Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293006

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) has continued to be a global concern. With the new HIV incidence, the emergence of multi-drug resistance and the untoward side effects of currently used anti-HIV drugs, there is an urgent need to discover more efficient anti-HIV drugs. Modern computational tools have played vital roles in facilitating the drug discovery process. This research focuses on a pharmacophore-based similarity search to screen 111,566,735 unique compounds in the PubChem database to discover novel HIV-1 protease inhibitors (PIs). We used an in silico approach involving a 3D-similarity search, physicochemical and ADMET evaluations, HIV protease-inhibitor prediction (IC50/percent inhibition), rigid receptor-molecular docking studies, binding free energy calculations and molecular dynamics (MD) simulations. The 10 FDA-approved HIV PIs (saquinavir, lopinavir, ritonavir, amprenavir, fosamprenavir, atazanavir, nelfinavir, darunavir, tipranavir and indinavir) were used as reference. The in silico analysis revealed that fourteen out of the twenty-eight selected optimized hit molecules were within the acceptable range of all the parameters investigated. The hit molecules demonstrated significant binding affinity to the HIV protease (PR) when compared to the reference drugs. The important amino acid residues involved in hydrogen bonding and п-п stacked interactions include ASP25, GLY27, ASP29, ASP30 and ILE50. These interactions help to stabilize the optimized hit molecules in the active binding site of the HIV-1 PR (PDB ID: 2Q5K). HPS/002 and HPS/004 have been found to be most promising in terms of IC50/percent inhibition (90.15%) of HIV-1 PR, in addition to their drug metabolism and safety profile. These hit candidates should be investigated further as possible HIV-1 PIs with improved efficacy and low toxicity through in vitro experiments and clinical trial investigations.


Asunto(s)
Fármacos Anti-VIH , Inhibidores de la Proteasa del VIH , VIH-1 , Humanos , Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , Darunavir/farmacología , Indinavir/química , Indinavir/metabolismo , Indinavir/farmacología , Nelfinavir/química , Nelfinavir/metabolismo , Nelfinavir/farmacología , Ritonavir/química , Saquinavir/metabolismo , Saquinavir/farmacología , Lopinavir/farmacología , Sulfato de Atazanavir/farmacología , Simulación del Acoplamiento Molecular , Fármacos Anti-VIH/farmacología , Aminoácidos/farmacología
2.
J Chem Inf Model ; 62(5): 1328-1344, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35212226

RESUMEN

A human immunodeficiency virus-1 (HIV-1) protease is a homodimeric aspartic protease essential for the replication of HIV. The HIV-1 protease is a target protein in drug discovery for antiretroviral therapy, and various inhibitor molecules of transition state analogues have been developed. However, serious drug-resistant mutants have emerged. For understanding the molecular mechanism of the drug resistance, an accurate examination of the impacts of the mutations on ligand binding and enzymatic activity is necessary. Here, we present a molecular simulation study on the ligand binding of indinavir, a potent transition state analogue inhibitor, to the wild-type protein and a V82T/I84V drug-resistant mutant of the HIV-1 protease. We employed a hybrid ab initio quantum mechanical/molecular mechanical (QM/MM) free-energy optimization technique which combines a highly accurate QM description of the ligand molecule and its interaction with statistically ample conformational sampling of the MM protein environment by long-time molecular dynamics simulations. Through the free-energy calculations of protonation states of catalytic groups at the binding pocket and of the ligand-binding affinity changes upon the mutations, we successfully reproduced the experimentally observed significant reduction of the binding affinity upon the drug-resistant mutations and elucidated the underlying molecular mechanism. The present study opens the way for understanding the molecular mechanism of drug resistance through the direct quantitative comparison of ligand binding and enzymatic reaction with the same accuracy.


Asunto(s)
Inhibidores de la Proteasa del VIH , Indinavir , Sitios de Unión , Farmacorresistencia Viral , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/química , Humanos , Indinavir/química , Indinavir/metabolismo , Indinavir/farmacología , Simulación de Dinámica Molecular , Mutación
3.
Comput Biol Chem ; 96: 107616, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34883394

RESUMEN

Retroviruses are a growing concern for the health of human beings, and one of the dangerous members of this family is the Human T-cell Leukemia Virus 1 (HTLV-1) virus. It has affected more than 20 million people so far, and since there are no registered treatments against it yet, urgent treatment solutions are needed. One of the most promising drug targets to fight this virus is the protease enzyme of the virus's protein machinery. In this study, by utilizing a computational method called Unaggregated Unbiased Molecular Dynamics (UUMD), we reconstructed the binding pathway of a HTLV-1 protease inhibitor, Indinavir, to find the details of the binding pathway, the influential residues, and also the stable states of the binding pathway. We achieved the native conformation of the inhibitor in 6 rounds, 360 replicas by performing over 4 micro-seconds of UMD simulations. We found 3 Intermediate states between the solvated state and the native conformation state in the binding pathway. We also discovered that aromatic residues such as Trp98 and Trp98', catalytic residues Asp32 and Asp32', and the flap region's residues have the most influential roles in the binding pathway and also have the most contribution to the total interaction energies. We believe that the details found in this study would be a great guide for developing new treatment solutions against the HTLV-1 virus by inhibiting the HTLV-1 protease.


Asunto(s)
Fármacos Anti-VIH/farmacología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Indinavir/farmacología , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Fármacos Anti-VIH/química , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión/efectos de los fármacos , Indinavir/química , Inhibidores de Proteasas/química , Agregado de Proteínas/efectos de los fármacos
4.
Aging (Albany NY) ; 13(5): 6258-6272, 2021 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-33678621

RESUMEN

It has been confirmed that the new coronavirus SARS-CoV-2 caused the global pandemic of coronavirus disease 2019 (COVID-19). Studies have found that 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for virus replication, and could be used as a potential target to inhibit SARS-CoV-2. In this work, 3CLpro was used as the target to complete the high-throughput virtual screening of the FDA-approved drugs, and Indinavir and other 10 drugs with high docking scores for 3CLpro were obtained. Studies on the binding pattern of 3CLpro and Indinavir found that Indinavir could form the stable hydrogen bond (H-bond) interactions with the catalytic dyad residues His41-Cys145. Binding free energy study found that Indinavir had high binding affinity with 3CLpro. Subsequently, molecular dynamics simulations were performed on the 3CLpro and 3CLpro-Indinavir systems, respectively. The post-dynamic analyses showed that the conformational state of the 3CLpro-Indinavir system transformed significantly and the system tended to be more stable. Moreover, analyses of the residue interaction network (RIN) and H-bond occupancy revealed that the residue-residue interaction at the catalytic site of 3CLpro was significantly enhanced after binding with Indinavir, which in turn inactivated the protein. In short, through this research, we hope to provide more valuable clues against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , SARS-CoV-2/enzimología , Inhibidores de Proteasa Viral/farmacología , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Aprobación de Drogas , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Indinavir/química , Indinavir/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteasa Viral/química
5.
J Biol Chem ; 296: 100223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33449875

RESUMEN

Cytochrome P450 (P450) 3A4 is the enzyme most involved in the metabolism of drugs and can also oxidize numerous steroids. This enzyme is also involved in one-half of pharmacokinetic drug-drug interactions, but details of the exact mechanisms of P450 3A4 inhibition are still unclear in many cases. Ketoconazole, clotrimazole, ritonavir, indinavir, and itraconazole are strong inhibitors; analysis of the kinetics of reversal of inhibition with the model substrate 7-benzoyl quinoline showed lag phases in several cases, consistent with multiple structures of P450 3A4 inhibitor complexes. Lags in the onset of inhibition were observed when inhibitors were added to P450 3A4 in 7-benzoyl quinoline O-debenzylation reactions, and similar patterns were observed for inhibition of testosterone 6ß-hydroxylation by ritonavir and indinavir. Upon mixing with inhibitors, P450 3A4 showed rapid binding as judged by a spectral shift with at least partial high-spin iron character, followed by a slower conversion to a low-spin iron-nitrogen complex. The changes were best described by two intermediate complexes, one being a partial high-spin form and the second another intermediate, with half-lives of seconds. The kinetics could be modeled in a system involving initial loose binding of inhibitor, followed by a slow step leading to a tighter complex on a multisecond time scale. Although some more complex possibilities cannot be dismissed, these results describe a system in which conformationally distinct forms of P450 3A4 bind inhibitors rapidly and two distinct P450-inhibitor complexes exist en route to the final enzyme-inhibitor complex with full inhibitory activity.


Asunto(s)
Clotrimazol/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/química , Indinavir/farmacología , Itraconazol/farmacología , Cetoconazol/farmacología , Ritonavir/farmacología , Esteroide Hidroxilasas/antagonistas & inhibidores , Animales , Biocatálisis , Clonación Molecular , Clotrimazol/química , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/química , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Hidroxiquinolinas/síntesis química , Hidroxiquinolinas/metabolismo , Indinavir/química , Itraconazol/química , Cetoconazol/química , Cinética , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ritonavir/química , Esteroide Hidroxilasas/química , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo
6.
Travel Med Infect Dis ; 35: 101646, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32294562

RESUMEN

BACKGROUND: The COVID-19 has now been declared a global pandemic by the World Health Organization. There is an emergent need to search for possible medications. METHOD: Utilization of the available sequence information, homology modeling, and in slico docking a number of available medications might prove to be effective in inhibiting the SARS-CoV-2 two main drug targets, the spike glycoprotein, and the 3CL protease. RESULTS: Several compounds were determined from the in silico docking models that might prove to be effective inhibitors for SARS-CoV-2. Several antiviral medications: Zanamivir, Indinavir, Saquinavir, and Remdesivir show potential as and 3CLPRO main proteinase inhibitors and as a treatment for COVID-19. CONCLUSION: Zanamivir, Indinavir, Saquinavir, and Remdesivir are among the exciting hits on the 3CLPRO main proteinase. It is also exciting to uncover that Flavin Adenine Dinucleotide (FAD) Adeflavin, B2 deficiency medicine, and Coenzyme A, a coenzyme, may also be potentially used for the treatment of SARS-CoV-2 infections. The use of these off-label medications may be beneficial in the treatment of the COVID-19.


Asunto(s)
Betacoronavirus/química , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Descubrimiento de Drogas/métodos , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/química , Alanina/uso terapéutico , Sitios de Unión , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/uso terapéutico , Humanos , Indinavir/química , Indinavir/uso terapéutico , Simulación del Acoplamiento Molecular , Uso Fuera de lo Indicado , Pandemias , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2 , Saquinavir/química , Saquinavir/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Homología Estructural de Proteína , Proteínas no Estructurales Virales/antagonistas & inhibidores , Zanamivir/química , Zanamivir/uso terapéutico , Tratamiento Farmacológico de COVID-19
7.
Phys Chem Chem Phys ; 22(8): 4464-4480, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32057044

RESUMEN

Infection by human immunodeficiency virus type 1 (HIV-1) not only destroys the immune system bringing about acquired immune deficiency syndrome (AIDS), but also induces serious neurological diseases including behavioral abnormalities, motor dysfunction, toxoplasmosis, and HIV-1 associated dementia. The emergence of HIV-1 multidrug-resistant mutants has become a major problem in the therapy of patients with HIV-1 infection. Focusing on the wild type (WT) and G48T/L89M mutated forms of HIV-1 protease (HIV-1 PR) in complex with amprenavir (APV), indinavir (IDV), ritonavir (RTV), and nelfinavir (NFV), we have investigated the conformational dynamics and the resistance mechanism due to the G48T/L89M mutations by conducting a series of molecular dynamics (MD) simulations and free energy (MM-PBSA and solvated interaction energy (SIE)) analyses. The simulation results indicate that alterations in the side-chains of G48T/L89M mutated residues cause the inner active site to increase in volume and induce more curling of the flap tips, which provide the main contributions to weaker binding of inhibitors to the HIV-1 PR. The results of energy analysis reveal that the decrease in van der Waals interactions of inhibitors with the mutated PR relative to the wild-type (WT) PR mostly drives the drug resistance of mutations toward these four inhibitors. The energy decomposition analysis further indicates that the drug resistance of mutations can be mainly attributed to the change in van der Waals and electrostatic energy of some key residues (around Ala28/Ala28' and Ile50/Ile50'). Our work can give significant guidance to design a new generation of anti-AIDS inhibitors targeting PR in the therapy of patients with HIV-1 infection.


Asunto(s)
Proteasa del VIH/metabolismo , Simulación de Dinámica Molecular , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Furanos , Proteasa del VIH/genética , Indinavir/química , Indinavir/metabolismo , Conformación Molecular , Mutación , Nelfinavir/química , Nelfinavir/metabolismo , Unión Proteica , Ritonavir/química , Ritonavir/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo
8.
Artif Cells Nanomed Biotechnol ; 47(1): 2123-2133, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31155961

RESUMEN

Introduction: Indinavir (IDV) is a potent HIV protease inhibitor used in the treatment of human immunodeficiency virus (HIV). IDV is a weak base with limited aqueous solubility in its unprotonated form; therefore, solubility of IDV in the gastrointestinal tract fluids is the rate-limiting step of its absorption and onset of action. However, in many cases, drugs are not absorbed well in the gastrointestinal tract; polymer nanoparticles were recognized as an effective carrier system for drug encapsulation and are now studied as a vehicle for oral delivery of insoluble compounds. Preparation of methoxy poly (ethylene glycol)-poly (e-caprolactone) (mPEG-PCL) nanoparticles is among the strategies to overcome low bioavailability of drugs with poor aqueous solubility. Materials and method: The structure of the copolymers was characterized using 1H NMR, FTIR, DSC and GPC techniques. IDV loaded mPEG- PCL nanoparticles prepared by emulsification solvent evaporation method were optimized using D-optimal experimental design and were characterized by various techniques such as DLS, DSC, XRD, AFM and SEM. Using Caco-2 cells as a cellular model, we studied the cellular uptake and transport. Results: In vivo pharmacokinetic studies were performed in rats. The plasma AUC (0-t), t1/2 and Cmax of IDV-mPEG-PCL NPs were increased by 5.30, 5.57 and 1.37 fold compared to the IDV solution, respectively. Conclusion: The results of this study are promising for the use of biodegradable polymeric nanoparticles to improve oral drug delivery.


Asunto(s)
Portadores de Fármacos/química , Indinavir/administración & dosificación , Indinavir/farmacocinética , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , Administración Oral , Animales , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Liberación de Fármacos , Humanos , Indinavir/química , Indinavir/metabolismo , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Solubilidad , Distribución Tisular
9.
Int J Pharm ; 567: 118446, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31220565

RESUMEN

Active pharmaceutical ingredients are composed of single-component or multicomponent crystals. Multicomponent crystals include salts, co-crystals, and solvates. Indinavir sulfate is the ethanol solvate form of indinavir that is known to deliquesce through moisture absorption. However, the detailed behavior of solvent molecules in the crystal has not been investigated. In this study, we studied the desolvation mechanism of indinavir sulfate ethanol and investigated the behavior of solvent molecules in the solid from. Indinavir sulfate ethanol contained 1.7 molecules of ethanol, 0.7 of which desolvated at room temperature. They were originally two ethanol solvent molecules; one molecule of ethanol desolvated at room temperature, and the conformation of the remaining ethanol and t-butyl groups changed in conjunction with the removal of one ethanol molecule. Desolvation could hardly be detected by powder X-ray diffraction; however, it was detected using terahertz spectroscopy. Terahertz measurement of desolvation showed a high correlation with thermogravimetry data, suggesting that desolvation could be observed non-destructively using terahertz spectroscopy. We concluded that indinavir sulfate 1 ethanol deliquesced at 60% relative humidity, and it turned into an amorphous solid after drying.


Asunto(s)
Etanol/química , Indinavir/química , Solventes/química , Desecación , Humedad , Difracción de Polvo , Espectroscopía de Terahertz , Difracción de Rayos X
10.
Curr Drug Deliv ; 16(4): 341-354, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30674257

RESUMEN

PURPOSE: As an anti-retroviral Protease Inhibitor (PI), Indinavir (IDV) is part of the regimen known as Highly Active Anti-Retroviral Therapy (HAART) widely used for Human Immunodeficiency Virus (HIV) infection. The drug efficiency in treatment of the brain manifestations of HIV is, however, limited which is mainly due to the efflux by P-glycoprotein (P-gp) expressed at the Blood-Brain Barrier (BBB). METHODS: To overcome the BBB obstacle, NLCs were used in this study as carriers for IDV, which were optimized through two steps: a "one-factor-at-a-time" screening followed by a systematic multiobjective optimization. Spherical smooth-surfaced Nanoparticles (NPs), average particle size of 161.02±4.8 nm, Poly-Dispersity Index (PDI) of 0.293±0.07, zeta potential of -40.62±2.21 mV, entrapment efficiency of 93±1.58%, and loading capacity of 9.15±0.15% were obtained after optimization which were, collectively, appropriate in terms of the objective of this study. RESULT: The surface of the optimized NPs was, then, modified with human Transferrin (TR) to improve the drug delivery. The particle size, zeta potential, and PDI of the TR-modified NLCs were 185.29±6.7nm, -28.68±3.37 mV, and 0.247±0.06, respectively. The in vitro release of IDV molecules from the NPs was best fitted to the Weibull model indicating hybrid diffusion/erosion behavior. CONCLUSION: As the major in vivo findings, compared to the free drug, the NLCs and TR-NLCs displayed significantly higher and augmented concentrations in the brain. In this case, NLC and TR-NLC were 6.5- and 32.75-fold in their values of the brain uptake clearance compared to free drug.


Asunto(s)
Antirretrovirales/farmacocinética , Sistemas de Liberación de Medicamentos , Indinavir/farmacocinética , Lípidos/química , Nanoestructuras/química , Fármacos Neuroprotectores/farmacocinética , Animales , Antirretrovirales/química , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Portadores de Fármacos/química , Indinavir/química , Masculino , Fármacos Neuroprotectores/química , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Transferrina/química
11.
J Pharm Sci ; 107(10): 2731-2734, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29960024

RESUMEN

The crystal structure of indinavir sulfate, a pharmaceutical administered as an ethanol solvate, is presented, revealing a unique channel/ionic solvate structure to be characteristic of the compound. The properties of the material with regard to thermal treatment and water adsorption follow closely from the structure. The in situ amorphization of the pharmaceutical upon contacting liquid water is observed and highlights the unique dissolution enhancement of marketing the crystalline solvate dosage. Through survey of published crystal structures, an ambiguous sulfate/bisulfate ionization state is also observed in the crystal, which challenges the general understanding of the pharmaceutical. This study provides a solid-state insight into the function of a special multicomponent crystalline pharmaceutical form.


Asunto(s)
Etanol/química , Indinavir/química , Preparaciones Farmacéuticas/química , Solventes/química , Sulfatos/química , Cristalización/métodos , Solubilidad , Termogravimetría/métodos
12.
Pharm Res ; 35(1): 14, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302757

RESUMEN

PURPOSE: Lamivudine, a characterized substrate for human multidrug and toxin extrusion protein 1 (hMATE1) in vitro, was commonly used with indinavir as a therapy against human immunodeficiency virus (HIV). We aimed to investigate whether mouse MATE1 is involved in the disposition of lamivudine in vivo, and whether there is any transporter-mediated interaction between indinavir and lamivudine. METHODS: The role of MATE1 in the disposition of lamivudine was determined using Mate1 wild type (+/+) and knockout (-/-) mice. The inhibitory potencies of indinavir on lamivudine uptake mediated by OCT2 and MATE1 were determined in human embryonic kidney 293 (HEK 293) cells stably expressing these transporters. The role of MATE1 in the interaction between indinavir and lamivudine in vivo was determined using Mate1 (+/+) and Mate1 (-/-) mice. RESULTS: The plasma concentrations and tissue accumulation of lamivudine were markedly elevated in Mate1 (-/-) mice as compared to those in Mate1 (+/+) mice. Indinavir significantly increased the pharmacokinetic exposure of lamivudine in mice; however, the effect by indinavir was significantly less pronounced in Mate1 (-/-) mice as compared to Mate1(+/+) mice. CONCLUSION: MATE1 played an important role in lamivudine pharmacokinetics. Indinavir could cause drug-drug interaction with lamivudine in vivo via inhibition of MATE1 and additional mechanism.


Asunto(s)
VIH-1/efectos de los fármacos , Indinavir/química , Lamivudine/química , Lamivudine/farmacocinética , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacocinética , Transporte Biológico/efectos de los fármacos , Técnicas de Cultivo de Célula , Interacciones Farmacológicas , Células HEK293 , Humanos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Tisular
13.
Eur J Pharm Biopharm ; 109: 122-129, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27693678

RESUMEN

This study investigated the impact of relevant gastrointestinal conditions on the intraluminal dissolution, supersaturation and precipitation behavior of the weakly basic drug indinavir. The influence of (i) concomitant PPI intake and (ii) the nutritional state on the gastrointestinal behavior of indinavir was assessed in order to identify the underlying mechanisms responsible for previously reported interactions. Five healthy volunteers were recruited into a crossover study containing the following arms: fasted state, fed state and fasted state with concomitant proton pump inhibitor (PPI) use. In each condition, one Crixivan® capsule (400mg indinavir) was orally administered with 240mL of water. Gastric and duodenal fluids, aspirated as a function of time, were monitored for total and dissolved indinavir concentrations on a UPLC-MS/MS system. Indinavir's thermodynamic solubility was determined in individual aspirates to evaluate supersaturation. The bioaccessible fraction of indinavir in aspirated duodenal fluids was determined in an ex vivo permeation experiment through an artificial membrane. A nearly complete dissolution of indinavir in the fasted stomach was observed (90±3%). Regardless of dosing conditions, less indinavir was in solution in the duodenum compared to the stomach. Duodenal supersaturation was observed in all three testing conditions. The highest degrees of duodenal supersaturation (6.5±5.9) were observed in the fasted state. Concomitant PPI use resulted in an increased gastric pH and a smaller fraction of indinavir being dissolved (58±24%), eventually resulting in lower intestinal concentrations. In fed state conditions, drug release from the capsule was delayed and more gradually, although a similar fraction of the intragastric indinavir dissolved compared to the fasted state (83±12%). Indinavir was still present in the lumen of the duodenum three hours after oral administration, although it already reached 70% (on average) of the fasted state concentrations (expressed as AUC0-3h). Based on a 2-h permeation experiment, the bioaccessible fraction of indinavir was 2.6-fold lower in a fed state sample compared to a fasted state sample. Our data indicate that the reported reduction in indinavir's bioavailability after concomitant PPI administration is caused by an elevated gastric pH resulting in less indinavir in solution in the stomach and, subsequently, reduced duodenal concentrations. In fed state conditions, however, intestinal micellar entrapment of indinavir appeared to cause the reported reduced bioavailability, regardless of duodenal concentrations.


Asunto(s)
Contenido Digestivo/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Indinavir/administración & dosificación , Absorción Intestinal/efectos de los fármacos , Administración Oral , Área Bajo la Curva , Disponibilidad Biológica , Estudios Cruzados , Ayuno , Femenino , Interacciones Alimento-Droga , Jugo Gástrico/química , Inhibidores de la Proteasa del VIH/administración & dosificación , Inhibidores de la Proteasa del VIH/farmacocinética , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Indinavir/química , Indinavir/farmacocinética , Masculino , Membranas Artificiales , Micelas , Solubilidad , Espectrometría de Masas en Tándem
14.
J Phys Chem A ; 119(2): 235-52, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25408114

RESUMEN

We present an overview of "XSAPT", a family of quantum chemistry methods for noncovalent interactions. These methods combine an efficient, iterative, monomer-based approach to computing many-body polarization interactions with a two-body version of symmetry-adapted perturbation theory (SAPT). The result is an efficient method for computing accurate intermolecular interaction energies in large noncovalent assemblies such as molecular and ionic clusters, molecular crystals, clathrates, or protein-ligand complexes. As in traditional SAPT, the XSAPT energy is decomposable into physically meaningful components. Dispersion interactions are problematic in traditional low-order SAPT, and two new approaches are introduced here in an attempt to improve this situation: (1) third-generation empirical atom-atom dispersion potentials, and (2) an empirically scaled version of second-order SAPT dispersion. Comparison to high-level ab initio benchmarks for dimers, water clusters, halide-water clusters, a methane clathrate hydrate, and a DNA intercalation complex illustrate both the accuracy of XSAPT-based methods as well as their limitations. The computational cost of XSAPT scales as O(N(3))-O(N(5)) with respect to monomer size, N, depending upon the particular version that is employed, but the accuracy is typically superior to alternative ab initio methods with similar scaling. Moreover, the monomer-based nature of XSAPT calculations makes them trivially parallelizable, such that wall times scale linearly with respect to the number of monomer units. XSAPT-based methods thus open the door to both qualitative and quantitative studies of noncovalent interactions in clusters, biomolecules, and condensed-phase systems.


Asunto(s)
Técnicas de Química Analítica/métodos , Modelos Químicos , Teoría Cuántica , Antineoplásicos/química , ADN/química , Dimerización , Proteasa del VIH/química , Indinavir/química , Iones/química , Inhibidores de Proteasas/química , Proteínas/química , Electricidad Estática , Agua/química
15.
ChemMedChem ; 10(2): 238-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25491400

RESUMEN

Selectivity is a central aspect of lead optimization in the drug discovery process. Medicinal chemists often try to decrease molecular flexibility to improve selectivity, given the common belief that the two are interdependent. To investigate the relationship between polypharmacology and conformational flexibility, we mined the Protein Data Bank and constructed a dataset of pharmaceutically relevant ligands that crystallized in more than one protein target while binding to each co-crystallized receptor with similar in vitro affinities. After analyzing the molecular conformations of these 100 ligands, we found that 59 ligands bound to different protein targets without significantly changing conformation, suggesting that there is no distinct correlation between conformational flexibility and polypharmacology within our dataset. Ligands crystallized in similar proteins and highly ligand-efficient compounds with five or fewer rotatable bonds were less likely to adjust conformation when binding.


Asunto(s)
Proteínas/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Bases de Datos de Proteínas , Diseño de Fármacos , Proteasa del VIH/química , Proteasa del VIH/metabolismo , Mesilato de Imatinib , Indinavir/química , Indinavir/metabolismo , Indoles/química , Indoles/metabolismo , Cinética , Ligandos , Piperazinas/química , Piperazinas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/química , Proteínas Proto-Oncogénicas c-kit/química , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Ácidos Sulfónicos/química , Ácidos Sulfónicos/metabolismo
16.
J Chem Phys ; 141(23): 234111, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25527923

RESUMEN

A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracy and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance.


Asunto(s)
Teoría Cuántica , Proteasa del VIH/química , Proteasa del VIH/metabolismo , VIH-2/enzimología , Enlace de Hidrógeno , Indinavir/química , Indinavir/metabolismo , Conformación Molecular , Simulación del Acoplamiento Molecular , Compuestos Orgánicos/química , Estándares de Referencia , Electricidad Estática , Termodinámica
17.
J Med Chem ; 57(14): 6266-72, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25006983

RESUMEN

HTLV-1 protease (HTLV-1 PR) is an aspartic protease which represents a promising drug target for the discovery of novel anti-HTLV-1 drugs. The X-ray structure of HTLV-1 PR in complex with the well-known and approved HIV-1 PR inhibitor Indinavir was determined at 2.40 Å resolution. In this contribution, we describe the first crystal structure in complex with a nonpeptidic inhibitor that accounts for rationalizing the rather moderate affinity of Indinavir against HTLV-1 PR and provides the basis for further structure-guided optimization strategies.


Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/química , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Indinavir/química , Indinavir/farmacología , Ácido Aspártico Endopeptidasas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
18.
Chem Biol Drug Des ; 83(4): 450-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24472495

RESUMEN

Using small, flat aromatic rings as components of fragments or molecules is a common practice in fragment-based drug discovery and lead optimization. With an increasing focus on the exploration of novel biological and chemical space, and their improved synthetic accessibility, 3D fragments are attracting increasing interest. This study presents a detailed analysis of 3D and 2D ring fragments in marketed drugs. Several measures of properties were used, such as the type of ring assemblies and molecular shapes. The study also took into account the relationship between protein classes targeted by each ring fragment, providing target-specific information. The analysis shows the high structural and shape diversity of 3D ring systems and their importance in bioactive compounds. Major differences in 2D and 3D fragments are apparent in ligands that bind to the major drug targets such as GPCRs, ion channels, and enzymes.


Asunto(s)
Descubrimiento de Drogas , Compuestos Heterocíclicos/química , Indinavir/química , Ligandos , Estructura Molecular
19.
Eur J Pharm Sci ; 49(1): 27-32, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23402972

RESUMEN

Food can have a significant impact on the pharmacokinetics of orally administered drugs, as it may affect drug solubility as well as permeability. Since fed state conditions cannot easily be implemented in the presently available permeability tools, including the frequently used Caco-2 system, exploring food effects during drug development can be quite challenging. In this study, we investigated the effect of fasted and fed state conditions on the intestinal absorption of the HIV protease inhibitor indinavir using simulated and human intestinal fluids in the in situ intestinal perfusion technique in mice. Although the solubility of indinavir was 6-fold higher in fed state human intestinal fluids (FeHIF) as compared to fasted state HIF (FaHIF), the intestinal permeation of indinavir was 22-fold lower in FeHIF as compared to FaHIF. Dialysis experiments showed that only a small fraction of indinavir is accessible for absorption in FeHIF due to micellar entrapment, possibly explaining its low intestinal permeation. The presence of ritonavir, a known P-gp inhibitor, increased the intestinal permeation of indinavir by 2-fold in FaHIF, while there was no increase when using FeHIF. These data confirm that drug-food interactions form a complex interplay between solubility and permeability effects. The use of HIF in in situ intestinal perfusions holds great promise for biorelevant absorption evaluation as it allows to directly explore this complex solubility/permeability interplay on drug absorption.


Asunto(s)
Líquidos Corporales/efectos de los fármacos , Alimentos , Inhibidores de la Proteasa del VIH/farmacocinética , Indinavir/farmacocinética , Absorción Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Animales , Líquidos Corporales/metabolismo , Células CACO-2 , Interacciones Alimento-Droga , Inhibidores de la Proteasa del VIH/administración & dosificación , Inhibidores de la Proteasa del VIH/química , Humanos , Indinavir/administración & dosificación , Indinavir/química , Mucosa Intestinal/metabolismo , Masculino , Ratones , Solubilidad
20.
ACS Chem Biol ; 8(1): 71-81, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23259601

RESUMEN

Enzymes achieve their transition states by dynamic conformational searches on the femtosecond to picosecond time scale. Mimics of reactants at enzymatic transition states bind tightly to enzymes by stabilizing the conformation optimized through evolution for transition state formation. Instead of forming the transient transition state geometry, transition state analogues convert the short-lived transition state to a stable thermodynamic state. Enzymatic transition states are understood by combining kinetic isotope effects and computational chemistry. Analogues of the transition state can bind millions of times more tightly than substrates and show promise for drug development for several targets.


Asunto(s)
Diseño de Fármacos , Enzimas/química , Modelos Biológicos , Proteasa del VIH/química , Proteasa del VIH/efectos de los fármacos , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Indinavir/química , Indinavir/farmacología , Cinética , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...