Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.425
Filtrar
1.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408795

RESUMEN

Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.


Asunto(s)
MicroARNs , Inanición , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Hígado/metabolismo , Inanición/metabolismo , Homeostasis/genética
2.
Neuroendocrinology ; 114(5): 453-467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38142675

RESUMEN

INTRODUCTION: Neuropeptides regulate vital physiological processes in multicellular organisms, including growth, reproduction, metamorphosis, and feeding. Recent transcriptome analyses have revealed neuropeptide genes with potential roles in vertebrate and invertebrate growth and reproduction. Among these genes, haliotid growth-associated peptide (HGAP) was identified as a novel gene in abalone. METHODS: This study focused on HGAP in Pacific abalone (Haliotis discus hannai), where the complete cDNA sequence named Hdh-HGAP was identified and characterized. Samples from different experiments, such as metamorphosis, juvenile abalone growth, gonad development stages, muscle remodeling, and starvation, were collected for mRNA expression analysis. RESULTS: The sequence spans 552 bp, encoding 96 amino acids with a molecular weight of 10.96 kDa. Expression analysis revealed that Hdh-HGAP exhibited higher levels in muscle tissue. Notably, during metamorphosis, Hdh-HGAP exhibited greater expression in the trochophore, veliger, and juvenile stages than in the cell division stages. Regarding growth patterns, Hdh-HGAP was highly expressed during rapid growth compared to stunted, minimal, and normal growth. In gonadal development, Hdh-HGAP mRNA reached its highest expression level during the ripening stage, indicating a potential role in gonadal cell proliferation and maturation. The in vivo effects of GnRH on gonad development and the expression of the Hdh-HGAP neuropeptide indicate its involvement in regulating reproduction in Pacific abalone. While tissue remodeling is primarily governed by immune genes, Hdh-HGAP was also upregulated during muscle tissue remodeling. Conversely, Hdh-HGAP was downregulated during prolonged starvation. CONCLUSION: This study marks the first comprehensive exploration of the Hdh-HGAP neuropeptide gene in Pacific abalone, shedding light on its involvement in growth, reproduction, metamorphosis, tissue remodeling, and response to starvation, although regulatory mechanisms are mostly unknown.


Asunto(s)
Gastrópodos , Metamorfosis Biológica , Neuropéptidos , Reproducción , Animales , Gastrópodos/crecimiento & desarrollo , Gastrópodos/genética , Gastrópodos/metabolismo , Metamorfosis Biológica/fisiología , Reproducción/fisiología , Neuropéptidos/metabolismo , Neuropéptidos/genética , Inanición/metabolismo , Regulación del Desarrollo de la Expresión Génica
3.
Curr Biol ; 33(24): R1289-R1291, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38113839

RESUMEN

Lysosomes are highly dynamic organelles that rapidly respond to changes in cellular nutrient status. A new study identifies a phosphoinositide switch that dictates lysosome function during nutrient starvation.


Asunto(s)
Fosfatidilinositoles , Inanición , Humanos , Fosfatidilinositoles/metabolismo , Transducción de Señal , Nutrientes , Inanición/metabolismo , Lisosomas/metabolismo
4.
Sci Rep ; 13(1): 13153, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573414

RESUMEN

This study aimed to investigate the effects of different levels of autophagy induced by transient serum starvation on the metabolism, lipid metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) to preliminary elucidate the role and function of autophagy in the regulatory network of skeletal muscle development. Different levels of autophagy were induced by controlling the serum concentration in the culture system for 24 h. Apoptosis, membrane potential, reactive oxygen species (ROS), ATP, and myogenic and lipogenic differentiation markers were monitored to determine if autophagy affected the metabolism and differentiation of SMSCs. Autophagy was induced in SMSCs via serum starvation (5%, 15%), as evidenced by decreased p62 and mTOR phosphorylation levels and increased LC3B lipidation and AMPK phosphorylation levels. Transmission electron microscopy revealed the presence of autophagosomes, and the rates of morphologically abnormal nuclei and mitochondria gradually increased with the decrease in serum concentration, the number of autophagic lysosomes also increased, indicating that 5% serum starvation induced severe autophagy, while 15% serum starvation induced mild autophagy. Compared with the control group and 15% serum-starved SMSCs, SMSCs undergoing 5% serum starvation had the highest intracellular ATP and ROS levels, the highest percentage of apoptotic cells, and the lowest membrane potential. The 15% serum-starved SMSCs had the highest membrane potential, but the percentage of apoptotic cells did not change significantly compared with the control group. The levels of the myogenic markers MyoD1 and MHC were significantly higher in 15% serum-starved SMSCs than in serum-sufficient SMSCs and the lowest in the 5% serum-starved SMSCs. The lipid contents (measured by Oil Red O staining and quantification of triglycerides) and lipogenic markers Peroxisome Proliferators-activated Receptors γ and Lipoprotein Lipase were also significantly higher in SMSCs undergoing 15% serum starvation than in the control group, and the lowest in the 5% serum-starved SMSCs. Different levels of starvation stress induce different levels of autophagy. Mild autophagy induced by moderate serum starvation promotes the metabolism and differentiation of SMSCs, while severe autophagy renders SMSCs more apoptotic, abnormal metabolism and suppresses SMSC differentiation into adipocytes or myocytes, and reduces lipid metabolisms. Our study suggests that autophagy plays a role in skeletal muscle development and may help design strategies for improving meat production traits in domestic pigs.


Asunto(s)
Células Satélite del Músculo Esquelético , Inanición , Animales , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Diferenciación Celular , Autofagia , Inanición/metabolismo , Lípidos/farmacología , Adenosina Trifosfato/metabolismo , Músculo Esquelético/metabolismo
5.
Nat Aging ; 3(9): 1091-1106, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37580394

RESUMEN

Dietary restriction promotes longevity in several species via autophagy activation. However, changes to lysosomes underlying this effect remain unclear. Here using the nematode Caenorhabditis elegans, we show that the induction of autophagic tubular lysosomes (TLs), which occurs upon dietary restriction or mechanistic target of rapamycin inhibition, is a critical event linking reduced food intake to lifespan extension. We find that starvation induces TLs not only in affected individuals but also in well-fed descendants, and the presence of gut TLs in well-fed progeny is predictive of enhanced lifespan. Furthermore, we demonstrate that expression of Drosophila small VCP-interacting protein, a TL activator in flies, artificially induces TLs in well-fed worms and improves C. elegans health in old age. These findings identify TLs as a new class of lysosomes that couples starvation to healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans , Envejecimiento Saludable , Inanición , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Inanición/metabolismo , Lisosomas/metabolismo
6.
J Neurogenet ; 37(1-2): 70-77, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267057

RESUMEN

Animals increase their locomotion activity and reduce sleep duration under starved conditions. This suggests that sleep and metabolic status are closely interconnected. The nutrient and hunger sensors in the Drosophila brain, including diuretic hormone 44 (DH44)-, CN-, and cupcake-expressing neurons, detect circulating glucose levels in the internal milieu, regulate the insulin and glucagon secretion and promote food consumption. Food deprivation is known to reduce sleep duration, but a potential role mediated by the nutrient and hunger sensors in regulating sleep and locomotion activity remains unclear. Here, we show that DH44 neurons are involved in regulating starvation-induced sleep suppression, but CN neurons or cupcake neurons may not be involved in regulating starvation-induced sleep suppression or baseline sleep patterns. Inactivation of DH44 neurons resulted in normal daily sleep durations and patterns under fed conditions, whereas it ablated sleep reduction under starved conditions. Inactivation of CN neurons or cupcake neurons, which were proposed to be nutrient and hunger sensors in the fly brain, did not affect sleep patterns under both fed and starved conditions. We propose that the glucose-sensing DH44 neurons play an important role in mediating starvation-induced sleep reduction.


Asunto(s)
Proteínas de Drosophila , Inanición , Animales , Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteínas de Drosophila/metabolismo , Sueño/fisiología , Inanición/metabolismo , Encéfalo/metabolismo , Glucosa/metabolismo , Nutrientes
7.
Mar Biotechnol (NY) ; 25(2): 247-258, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36790593

RESUMEN

Releasing juvenile fish into resource-depleted waters is regarded as an effective way to restore fishery resources. However, during this stage, released fish are most vulnerable to long-term food deprivation due to environmental changes and low adaptability. Therefore, research regarding the energy regulation of fish under starvation stress is crucial to the optimization of release strategies. In this study, we performed a transcriptome analysis of the liver of Onychostoma sima subjected to starvation for 14 days. The results showed that, under long-term starvation, the liver regulated glucose homeostasis by activating the gluconeogenesis pathway. Meanwhile, the fatty acid metabolism pathway was activated to supply acetyl-coA to the TCA cycle, thus increasing mitochondrial ATP production and maintaining the balance of energy metabolism. Nevertheless, the activation of energy metabolism could not completely compensate for the role of exogenous nutrients, as evidenced by the downregulation of many genes involved in antioxidant defenses (e.g., cat, gpx3, mgst1, and mgst2) and immune response (e.g., c3, cd22, trnfrsf14, and a2ml). In summary, our data reveal the effects of long-term starvation on the energy metabolism and defensive regulation of starved juvenile fish, and these findings will provide important reference for the optimization of artificial release.


Asunto(s)
Hígado , Inanición , Animales , Hígado/metabolismo , Inanición/genética , Inanición/metabolismo , Perfilación de la Expresión Génica , Privación de Alimentos , Metabolismo Energético/genética , Transcriptoma
8.
Am J Physiol Endocrinol Metab ; 324(5): E390-E401, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791323

RESUMEN

There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here, we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1), area occupied by type I fibers = 61.0 ± 11.8%; 2), type I area = 36.0 ± 4.9% (P < 0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole body insulin sensitivity decreased markedly after starvation in group 1 (P < 0.01), whereas the decrease in group 2 was substantially smaller (P = 0.06). Nonesterified fatty acids and ß-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 versus 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.NEW & NOTEWORTHY Whether lipid-mediated insulin resistance occurs as a result of an increased or decreased capacity of skeletal muscle to oxidize lipids has been debated. We show that a 3-day fast results in increases in circulating lipids and insulin resistance in subjects expressing a high or low proportion of type I muscle fibers. High expression of type I is associated with a higher capacity to oxidize lipids and a greater loss of insulin sensitivity after starvation.


Asunto(s)
Resistencia a la Insulina , Inanición , Humanos , Ácidos Grasos no Esterificados/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Inanición/metabolismo , Lípidos , Metabolismo de los Lípidos , Oxidación-Reducción
9.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834616

RESUMEN

Molecular profiling of the hypothalamus in response to metabolic shifts is a critical cue to better understand the principle of the central control of whole-body energy metabolism. The transcriptional responses of the rodent hypothalamus to short-term calorie restriction have been documented. However, studies on the identification of hypothalamic secretory factors that potentially contribute to the control of appetite are lacking. In this study, we analyzed the differential expression of hypothalamic genes and compared the selected secretory factors from the fasted mice with those of fed control mice using bulk RNA-sequencing. We verified seven secretory genes that were significantly altered in the hypothalamus of fasted mice. In addition, we determined the response of secretory genes in cultured hypothalamic cells to treatment with ghrelin and leptin. The current study provides further insights into the neuronal response to food restriction at the molecular level and may be useful for understanding the hypothalamic control of appetite.


Asunto(s)
Hipotálamo , Inanición , Ratones , Animales , Hipotálamo/metabolismo , Leptina/metabolismo , Inanición/metabolismo , Apetito/fisiología , Ayuno/fisiología , Ghrelina/metabolismo , Perfilación de la Expresión Génica
10.
Nucleic Acids Res ; 51(1): 84-98, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36504323

RESUMEN

During starvation, organisms modify both gene expression and metabolism to adjust to the energy stress. We previously reported that Caenorhabditis elegans lacing AMP-activated protein kinase (AMPK) exhibit transgenerational reproductive defects associated with abnormally elevated trimethylated histone H3 at lysine 4 (H3K4me3) levels in the germ line following recovery from acute starvation. Here, we show that these H3K4me3 marks are significantly increased at promoters, driving aberrant transcription elongation resulting in the accumulation of R-loops in starved AMPK mutants. DNA-RNA immunoprecipitation followed by high-throughput sequencing (DRIP-seq) analysis demonstrated that a significant proportion of the genome was affected by R-loop formation. This was most pronounced in the promoter-transcription start site regions of genes, in which the chromatin was modified by H3K4me3. Like H3K4me3, the R-loops were also found to be heritable, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK mutant germ lines show considerably more RAD-51 (the RecA recombinase) foci at sites of R-loop formation, potentially sequestering them from their roles at meiotic breaks or at sites of induced DNA damage. Our study reveals a previously unforeseen role of AMPK in maintaining genome stability following starvation. The downstream effects of R-loops on DNA damage sensitivity and germline stem cell integrity may account for inappropriate epigenetic modification that occurs in numerous human disorders, including various cancers.


Asunto(s)
Caenorhabditis elegans , Epigénesis Genética , Inestabilidad Genómica , Estructuras R-Loop , Animales , Humanos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Infertilidad/genética , Inanición/metabolismo
11.
Hepatology ; 77(3): 789-801, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35829917

RESUMEN

BACKGROUND AND AIMS: Hepatocytes were the first cell type for which oscillations of cytoplasmic calcium levels in response to hormones were described. Since then, investigation of calcium dynamics in liver explants and culture has greatly increased our understanding of calcium signaling. A bottleneck, however, exists in observing calcium dynamics in a noninvasive manner because of the optical inaccessibility of the mammalian liver. Here, we aimed to take advantage of the transparency of the zebrafish larvae to image hepatocyte calcium dynamics in vivo at cellular resolution. APPROACH AND RESULTS: We developed a transgenic model expressing a calcium sensor, GCaMP6s, specifically in zebrafish hepatocytes. Using this, we provide a quantitative assessment of intracellular calcium dynamics during multiple contexts, including growth, feeding, ethanol-induced stress, and cell ablation. Specifically, we show that synchronized calcium oscillations are present in vivo , which are lost upon starvation. Starvation induces lipid accumulation in the liver. Feeding recommences calcium waves in the liver, but in a spatially restricted manner, as well as resolves starvation-induced hepatic steatosis. By using a genetically encoded scavenger for calcium, we show that dampening of calcium signaling accelerates the accumulation of starvation-related lipid droplets in the liver. Furthermore, ethanol treatment, as well as cell ablation, induces calcium flux, but with different dynamics. The former causes asynchronous calcium oscillations, whereas the latter leads to a single calcium spike. CONCLUSIONS: We demonstrate the presence of oscillations, waves, and spikes in vivo . Calcium waves are present in response to nutrition and negatively regulate starvation-induced accumulation of lipid droplets.


Asunto(s)
Inanición , Pez Cebra , Animales , Pez Cebra/metabolismo , Calcio/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Etanol/farmacología , Señalización del Calcio , Inanición/metabolismo , Mamíferos/metabolismo
12.
Cell Rep ; 41(2): 111473, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223742

RESUMEN

Nutrient availability governs growth and quiescence, and many animals arrest development when starved. Using C. elegans L1 arrest as a model, we show that gene expression changes deep into starvation. Surprisingly, relative expression of germline-enriched genes increases for days. We conditionally degrade the large subunit of RNA polymerase II using the auxin-inducible degron system and analyze absolute expression levels. We find that somatic transcription is required for survival, but the germline maintains transcriptional quiescence. Thousands of genes are continuously transcribed in the soma, though their absolute abundance declines, such that relative expression of germline transcripts increases given extreme transcript stability. Aberrantly activating transcription in starved germ cells compromises reproduction, demonstrating important physiological function of transcriptional quiescence. This work reveals alternative somatic and germline gene-regulatory strategies during starvation, with the soma maintaining a robust transcriptional response to support survival and the germline maintaining transcriptional quiescence to support future reproductive success.


Asunto(s)
Proteínas de Caenorhabditis elegans , Inanición , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Ácidos Indolacéticos/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Inanición/metabolismo
13.
Nat Metab ; 4(10): 1369-1401, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217034

RESUMEN

The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.


Asunto(s)
Insulinas , Inanición , Humanos , Masculino , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Lisosomas/metabolismo , Inanición/metabolismo , Adenosina Trifosfatasas/metabolismo , Caenorhabditis elegans , Adenosina Monofosfato/metabolismo , Fructosa/metabolismo , Insulinas/metabolismo
14.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293388

RESUMEN

For rapid and unlimited cell growth and proliferation, cancer cells require large quantities of nutrients. Many metabolic pathways and nutrient uptake systems are frequently reprogrammed and upregulated to meet the demand from cancer cells, including the demand for lipids. The lipids for most adult normal cells are mainly acquired from the circulatory system. Whether different cancer cells adopt identical mechanisms to ensure sufficient lipid supply, and whether the lipid demand and supply meet each other, remains unclear, and was investigated in lung cancer cells. Results showed that, despite frequent upregulation in de novo lipogenesis and the lipid transporter system, different lung cancer cells adopt different proteins to acquire sufficient lipids, and the lipid supply frequently exceeds the demand, as significant amounts of lipids stored in the lipid droplets could be found within lung cancer cells. Lipid droplet surface protein, PLIN3, was found frequently overexpressed since the early stage in lung cancer tissues. Although the expression is not significantly associated with a specific gender, age, histology type, disease stage, and smoking habit, the frequently elevated expression of PLIN3 protein indicates the importance of lipid droplets for lung cancer. These lipid droplets are not only for nutrient storage, but are also crucial for tumor growth and proliferation, as well as survival in starvation. These results suggest that manipulation of lipid droplet formation or TG storage in lung cancer cells could potentially decrease the progression of lung cancer. Further exploration of lipid biology in lung cancer could help design novel treatment strategies.


Asunto(s)
Neoplasias Pulmonares , Inanición , Adulto , Humanos , Gotas Lipídicas/metabolismo , Perilipina-3/metabolismo , Metabolismo de los Lípidos , Proliferación Celular , Proteínas de la Membrana/metabolismo , Inanición/metabolismo , Neoplasias Pulmonares/metabolismo , Lípidos/fisiología
15.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993761

RESUMEN

Autophagy is a cellular self-digestion process. It delivers cargo to the lysosomes for degradation in response to various stresses, including starvation. The malfunction of autophagy is associated with aging and multiple human diseases. The autophagy machinery is highly conserved-from yeast to humans. The larval fat body of Drosophila melanogaster, an analog for vertebrate liver and adipose tissue, provides a unique model for monitoring autophagy in vivo. Autophagy can be easily induced by nutrient starvation in the larval fat body. Most autophagy-related genes are conserved in Drosophila. Many transgenic fly strains expressing tagged autophagy markers have been developed, which facilitates the monitoring of different steps in the autophagy process. The clonal analysis enables a close comparison of autophagy markers in cells with different genotypes in the same piece of tissue. The current protocol details procedures for (1) generating somatic clones in the larval fat body, (2) inducing autophagy via amino acid starvation, and (3) dissecting the larval fat body, aiming to create a model for analyzing differences in autophagy using an autophagosome marker (GFP-Atg8a) and clonal analysis.


Asunto(s)
Proteínas de Drosophila , Inanición , Tejido Adiposo/metabolismo , Animales , Autofagia/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cuerpo Adiposo/metabolismo , Humanos , Larva/metabolismo , Inanición/metabolismo
16.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012534

RESUMEN

Glycogen is an easily accessible source of energy for various processes. In hepatocytes, it can be found in the form of individual molecules (ß-particles) and their agglomerates (α-particles). The glycogen content in hepatocytes depends on the physiological state and can vary due to the size and number of the particles. Using biochemical, cytofluorometric, interferometric and morphometric methods, the number of ß-particles in rat hepatocytes was determined after 48 h of fasting at different time intervals after glucose refeeding. It has been shown that after starvation, hepatocytes contain ~1.6 × 108 ß-particles. During refeeding, their number of hepatocytes gradually increases and reaches a maximum (~5.9 × 108) at 45 min after glucose administration, but then quickly decreases. The data obtained suggest that in cells there is a continuous synthesis and degradation of particles, and at different stages of life, one or another process predominates. It has been suggested that in the course of glycogenesis, pre-existing ß-particles are replaced by those formed de novo. The main contribution to the deposition of glycogen is made by an increase in the glucose residue number in its molecules. The average diameter of ß-particles of glycogen during glycogenesis increases from ~11 nm to 21 nm.


Asunto(s)
Glucógeno , Inanición , Animales , Ayuno , Glucosa/metabolismo , Glucógeno/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ratas , Inanición/metabolismo
17.
EMBO J ; 41(17): e112180, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35920021

RESUMEN

Refeeding after a period of starvation is known to suppress autophagy in the liver. Surprising new work by Seok et al (2022) shows that refeeding activates lipophagy in the intestine, which may help fats in our diet to be efficiently processed after a meal.


Asunto(s)
Metabolismo de los Lípidos , Inanición , Autofagia/fisiología , Humanos , Hígado/metabolismo , Inanición/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(32): e2208855119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914126

RESUMEN

Wild-type (WT) mice maintain viable levels of blood glucose even when adipose stores are depleted by 6 d of 60% calorie restriction followed by a 23-h fast (hereafter designated as "starved" mice). Survival depends on ghrelin, an octanoylated peptide hormone. Mice that lack ghrelin suffer lethal hypoglycemia when subjected to the same starvation regimen. Ghrelin is known to stimulate secretion of growth hormone (GH), which in turn stimulates secretion of IGF-1 (insulin-like growth factor-1). In the current study, we found that starved ghrelin-deficient mice had a 90% reduction in plasma IGF-1 when compared with starved WT mice. Injection of IGF-1 in starved ghrelin-deficient mice caused a twofold increase in glucose production and raised blood glucose to levels seen in starved WT mice. Increased glucose production was accompanied by increases in plasma glycerol, fatty acids and ketone bodies, and hepatic triglycerides. All of these increases were abolished when the mice were treated with atglistatin, an inhibitor of adipose tissue triglyceride lipase. We conclude that IGF-1 stimulates adipose tissue lipolysis in starved mice and that this lipolysis supplies energy and substrates that restore hepatic gluconeogenesis. This action of IGF-1 in starved mice is in contrast to its known action in inhibiting adipose tissue lipase in fed mice. Surprisingly, the ghrelin-dependent maintenance of plasma IGF-1 in starved mice was not mediated by GH. Direct injection of GH into starved ghrelin-deficient mice failed to increase plasma IGF-1. These data call attention to an unsuspected role of IGF-1 in the adaptation to starvation.


Asunto(s)
Glucemia , Factor I del Crecimiento Similar a la Insulina , Inanición , Adaptación Fisiológica , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Ácidos Grasos/sangre , Ghrelina/metabolismo , Gluconeogénesis , Glicerol/sangre , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Cuerpos Cetónicos/sangre , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Lipólisis , Hígado/metabolismo , Ratones , Compuestos de Fenilurea/farmacología , Inanición/sangre , Inanición/metabolismo , Triglicéridos/metabolismo
19.
Curr Biol ; 32(12): R684-R696, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35728554

RESUMEN

Maintaining nutrient and energy homeostasis is crucial for the survival and function of cells and organisms in response to environmental stress. Cells have evolved a stress-induced catabolic pathway, termed autophagy, to adapt to stress conditions such as starvation. During autophagy, damaged or non-essential cellular structures are broken down in lysosomes, and the resulting metabolites are reused for core biosynthetic processes or energy production. Recent studies have revealed that autophagy can target and degrade different types of nutrient stores and produce a variety of metabolites and fuels, including amino acids, nucleotides, lipids and carbohydrates. Here, we will focus on how autophagy functions to balance cellular nutrient and energy demand and supply - specifically, how energy deprivation switches on autophagic catabolism, how autophagy halts anabolism by degrading the protein synthesis machinery, and how bulk and selective autophagy-derived metabolites recycle and feed into a variety of bioenergetic and anabolic pathways during stress conditions. Recent new insights and progress in these areas provide a better understanding of how resource mobilization and reallocation sustain essential metabolic and anabolic activities under unfavorable conditions.


Asunto(s)
Autofagia , Inanición , Autofagia/fisiología , Metabolismo Energético , Humanos , Lisosomas/metabolismo , Nutrientes , Inanición/metabolismo
20.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35457083

RESUMEN

In insects, adipokinetic hormone is the primary hormone responsible for the mobilization of stored energy. While a growing body of evidence has solidified the role of adipokinetic hormone (AKH) in modulating the physiological and behavioral responses to metabolic stress, little is known about the upstream endocrine circuit that directly regulates AKH release. We evaluated the AKH-producing cell (APC) transcriptome to identify potential regulatory elements controlling APC activity and found that a number of receptors showed consistent expression levels, including all known dopamine receptors and the pigment dispersing factor receptor (PDFR). We tested the consequences of targeted genetic knockdown and found that APC limited expression of RNAi elements corresponding to each dopamine receptor and caused a significant reduction in survival under starvation. In contrast, PDFR knockdown significantly extended lifespan under starvation, whereas expression of a tethered PDF in APCs resulted in significantly shorter lifespans. These manipulations caused various changes in locomotor activity under starvation. We used live-cell imaging to evaluate the acute effects of the ligands for these receptors on APC activation. Dopamine application led to a transient increase in intracellular calcium in a trehalose-dependent manner. Furthermore, coapplication of dopamine and ecdysone led to a complete loss of this response, suggesting that these two hormones act antagonistically. We also found that PDF application led to an increase in cAMP in APCs and that this response was dependent on expression of the PDFR in APCs. Together, these results suggest a complex circuit in which multiple hormones act on APCs to modulate metabolic state.


Asunto(s)
Hormonas de Insectos , Inanición , Animales , Dopamina/metabolismo , Drosophila melanogaster/genética , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Transducción de Señal , Inanición/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...