment of this complex condition.


Asunto(s)
MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Implantación del Embrión/genética , Polimorfismo de Nucleótido Simple , Transducción de Señal/genética , República de Corea/epidemiología , Endometrio/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...